首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endogenous stages of Eimeria tuskegeensis were studied in experimentally infected cotton rats, Sigmodon hispidus. Almost all parasites were located on the basilar side of the nucleus in epithelial cells on the sides and tips of villi of the small intestine. The endogenous cycle consisted of three generations of schizogony followed by gametogony. First-, second-, third-generation schizonts could be distinguished by time of appearance, size and shape of the schizont, and number, size, shape, and arrangement of merozoites. Immature gametogonous stages appeared to 84 hr postinoculation (PI) and developed into mature microgametocytes and macrogametes by 96 hr PI. Microgametocytes had a mono-centric type of development. Intermediate macrogametes had small, basophilic wall-forming bodies and mature macrogametes had large, eosinophilic wall-forming bodies. It was not possible to determine whether these were two distinct types of wall-forming bodies or whether they were different stages of a single type. Two nuclei were seen in the host's epithelial cells parasitized by schizonts, microgematocytes, macrogametes, and oocysts. This binucleate condition was apparently parasite-induced.  相似文献   

2.
The ultrastructure of intracytoplasmic meronts and macrogamonts of Eimeria s.l. boveroi in the small intestine of the gekkonid lizard Hemidactylus mabouia from Belem, Para north Brazil is described. Young meronts, and some of the fully grown macrogamonts, are coated with a glycocalyx which, in cross-section, has the appearance of a series of fine tubules. The wall of the parasitophorous vacuole (PV) is a single membrane, lined on the host-cytoplasm side with an endoplasmic reticulum (ER) which sometimes expands into large cisternae filled with electron-lucent, globular material. The membranal edges of the ER, canaliculi and cisternae have regularly spaced indentations filled with an electron-dense substance. Vesicular mitochondria are present in addition to those of the conventional type. Macrogamonts develop the characteristic type 1 and type 2 wall-forming bodies, and in some zygotes the cisternae containing the latter are grossly expanded. Both types of wall-forming bodies persist in young oocysts that have a distinct oocyst wall.  相似文献   

3.
SYNOPSIS. Mature macrogamonts were present in the small intestine of rats 5.5 to 7.5 days postinoculation with Eimeria nieschulzi oocysts; oocysts were present at 6 to 7.5 days. Types I and II wall-forming bodies in macrogamonts began to undergo ultrastructural changes within zygotes to form the outer and inner layers of the oocyst wall. Before and during oocyst wall formation a total of 5 membranes (M1–5) were formed at or near the surface of the zygote. The outer and inner oocyst wall layers formed between M2 and M3, and M4 and M5, respectively. The mature oocyst was loosely surrounded by M1 and M2, had an electron-dense outer layer, 100–275 nm thick, and an electron-lucent inner layer, 160–180 nm thick. It also contained an electron-lucent line consisting of M3 and M4 interposed between the outer and inner layers of the oocyst wall. The micropyle, measuring 935 × 47 nm, was located in the outer layer of the oocyst wall and consisted of 10–14 alternating layers of electron-dense and lucent material. The sporont of mature oocysts was covered by M5, immediately beneath which were M6 and M7. The sporont contained a nucleus and nucleolus, lipid and amylopectin bodies, mitochondria, ribosomes, as well as smooth and rough endoplasmic reticulum. Canaliculi, Golgi complexes, and types I and II wall-forming bodies were absent.  相似文献   

4.
AIM: The present study investigated the processes of macrogametogenesis and oocyst formation of Eimeria tenella (Xiamen strain), including the formation of wall-forming body1 (WFB1) and wall-forming body 2 (WFB2), the club-shape body and the origin of the residual body during the transformation from a macrogamete to an oocyst. METHOD: Transmission electron microscopy was used to follow ultrastructural changes of the organelles during parasite development. Frozen section techniques and special staining were used to determine the chemical composition of the club-shape body. RESULTS: Electron lighter WFB1 appeared earlier than the electron denser WFB2 during the process of cyst wall formation. WFB2 appeared to play a key role in cyst wall formation, whereas WFB1 may have a limited role in the wall-forming process. When two last generation merozoites entered the same host cell simultaneously, one of them grew well, but the other one was developmentally retarded, and became a residual body. Our study indicates that the content of the club-shape body are lipoidal in nature, not amyolpectin as suggested previously, because they stained black by Sudan black-B. CONCLUSIONS: During of macrogametogenesis and oocyst formation of E. tenella (Xiamen strain), WFB2 plays a major role in cyst wall formation. The residual bodies come from the undeveloped macrogametes. The club-body is lipoid; and lipometabolism is important energy resource in E. tenella development.  相似文献   

