首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The population of methanogens in the sheep rumen microbial ecosystem was studied by using 16S rDNA cloning analysis, epifluorescence microscopy (which detects autofluorescence of a specific cofactor F420 in methanogens) and the 16S rRNA-targeted in situ hybridization technique. The 16S rDNA clone libraries were constructed by PCR amplification with an Archaea-specific primer set and partial sequencing of the clonal 16S rDNAs was done. Phylogenetic analysis indicated that the clones were affiliated with Methanomicrobium ruminantium and mobile, Methanobrevibacter smithii. Epifluorescence microscopy (F420 autofluorescence) and in situ hybridization by using a newly designed M. mobile-specific 16S rRNA-targeted oligonucleotide probe found that methanogens accounted for approximately 3.6% of total ruminal microorganisms and approximately 54% of the total methanogens were M. mobile.  相似文献   

2.
In situ detection of methanogens within the family Methanobacteriaceae is sometimes known to be unsuccessful due to the difficulty in permeability of oligonucleotide probes. Pseudomurein endoisopeptidase (Pei), a lytic enzyme that specifically acts on their cell walls, was applied prior to 16S rRNA-targeting fluorescence in situ hybridization (FISH). For this purpose, pure cultured methanogens within this family, Methanobacterium bryantii, Methanobrevibacter ruminantium, Methanosphaera stadtmanae, and Methanothermobacter thermautotrophicus together with a Methanothermobacter thermautotrophicus-containing syntrophic acetate-oxidizing coculture, endosymbiotic Methanobrevibacter methanogens within an anaerobic ciliate, and an upflow anaerobic sludge blanket (UASB) granule were examined. Even without the Pei treatment, Methanobacterium bryantii and Methanothermobacter thermautotrophicus cells are relatively well hybridized with oligonucleotide probes. However, almost none of the cells of Methanobrevibacter ruminantium, Methanosphaera stadtmanae, cocultured Methanothermobacter thermautotrophicus, and the endosymbiotic methanogens and the cells within UASB granule were hybridized. Pei treatment was able to increase the probe hybridization ratio in every specimen, particularly in the specimen that had shown little hybridization. Interestingly, the hybridizing signal intensity of Methanothermobacter thermautotrophicus cells in coculture with an acetate-oxidizing H(2)-producing syntroph was significantly improved by Pei pretreatment, whereas the probe was well hybridized with the cells of pure culture of the same strain. We found that the difference is attributed to the differences in cell wall thicknesses between the two culture conditions. These results indicate that Pei treatment is effective for FISH analysis of methanogens that show impermeability to the probe.  相似文献   

3.
To monitor anaerobic environmental engineering system, new method of quantification for methanogens was tested. It is based on the measurement of specific binding (hybridization) of 16S rRNA-targeted oligonucleotide probe Arc915, performed by fluorescence in situ hybridization (FISH) and quantified by fluorescence spectrometry. Average specific binding of Arc915 probe was 13.4±0.5 amol/cell of autofluorescent methanogens. It was 14.3, 13.3, and 12.9 amol/cell at the log phase, at stationary phase and at the period of cell lysis of batch culture, respectively. Specific binding of Arc915 probe per 1 ml of microbial sludge suspension from anaerobic digester linearly correlated with concentration of autofluorescent cells of methanogens. Coefficient of correlation was 0.95. Specific binding of oligonucleotide probe Arc915 can be used for the comparative estimation of methanogens during anaerobic digestion of organic waste. Specific binding of Arc915 probe was linear function of anaerobic sludge concentration when it was between 1.4 and 14.0 mg/ml. Accuracy of the measurements in this region was from 5 to 12%.  相似文献   

4.
A BSTRACTTo evaluate the role of Methanosaeta spp. in a variety of anaerobic environments, small-subunit rRNA targeted oligonucleotide hybridization probes were developed and experimentally characterized. The probes were designed to be genus specific for Methanosaeta and species specific for Methanosaeta concilii and Methanosaeta thermophila. The temperature of dissociation was determined for each probe. Probe specificities were determined using a diverse collection of Archaea and through an evaluation of probe nesting using samples from a variety of anaerobic bioreactors. Cell fixation and hybridization conditions for fluorescence in situ hybridizations were also evaluated. Although permeability of methanogens was variable, M. concilii cells could be permeabilized using a range of paraformaldehyde and ethanol based fixation conditions. Using the newly designed probes together with previously designed probes for methanogens, it was determined that Methanosaeta spp. were the dominant aceticlastic methanogens in a variety of anaerobic bioreactors when acetate concentrations were low. Their levels were higher in bioreactors with granular sludge than in those with flocculent sludge. In lab-scale upflow anaerobic sludge blanket reactors, the levels of M. concilii rRNA were as high as 30% of the total rRNA.  相似文献   

5.
In situ detection of methanogens within the family Methanobacteriaceae is sometimes known to be unsuccessful due to the difficulty in permeability of oligonucleotide probes. Pseudomurein endoisopeptidase (Pei), a lytic enzyme that specifically acts on their cell walls, was applied prior to 16S rRNA-targeting fluorescence in situ hybridization (FISH). For this purpose, pure cultured methanogens within this family, Methanobacterium bryantii, Methanobrevibacter ruminantium, Methanosphaera stadtmanae, and Methanothermobacter thermautotrophicus together with a Methanothermobacter thermautotrophicus-containing syntrophic acetate-oxidizing coculture, endosymbiotic Methanobrevibacter methanogens within an anaerobic ciliate, and an upflow anaerobic sludge blanket (UASB) granule were examined. Even without the Pei treatment, Methanobacterium bryantii and Methanothermobacter thermautotrophicus cells are relatively well hybridized with oligonucleotide probes. However, almost none of the cells of Methanobrevibacter ruminantium, Methanosphaera stadtmanae, cocultured Methanothermobacter thermautotrophicus, and the endosymbiotic methanogens and the cells within UASB granule were hybridized. Pei treatment was able to increase the probe hybridization ratio in every specimen, particularly in the specimen that had shown little hybridization. Interestingly, the hybridizing signal intensity of Methanothermobacter thermautotrophicus cells in coculture with an acetate-oxidizing H2-producing syntroph was significantly improved by Pei pretreatment, whereas the probe was well hybridized with the cells of pure culture of the same strain. We found that the difference is attributed to the differences in cell wall thicknesses between the two culture conditions. These results indicate that Pei treatment is effective for FISH analysis of methanogens that show impermeability to the probe.  相似文献   

6.
16S rRNA-targeted in situ hybridization combined with confocal laser scanning microscopy was used to elucidate the spatial distribution of microbes within two types of methanogenic granular sludge, mesophilic (35 degrees C) and thermophilic (55 degrees C), in upflow anaerobic sludge blanket reactors fed with sucrose-, acetate-, and propionate-based artificial wastewater. The spatial organization of the microbes was visualized in thin sections of the granules by using fluorescent oligonucleotide probes specific to several phylogenetic groups of microbes. In situ hybridization with archaeal- and bacterial-domain probes within granule sections clearly showed that both mesophilic and thermophilic granules had layered structures and that the outer layer harbored mainly bacterial cells while the inner layer consisted mainly of archaeal cells. Methanosaeta-, Methanobacterium-, Methanospirillum-, and Methanosarcina-like cells were detected with oligonucleotide probes specific for the different groups of methanogens, and they were found to be localized inside the granules, in both types of which dominant methanogens were members of the genus Methanosaeta. For specific detection of bacteria which were previously detected by whole-microbial-community 16S ribosomal DNA (rDNA)-cloning analysis (Y. Sekiguchi, Y. Kamagata, K. Syutsubo, A. Ohashi, H. Harada, and K. Nakamura, Microbiology 144:2655-2665, 1998) we designed probes specific for clonal 16S rDNAs related to unidentified green nonsulfur bacteria and clones related to Syntrophobacter species. The probe designed for the cluster closely related to Syntrophobacter species hybridized with coccoid cells in the inner layer of the mesophilic granule sections. The probe for the unidentified bacteria which were clustered with the green nonsulfur bacteria detected filamentous cells in the outermost layer of the thermophilic sludge granule sections. These results revealed the spatial organizations of methanogens and uncultivated bacteria and their in situ morphologies and metabolic functions in both mesophilic and thermophilic granular sludges.  相似文献   