5.
SYNOPSIS. An electron microscope study of microgametocytes and macrogametes of Eimeria nieschulzi Dieben, 1924 revealed that they lie within vacuoles bounded by a host unit membrane. The vacuole surrounding the microgametocyte contains granular material. The vacuole around the macrogamete is narrower and contains vesicles and membranes. Micropores were seen on the surface of the plasma membrane of microgametocytes and macrogametes. Microtubules were seen in macrogametes. Young microgametocytes and macrogametes have a similar cytoplasmic matrix, mitochondria and nuclei. Glycogen granules apparently develop around vacuoles in both microgametocytes and macrogametes. Glycogen granules were also seen along the margins of parallel bundles of fibers in microgametocytes. As nuclei of the microgametocyte divide, they move to the periphery of the parasite. Three basal bodies, each with 9 fibers in triplet form, develop in association with each nucleus. Microgametes have 2 free flagella and a central short, attached flagellum. Basal granules lie along the outer fibers of the central flagellum. Each microgamete has an elongate mitochondrion in close contact with the nucleus. In macrogametes wall-forming bodies develop in lacunae in the cytoplasm. Smaller dark bodies with areas of low density were also seen. Wall-forming bodies and dark bodies move to the periphery of mature macrogametes.  相似文献   

6.
The ultrastructural features of fertilization and sporogony of Eimeria iroquoina are described from the intestinal epithelium of experimentally infected fathead minnows (Pimephales promelas). Intact microgametes were observed in the cytoplasm of macrogametes. Within immature macrogametes the microgamete was segregated from the cytoplasm of the former by the plasma membrane of each cell plus additional membranes. Within mature macrogametes, only the plasma membranes separated the gametes. Fertilization by fusion of the limiting membrane of both gametes occurred after the entire microgamete lay within the cytoplasm of the macrogamete. The cytoplasm of the zygote cleaved into sporoblasts within cisternae of endoplasmic reticulum. The sporocystic wall was composed of an outer electron-lucent layer and an inner, thicker layer with periodic striations at right angles to the surface of the sporocyst. The sporocysts were bivalved and joined by a continuous suture. The sporozoites were morphologically similar to sporozoites and merozoites of other Coccidia. Due to the structure of the sporocyst, Eimeria iroquoina Molnar and Fernando, 1974 is amended to Goussia iroquoina (Molnar and Fernando, 1974).  相似文献   

7.
Gametogenesis of Tyzzeria chalcides Probert, Roberts & Wilson, 1988, from the ocellated skink, Chalcides ocellatus , occurs within the epithelium of the gali bladder. Transmission electron microscopy reveals that macrogamonts contain 2 types of wall-forming bodies. Type I bodies are large densely stained structures associated with rough endoplasmic reticulum and the Golgi apparatus. They appear to be formed within the Golgi itself. Type II bodies are less densely stained, smaller and appear to form directly from the rough endoplasmic reticulum. Canaliculi are associated with Type I wall-forming bodies and probably function to transport the wall-forming bodies to the pellicle. Micropores occur in the pellicie and large amylopectin granules, lipid globules and dense bodies are found within the cytoplasm of the macrogamont. Mature microgamonts contain in excess of 20 microgametes, each of which has 2 flagella and an associated mitochondrion. Both types of gamont are found within a parasitophorous vacuole, in the host cell, which is filled with vesicular material on which the gamonts probably feed.  相似文献   

8.
The anticoccidial effect of a product extracted from the natural herb Artemisia annua, artemisinin, which has a potential use as a dietary supplement, has been studied. Commercial artemisinin was administered at 10 and 17 ppm in food and tested against infection with Eimeria tenella. A battery trial to quantify the effect of artemisinin on the reproductive and infective capabilities of E. tenella was carried out. For that purpose flow cytometry was combined with electron microscopy and immunofluorescence techniques in order to study the effect of artemisinin on E. tenella gametogenesis. Significantly reduced oocyst output and lesion scores were found in chickens treated with artemisinin. In addition, evidence to support a lower oocyst sporulation rate was obtained. Though the ultrastructural studies showed normal development of gametogenesis in artemisinin-treated chickens, the oocyst wall formation was significantly altered. This resulted in both death of developing oocysts and reduced sporulation rate. Immunofluorescent studies provided evidence that treatment with artemisinin inhibited sarcoplasmic–endoplasmic reticulum calcium ATPase (SERCA) expression in macrogametes. According to these findings, artemisinin has a deleterious effect on fertilized macrogametes (early zygotes) by inhibiting SERCA. The altered secretion of the wall-forming bodies may be the result of Ca2+-dependent ATPase impaired activity which, in turn, is the result of SERCA inhibition.  相似文献   