7.
A single-step silver enhancement method was developed which intensifies the polymerized nickel-complexed diaminobenzidine (Ni-DAB) reaction product of peroxidase. With such enhancement, an in situ hybridization procedure can be performed in less than 8 hr by using a 2-hr hybridization incubation and direct detection. Cytomegalovirus (CMV)-infected lung sections were hybridized in situ for 2 hr with a biotinylated CMV genomic-length probe. The probe was detected directly with avidin-biotinylated peroxidase using Ni-DAB as the substrate, and the reaction product was enhanced with silver. Silver was deposited only on the Ni-DAB and not on normally argyrophilic substances. Indirect detection of the probe using a sandwich technique before silver enhancement proved more sensitive, but the length of the procedure was increased without substantially changing the result (infection vs. no infection). Sensitivity was also improved by omitting the dehydration step before applying the probe, and by increasing the temperature and duration of denaturation. In a blinded study of 21 open-lung biopsies, 13 of 13 culture-negative specimens were negative by hybridization, and 7 of 8 culture-positive specimens were positive by hybridization. Modified short hybridization with a biotinylated probe and silver-enhanced direct detection therefore provides a rapid but sensitive method for diagnosis of viral infection.  相似文献   

8.
Several enzymatic permeabilization protocols (utilizing lysozyme, proteinase K, achromopeptidase, or recombinant pseudomurein endopeptidase [PeiW]) were evaluated for application of in situ hybridization with horseradish peroxidase-labeled oligonucleotide probes and catalyzed reporter deposition (CARD-FISH) to methanogens. In this study, twelve methanogens were selected that have typical cell surface structures: pseudomurein, surface layer, methanochondroitin and sheath. Among the treatments tested, PeiW treatment was observed to be the most effective one, although methanogens having a sheath were stained heterogeneously and methanogens having methanochondroitin were not permeabilized. On the other hand, lysozyme, proteinase K, and achromopeptidase treatments were ineffective or caused cell-lysis, resulting in weak or no signals. Applicability of PeiW treatment was further evaluated using an anaerobic granular sludge sample. The detection rate of Archaea by CARD-FISH increased remarkably after the treatment. Based on the results obtained in this study, we propose PeiW treatment as a novel permeabilization method for CARD-FISH application to methanogens.  相似文献   

9.
Methanogen population in a marine biofilm corrosive to mild steel   总被引:2,自引:0,他引:2  
This study was conducted to analyze the methanogen population in a corrosive marine biofilm based on 16S rDNA analysis, using a PCR-cloning-sequencing approach. There were 80 methanogen clones developed from the PCR-amplified DNA extracted from the biofilm on the mild steel surface. All clones were categorized into one of five operational taxonomy units (OTUs). Two OTUs (comprising 57 clones) were affiliated with the acetotrophic Methanosaeta genus; the remaining three OTUs (23 clones) were affiliated with the hydrogenotrophic genera of Methanogenium, Methanoplanus and Methanocalculus. The hydrogenotrophic methanogens could directly cause metal corrosion through cathodic depolarization, whereas the acetotrophic methanogens grew syntrophically with corrosion-causing sulfate-reducing bacteria, as observed by fluorescent in situ hybridization, and thus contribute indirectly to metal corrosion.  相似文献   