9.
The fine structure of macrogametes of a goose coccidium Tyzzeria parvula has been studied, intranuclear localization of these being discovered. Unlike other coccidia, macrogametes of T. parvula display only one type of wall-forming bodies. Deep invaginations are formed on the surface of macrogametes, in which fragments of host cell nucleoplasm, separated with the membrane of parasitophorous vacuole, are invaginating. They may be connected with process of parasite's feeding.  相似文献   

10.
SYNOPSIS. Macrogamonts in tissues from rabbits killed 5 1/2 days after inoculation with Eimeria magna oocysts were studied with the electron microscope. In young macrogamonts, parts of cytoplasm, sometimes including micronemes, were pinched off into the parasitophorous vacuole. In all stages of development, small segments of the inner membrane complex were present beneath the limiting membrane. Micropores also were seen in all stages, and some apparently functional ones were present in mature macrogametes. Wall-forming bodies of Type I and Type II were observed in relatively early stages. The former were less numerous than the latter, which had a more compact appearance than in other species. Usually, several Golgi complexes were present and several Golgi adjuncts occurred in the vicinity of the nucleus in all stages of development. Microgametes were observed in the cytoplasm of host cells harboring immature macrogametes.  相似文献   

11.
We have identified, and followed the development of three macrogamete organelles involved in the formation of the oocyst wall of Eimeria maxima. The first were small lucent vacuoles that cross-reacted with antibodies to the apple domains of the Toxoplasma gondii microneme protein 4. They appeared early in development and were secreted during macrogamete maturation to form an outer veil and were termed veil forming bodies. The second were the wall forming bodies type 1, large, electron dense vacuoles that stained positively only with antibodies raised to an enriched preparation of the native forms of 56 (gam56), 82 (gam82) and 230 kDa (gam230) gametocyte antigens (termed anti-APGA). The third were the wall forming bodies type 2, which appeared before the wall forming bodies type 1 but remain enclosed within the rough endoplasmic reticulum and stained positively with antibodies raised to recombinant versions of gam56 (anti-gam56), gam82 (anti-gam82) and gam230 (anti-gam230) plus anti-APGA. At the initiation of oocyst wall formation, the anti-T. gondii microneme protein 4 positive outer veil detached from the surface. The outer layer of the oocyst wall was formed by the release of the contents of wall forming bodies type 1 at the surface to form an electron dense, anti-APGA positive layer. The wall forming bodies type 2 appeared, subsequently, to give rise to the electron lucent inner layer. Thus, oocyst wall formation in E. maxima represents a sequential release of the contents of the veil forming bodies, wall forming bodies types 1 and 2 and this may be controlled at the level of the rough endoplasmic reticulum/Golgi body.  相似文献   

12.
Dry, fresh uredospores ofPuccinia recondita that have been killed by infra-red radiation showed no striking ultrastructural differences from dry, fresh, viable uredospores. Numerous spherical and elipsoidal mitochondria with distinct and deep cristae, ribosomes, endoplasmic reticulum and convoluted plasmalemma were well shown by both. When moistened and incubated, killed uredospores lost ultrastructural organization, whereas moistened, viable, fresh uredospores imbibed moisture, became more spherical and germination commenced. A more or less centrally located nucleus was seen with the double membrane invaginated at some points. The advance of the germ tube was initially by enzymic degradation and concluded by mechanical disruption of the degraded pore plug. The mitochondria and the endoplasmic reticulum increased in number and the stored lipid bodies were gradually depleted as germination progressed. Features known as the ‘foamy cytoplasm’ and ‘folded membranes’ were seen in the germinating uredospores only. It was suggested that the ‘foamy cytoplasm’ could be functionally similar to the glyoxisome because of the close association of the former to lipid bodies. The ‘folded membranes’ may be accumulated endoplasmic reticulum being transported to the site of wall formation.  相似文献   

13.
The fine structure of the developing macrogamete of Eimeria maxima   总被引:1,自引:0,他引:1  
R M Pittilo  S J Ball 《Parasitology》1979,79(2):259-265
The fine structure of the developing macrogamete of Eimeria maxima was studied from chicks killed at intervals from 138 to 147 h after inoculation. The macrogamete developed within a parasitophorous vacuole. Lying within the vacuole and extending for some distance around the periphery of the macrogamete were intravacuolar tubules, grouped in certain areas, and in some cases they were seen to make direct connexions with the cytoplasm of the parasite. During development, electron-pale vesicles were pinched off externally from the surface of the macrogamete. There appeared to be 2 forms of wall-forming bodies of the Type I during development, one form being less osmiophilic than the other. Other organelles present, such as wall-forming bodies of Type II, granular endoplasmic reticulum, mitochondria, canaliculi, lipid inclusions and intravacuolar folds, were similar in structure to those of other Eimeria species.  相似文献   

14.
Cytochemical staining in toto (periodic acid, thiosemicarbazide, OSO4) revealed the presence of polysaccharide lamellae on the surface of the cell membrane complex of fungi. The membraneous clusters in the vacuolar bodies of Claviceps purpurea were covered with these lamellae at both surfaces, as it was also the case with the endoplasmic reticulum membranes, the tonoplast and the cytoplasmic membrane. In Saccharomyces cerevisiae, the polysaccharide lamellae were visible on the surface of the endoplasmic reticulum membranes and the plasmalemma; the strain revealed polysaccharide deposits also on the tonoplasts of small vacuoles and in glucanase vesicles. We assume that these observations give precision to the localization of the enzymes synthetizing the glycoprotein components of the fungal cell wall.  相似文献   

15.
A cytochemical study using a lead precipitation technique has been made of the distribution of adenosine triphosphatase (ATPase) in mature and differentiating phloem and xylem cells of Nicotiana tabacum and Pisum sativum. The sites of ATPase localization in tobacco phloem were the plasma membrane, endoplasmic reticulum, mitochondria, dictyosomes, plasmodesmata, and the dispersed P proteins of mature sieve elements. In pea phloem sieve elements ATPase was localized in the endoplasmic reticulum, but was not associated with the P proteins or plasma membranes at any stage of their differentiation. In pea transfer cells ATPase activity was associated with the endoplasmic reticulum at all stages of their differentiation and with the plasma membrane of transfer cells that had formed wall ingrowths. In xylem cells of both tobacco and pea the patterns of ATPase activity was similar. At early stages of differentiation ATPase activity was associated with the plasma membrane and the endoplasmic reticulum. At intermediate stages of differentiation ATPase activity continued to be associated with the endoplasmic reticulum, but was no longer associated with the plasma membrane. At later stages of xylem element differentiation ATPase activity was associated with disintegrating organelles and with the hydrolyzing cell walls.  相似文献   

16.
The electron microscope was used to examine changes which take place in wall, as well as in internal, structure during germination of mature resistant sporangia of Allomyces neo-moniliformis. When the resistant sporangia are first placed in water to initiate germination, nuclei, mitochondria, and endoplasmic reticulum are not evident, though after the sporangia have been in water for more than 30 min all of these structures become visible. At this time no cracks are evident in the resistant sporangial wall and the cell membrane appears highly convoluted. Within the next 30 min the outer wall splits and the inner wall expands considerably as the protoplast increases in volume. At the same time the cell membrane straightens out, apparently in response to the protoplasmic expansion. The “cementing substances” begin to dissolve about this time so that 1 1/2 hr after placement in water the outer wall is completely separated from the inner wall which now acts as the cell wall. Cleavage appears to be initiated by the invagination of the cell membrane and by the appearance of segments of endoplasmic reticulum with filled vesicles at one end. Between 2 1/2 and 3 hr after placement in water zoospores are released.  相似文献   

17.
The fine structure of the mature macrogamonts and intracellular oocysts of Eimeria labbeana from the ileal mucosa of experimentally infected Pigeons (Columbia livia) was investigated and described. The macrogamont reached a maximum size of 12.0 x 9.5 mum (average equals 10.8 x 8.8 mum), and was located within a narrow parasitophorus vacuole. Most of the macrogamonts were limited by two membranes. Intravacuolar tubules, 1.2 mum long and 58 nm in diameter, established direct connections between the parasite and the host cell. Each tabule was composed of 9 subunits arranged around the central lumen. Cytoplasmic canaliculi were composed of bundles of microtubule-like structures (8-10 nm wide). Type 1 wall-forming bodies reached a maximum size of 1.8 x 1.5 mum, and many had centric or eccentric electron transparent portions within them. They were frequently seen lodged within peripherally-located mitochondria. Type 2 wall-forming bodies averaged 1.5 mum in diameter. The role of the two types of wall-forming bodies in forming the outer and inner layers of the wall of the oocyst was similar to that in other species of Eimeria. The oocyst wall was 0.2 mum thick and composed of a limiting membrane (20 nm thick), an outer layer (75 nm thick), and an inner layer (100 nm thick).  相似文献   