10.
In situ hybridization with rRNA-targeted oligonucleotide probes has become a widely applied tool for direct analysis of microbial population structures of complex natural and engineered systems. In such studies probe EUB338 (AMANN et al., 1990) is routinely used to quantify members of the domain Bacteria with a sufficiently high cellular ribosome content. Recent reevaluations of probe EUB338 coverage based on all publicly available 16S rRNA sequences, however, indicated that important bacterial phyla, most notably the Planctomycetales and Verrucomicrobia, are missed by this probe. We therefore designed and evaluated two supplementary versions (EUB338-II and EUB338-III) of probe EUB338 for in situ detection of most of those phyla not detected with probe EUB338. In situ dissociation curves with target and non-target organisms were recorded under increasing stringency to optimize hybridization conditions. For that purpose a digital image software routine was developed. In situ hybridization of a complex biofilm community with the three EUB338 probes demonstrated the presence of significant numbers of probe EUB338-II and EUB338-III target organisms. The application of EUB338, EUB338-II and EUB338-III should allow a more accurate quantification of members of the domain Bacteria in future molecular ecological studies.  相似文献   

11.
The thermophilic, anaerobic, propionate-oxidizing bacterial populations present in the methanogenic granular sludge in a thermophilic (55 degrees C) upflow anaerobic sludge blanket reactor were studied by cultivation and in situ hybridization analysis. For isolation of propionate-degrading microbes, primary enrichment was made with propionate as the sole energy source at 55 degrees C. After several attempts to purify the microbes, a thermophilic, syntrophic, propionate-oxidizing bacterium, designated strain SI, was isolated in both pure culture and coculture with Methanobacterium thermoautotrophicum. Under thermophilic (55 degrees C) conditions, strain SI oxidized propionate, ethanol, and lactate in coculture with M. thermoautotrophicum. In pure culture, the isolate was found to ferment pyruvate. 16S ribosomal DNA sequence analysis revealed that the strain was relatively close to members of the genus Desulfotomaculum, but it was only distantly related to any known species. To elucidate the abundance and spatial distribution of organisms of the strain SI type within the sludge granules, a 16S rRNA-targeted oligonucleotide probe specific for strain SI was developed and applied to thin sections of the granules. Fluorescence in situ hybridization combined with confocal laser scanning microscopy revealed that a number of rod-shaped cells were present in the middle and inner layers of the thermophilic granule sections and that they formed close associations with hydrogenotrophic methanogens. They accounted for approximately 1.1% of the total cells in the sludge. These results demonstrated that strain SI was one of the significant populations in the granular sludge and that it was responsible for propionate oxidation in the methanogenic granular sludge in the reactor.  相似文献   

12.
Nonradioactive in situ hybridization techniques are becoming increasingly important tools for rapid analysis of the topological organization of DNA and RNA sequences within cells. Prerequisite for further advances with these techniques are multiple labeling and detection systems for different probes. Here we summarize our results with a recently developed labeling and detection system. The DNA probe for in situ hybridization is modified with digoxigenin-labeled deoxyuridine-triphosphate. Digoxigenin is linked to dUTP via an 11-atom linear spacer (Dig-[11]-dUTP). Labeled DNA probes were hybridized in situ to chromosome preparations. The hybridization signal was detected using digoxigenin-specific antibodies covalently coupled to enzyme markers (alkaline phosphatase or peroxidase) or to fluorescent dyes. Color reactions catalyzed by the enzymes resulted in precipitates located on the chromosomes at the site of probe hybridization. This was verified by hybridizing DNA probes of known chromosomal origin. The signals were analyzed by bright field, reflection contrast and fluorescence microscopy. The results indicate that the new technique gives strong signals and can also be used in combination with other systems (e.g., biotin) to detect differently labeled DNA probes on the same metaphase plate.  相似文献   

13.
Methanogenic activity was investigated in a petroleum hydrocarbon-contaminated aquifer by using a series of four push-pull tests with acetate, formate, H(2) plus CO(2), or methanol to target different groups of methanogenic Archaea. Furthermore, the community composition of methanogens in water and aquifer material was explored by molecular analyses, i.e., fluorescence in situ hybridization (FISH), denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes amplified with the Archaea-specific primer set ARCH915 and UNI-b-rev, and sequencing of DNA from dominant DGGE bands. Molecular analyses were subsequently compared with push-pull test data. Methane was produced in all tests except for a separate test where 2-bromoethanesulfonate, a specific inhibitor of methanogens, was added. Substrate consumption rates were 0.11 mM day(-1) for methanol, 0.38 mM day(-1) for acetate, 0.90 mM day(-1) for H(2), and 1.85 mM day(-1) for formate. Substrate consumption and CH(4) production during all tests suggested that at least three different physiologic types of methanogens were present: H(2) plus CO(2) or formate, acetate, and methanol utilizers. The presence of 15 to 20 bands in DGGE profiles indicated a diverse archaeal population. High H(2) and formate consumption rates agreed with a high diversity of methanogenic Archaea consuming these substrates (16S rRNA gene sequences related to several members of the Methanomicrobiaceae) and the detection of Methanomicrobiaceae by using FISH (1.4% of total DAPI [4',6-diamidino-2-phenylindole]-stained microorganisms in one water sample; probe MG1200). Considerable acetate consumption agreed with the presence of sequences related to the obligate acetate degrader Methanosaeata concilii and the detection of this species by FISH (5 to 22% of total microorganisms; probe Rotcl1). The results suggest that both aceticlastic and CO(2)-type substrate-consuming methanogens are likely involved in the terminal step of hydrocarbon degradation, while methanogenesis from methanol plays a minor role. DGGE profiles further indicate similar archaeal community compositions in water and aquifer material. The combination of hydrogeological and molecular methods employed in this study provide improved information on the community and the potential activity of methanogens in a petroleum hydrocarbon-contaminated aquifer.  相似文献   

14.
The purpose of our study was the application of non-isotopic in situ hybridization with chromosome-specific repetitive DNA probes for the determination of cytogenetically aberrant cells in routine cytological materials, such as cervical smears and breast tumour aspirates. Hyperdiploid cells in fine needle aspirates (FNA) of breast tumours could be visualized by in situ hybridization with a chromosome l-specific repetitive DNA probe. However, for the evaluation of a specific cell type in heterogeneous cell populations, i.e. cervical smears, a procedure combining immunocytochemistry and in situ hybridization can be required. Therefore, we developed a combination protocol using β-galactosidase/ ferri-ferrocyanide (blue-green) for immunocytochemistry and peroxidase/DAB (brown-black) for detection of the DNA probe. the described protocol enabled us to distinguish squamous epithelial cells within heterogeneous cell populations. By combining the chromosome 1 DNA probe with a specific cytokeratin marker it was possible to identify the chromosomal abnormal cells within cervical smears.  相似文献   

15.
In situ detection of functional genes with single-cell resolution is currently of interest to microbiologists. Here, we developed a two-pass tyramide signal amplification (TSA)-fluorescence in situ hybridization (FISH) protocol with PCR-derived polynucleotide probes for the detection of single-copy genes in prokaryotic cells. The mcrA gene and the apsA gene in methanogens and sulfate-reducing bacteria, respectively, were targeted. The protocol showed bright fluorescence with a good signal-to-noise ratio and achieved a high efficiency of detection (> 98%). The discrimination threshold was approximately 82-89% sequence identity. Microorganisms possessing the mcrA or apsA gene in anaerobic sludge samples were successfully detected by two-pass TSA-FISH with polynucleotide probes. The developed protocol is useful for identifying single microbial cells based on functional gene sequences.  相似文献   

16.
17.
Members of candidate division OP3 were detected in 16S rRNA gene clone libraries from methanogenic enrichment cultures that utilized limonene as a carbon and energy source. We developed probes for the visualization of OP3 cells. In situ hybridization experiments with newly designed OP3-specific probes [OP3-565 and Eub-338(VI)] revealed abundant small OP3 cocci attached to larger cells. Syntrophic Deltaproteobacteria, OP3 cells, and methanogens affiliating with Methanoculleus and Methanosaeta formed the limonenedegrading community.  相似文献   