18.
甘小洪  丁雨龙 《植物学报》2004,21(2):180-188
利用透射和扫描电镜观察了毛竹(Phyllostachys edulis (Carr.) H. De Lehaie)茎秆纤维发育过程中的超微结构变化。在纤维细胞初生壁形成期,细胞质中线粒体、内质网、高尔基体等细胞器数量有明显的增加,出现大量的由内质网与高尔基体分泌形成的运输小泡,周质微管平行分布于质膜内侧,出现环状片层结构,并在细胞壁与质膜之间出现壁旁体结构。随着次生壁的逐渐形成,细胞质中细胞器逐渐地解体并出现多泡小体;纤维细胞核出现染色质凝聚并边缘化,但在8 年生的纤维中可以持续存在;在纤维次生壁形成的整个阶段都存在与周围细胞相联系的胞间连丝和运输小泡;次生壁 在前4 年加厚明显,以后加厚程度减缓,但可以持续很长一段时间,并随着加厚出现宽窄交替的多层结构。结果表明,线粒体、内质网、高尔基体和壁旁体等细胞器与周质微管一起参与了初生壁和次生壁早期的形成;纤维细胞次生壁的形成过程就是一个漫长的程序性细胞死亡(PCD),而PCD 的产物与胞间连丝一起参与了次生壁的形成与加厚;染色质凝聚并边缘化的细胞核与胞间连丝的持续存在,证明毛竹茎秆纤维细胞是一种典型的长寿细胞。  相似文献   

19.
The transforming characteristics of the membrane complex in spermatogenesis of Fenneropenaeus chinensis have been studied by using transmission electron microscopy. Two types of membrane complex have been investigated based on their sources: one originating from nucleus and the other from cytoplasm. The first one, consisted of annular structures, monolayer membrane blebs, and double or multi-lamellar membrane vesicles, emerges in the primary spermatocyte, then diffuses with the nuclear membrane and finally enters the cytoplasm. This type of membrane complex seems to play an important role in the materials transfusion from nucleus to cytoplasm, and it mainly exists inside the primary spermatocyte with some inside the secondary spermatocyte. The latter, originated from cytoplasm, is formed during the anaphase of spermiogenesis. It also exists in mature sperm, locating at both sides of the nucleus under the acrosomal cap. This type of membrane complex mainly comprises rings of convoluted membrane pouches, together with mitochondria, annular lamina bodies, fragments of endoplasmic reticulum, nuclear membrane and some nuclear particles. It releases vesicles and particles into the acrosomal area during the formation of the perforatorium, suggesting a combined function of the endoplasmic reticulum, mitochondria and Golgi’s mechanism.  相似文献   

20.
毛竹茎秆纤维发育过程的超微结构观察   总被引:8,自引:0,他引:8  
利用透射和扫描电镜观察了毛竹(Phyllostachys edulis(Carr.)H.De Lehaie)茎秆纤维发育过程中的超微结构变化.在纤维细胞初生壁形成期,细胞质中线粒体、内质网、高尔基体等细胞器数量有明显的增加,出现大量的由内质网与高尔基体分泌形成的运输小泡,周质微管平行分布于质膜内侧,出现环状片层结构,并在细胞壁与质膜之间出现壁旁体结构.随着次生壁的逐渐形成,细胞质中细胞器逐渐地解体并出现多泡小体;纤维细胞核出现染色质凝聚并边缘化,但在8年生的纤维中可以持续存在;在纤维次生壁形成的整个阶段都存在与周围细胞相联系的胞间连丝和运输小泡;次生壁在前4年加厚明显,以后加厚程度减缓,但可以持续很长一段时间,并随着加厚出现宽窄交替的多层结构.结果表明,线粒体、内质网、高尔基体和壁旁体等细胞器与周质微管一起参与了初生壁和次生壁早期的形成;纤维细胞次生壁的形成过程就是一个漫长的程序性细胞死亡(PCD),而PCD的产物与胞间连丝一起参与了次生壁的形成与加厚;染色质凝聚并边缘化的细胞核与胞间连丝的持续存在,证明毛竹茎秆纤维细胞是一种典型的长寿细胞.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号