18.
A new protocol for taxon specific probe based fluorescent in situ hybridization was developed for the identification and quantification of ciliates in microbial communities. Various fixatives and experimental parameters were evaluated and optimized with respect to cell permeability and morphological preservation. Optimum results were adaption by obatined of a modified fixation method using Bouin's solution. Furthermore, conventional staining procedures such as different Protargol stain techniques and a silver nitrate impregnation method were modified and can now be applied in combination with fluorescence in situ hybridization. The new protocol allows a rapid and reliable identification as well as quantification of ciliates based upon classical morphological aspects and rRNA based phylogenetic relationships performed in one experiment. Furthermore, a set of specific probes targeting different regions of the 18S rRNA was designed for Glaucoma scintillans Ehrenberg, 1830 and tested by applying this new approach of combining in situ cell hybridization with conventional staining techniques.  相似文献   

19.
AIMS: To develop oligonucleotide probes for visualizing bacteria belonging to Enterobacteriaceae. METHODS AND RESULTS: 24-mer oligonucleotide probe (probe D) was designed by comparison of 16S rDNA sequences of 35 species of Enterobacteriaceae, eight species of Vibrionaceae and six species of Pasteurellaceae. The sequence of the probe corresponding to the complementary sequence of a position 1251-1274 of Escherichia coli 16S rRNA was found to be a highly conserved region of 16S rDNA sequence in Enterobacteriaceae different from that of Vibrionaceae and Pasteurellaceae. The fluorescent dye-labelled probe was tested for the specificity by in situ hybridization and epifluorescence microscopy. Seventy-six out of 78 strains belonging to Enterobacteriaceae were visualized in an optimal hybridization condition. No bacterial strains belonging to Vibrionaceae (31 strains) and Gram-positive bacteria (three strains) were visualized. CONCLUSIONS: In situ hybridization using probe D allows the detection of bacterial cells belonging to Enterobacteriaceae without false positive reaction. SIGNIFICANCE AND IMPACT OF THE STUDY: In situ hybridization techniques using the probe D are potential tools for detecting Enterobacteriaceae in food and water samples.  相似文献   

20.
In order to increase the efficiency, accuracy, fidelity and reliability of in situ hybridization to identify the alien chromosomes and chromosome fragments in triticeae, major steps including probe labelling, chromosome denaturation, DNA concentration for blocking and post-hybridization washing in in situ hybridization were optimized. The results are as fel-lows. (1) The cloned repetitive DNA sequence could be biotin labelled more efficiently by nick translation than by random oligonucleotide labelling method: whereas the random oligonucleotide labelling is more suitable for genomic DNA probe and the labelling efficiency could be increased by prolonging the labelling time appropriately. (2) Denaturation of the biotinylated probe and chromosomes together in oven at 75 ℃ showed the satisfactory results of in situ hybridization, but the contour of treated rye chromosomes often became blurred when the temperature of denaturation was higher than 85℃. When 70% formamide (in 2 × SSC) was used to denature the chromosome DNA, rye chromosomes often swelled although the biotinylated signals could be detected. (3) The unlabeled DNA concentrations for blocking were tested in genomic in situ hybridization to detect the Haynaldia villosa chromosomes with biotin labelled H. villosa genomic DNA as probe. The best contrast between H. villosa and wheat chromosomes was obtained without using the blocking DNA (unlabeled wheat genomic DNA). (4) Post-hybridization washes were carried out in 50% formamide (in 2 × SSC) or in 2 × SSC at different temperature. When the post-hybridization washing temperature were increased gradually from room temperature to 42℃ in 50% formamide (in 2 × SSC). specific in situ hybridization signals on chromosome in triticeae were observed using both biotinylated repetitive DNA and genomic DNA as probe. With the improved resolution of this protocol, in situ hybridization would be widely applied to wheat breeding and genetics researches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号