首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of Cd++ (as well as of Hg++ and Cu++) on the uptake of an organic acid (fluorescein) in superficial proximal tubules of the surviving rat kidney was studied at 20 degrees C, when the active transport of fluorescein does not depend on the external Na. In contrast to mercury and copper, cadmium stimulated the uptake of fluorescein from the beginning of incubation. The minimal effective concentration of Cd++ was 5 X 10(-6)M, the relative effect of Cd++ on the uptake being the same within the concentration range from 5 X 10(-6) to 10(-3) M. A 60 minutes pre-incubation with Cd++ at 20 degrees C resulted in a significant increase in the stimulatory effect of acetate on the fluorescein transport. The stimulation of the fluorescein transport by cadmium was prevented by ouabain or by omissing Na from the incubating medium, although neither ouabain nor the absence of Na affected the transport of fluorescein under these conditions. It is supposed that the stimulation by Cd++ of the fluorescein transport may result from the activated oxidation of NAD-linked substrates due to acceleration of the active transepithelial transport of Na ions.  相似文献   

2.
E N Rebane  V M Bresler 《Tsitologiia》1984,26(10):1199-1203
The influence of a prolonged introduction of exogenic organic acid penicillin (that is functional loading) on the level of accumulation of an anionic dye (fluorescein) in renal proxima tubules was studied after unilateral nephrectomy and early postnatal period. Injection of penicillin 2 days after unilateral nephrectomy slowly increased Na-independent and strongly increased Na-dependent component of active fluorescein transport in renal proximal tubules of randombred, but strongly decreased both Na-independent and Na-dependent transport in renal tubules of the Campbell rats. When newborn random-bred, Wistar and Campbell rats were pretreated with penicillin, we obtained a slow increase in Na-independent and a strong increase in Na-dependent component of fluorescein transport in renal tubules of random-bred and Wistar rats, but a significant reduction in both Na-independent and Na-dependent transport. It is concluded that the ability for adaptive (or substrate) stimulation of active transport of organic anion in renal proximal tubules is controlled genetically. Adaptive stimulation of organic acid transport in renal tubules referred to in literature as "carried induction", was accomplished apparently by the increase in driving force of the active transport, that is evidently the level of electrochemical Na+-gradient.  相似文献   

3.
The effect of acetate on active fluorescein transport in intact proximal tubules of surviving frog kidney was studied. When the kidneys were incubated in a 120 mM Na+ medium, 10 mM acetate stimulated fluorescein uptake in the tubules. The stimulation was more pronounced if the kidneys had been previously preincubated for 3 h in the substrate-free solution. Lowering of the Na+ concentration in the bathing medium to 10 mM resulted in the disappearance of the acetate effect. Preincubation of the kidneys with acetate at 2–4°C gave rise to stimulation of the fluorescein transport only in the 120 mM Na+ acetate-free medium. The acetate effect on the fluorescein uptake was partially prevented by ouabain. The stimulation of the uptake by acetate in the 120 mM Na+ medium correlated with an increase in the extent of reduction of pyridine nucleotides in the tubules. The pyridine nucleotides were reduced more markedly after incubation of the kidneys in the 10 mM Na+ medium, when acetate had no effect on the fluorescein transport. In both the 120 mM and the 10 mM Na+ media, the cold preincubation of the kidneys with 2.5 mM ADP or 2.5 mM ATP resulted in only slight stimulation of the fluorescein uptake. But in both media the uptake was significantly enhanced after cold preincubation of the kidneys with 2 mM NADH. After the cold precincubation with ADP, stimulation of the fluorescein transport by acetate was observed in the case of the 10 mM Na+ medium also. The absence of any stimulatory effect of acetate on the organic acid transport in the 10 mM Na+ medium is explained as the result of the transformation of mitochondria in the tubular cells into the inactive state 4 due to a decrease in the intracellular ADP level. Reducing equivalents are supposed to take part in energization and/or regulation of transport processes in plasma membranes of the renal proximal tubules.  相似文献   

4.
With the aid of a direct microfluorimetric method a dependence of organic onion (fluorescein) transport into proximal tubules of surviving frog kidney on Na+-flow in the opposite direction was studied. It was shown that the complete removal of Na+ from the tubules lumen resulted in inhibition of fluorescein transport of about 30%. After a specific inhibitor of sodium channels, amiloride (10-3M) having been introduced into lumen of the tubules, the fluorescein transport was inhibited to the same extent. Amiloride affects only when Na+ is present in the tubular lumen. S present in the tubular lumen. Strophantin K (5 · 10?5 M), a specific inhibitor of (Na+, K+)-ATPase, reduced fluorescein transport about twice. Substances increasing the 3′,5′-AMP level in cells (theophylline, NaF) and exogenous 3′,5′-AMP inhibited fluorescein transport while substance that decreased the 3′,5′-AMP level intracellularly (carbachol) stimulated it. For realization of these effects Na+ should be present in proximal tubules lumen.Thus, the various effects on the Na+ flow from lumen of the tubules to medium at the level of both the basal and apical membranes alter the rate of organic acid active transport from medium to lumen as a result of changes in the maximum rate of transport (V) with unchanged Km. It is suggested that the system of Na+ extrusion from proximal tubules produces peritubular membrane-side (near the membrane) gradient of Na+ concentration which may be higher than the summary Na+ gradient between the medium and the cytoplasm. The magnitude of this gradient affects the maximal rate value of Na+-dependent organic acid transport. So, there is a double dependence of the active transport system on Na+, and the stages where Na+ is needed are: (1) the formation of a carrier-substrate-Na+ complex and (2) the production of substantial membrane-side Na+ gradient at the expense of Na+ extrusion from the tubules.  相似文献   

5.
The active transport of organic anions through the plasma membrane of the proximal tubules of frog kidney was studied. For this purpose a marker anion, fluorescein, was used, its flow into the tubules registered by the increase of fluorescense. The kinetics of transport was measured as function of time, concentration of substrate, concentration of a competing acid (p-aminohippuric acid) and temperature. The process is inhibited by strophantin, a specific poison for (Na+ + K+)-dependent ATPase. These data show that fluorescein transport is effected with the participation of a charged carrier, probably by the downfield mechanism postulated by Mitchell. To confirm this mechanism, a passive flow of K+ was created inwards across the membrane of the proximal tubules by means of valinomycin. It led to the discharge of the membrane and to the inhibition of fluorescein transport. Anions are transported downfield across the membrane, probably in a state of complexes with two Na+ ions.A magnetic field of 10 000–28 000 oersted inhibits the fluorescein transport strongly. This can be regarded as a proof of the liquid-crystalline structure of biological membranes and demonstrates the importance of this structure for active transport.  相似文献   

6.
A A Nikiforov 《Tsitologiia》1985,27(8):887-894
The stimulatory effect of cadmium ions on the Na-dependent fluorescein transport into the frog renal proximal tubules ceased with decreasing Ca++ concentration in solution on both the sides of the cell layer down to micromolar level. The decrease in Ca++ concentration per se stimulated fluorescein uptake during short-term incubations. A further diminution of Ca++ concentration in the tubular lumen with the aid of EGTA resulted in a sharp inhibition of the organic acid transport. Amiloride, which prevented the stimulatory effect of cadmium, inhibited the fluorescein transport at both millimolar and micromolar levels of Ca++ concentration, but it failed to affect the transport process after introducing EGTA into the tubular lumen. The results are discussed within the frames of a model regarding extracellular Ca++ as an allosteric inhibitor, and intracellular Ca++ as an allosteric activator of sodium channels in the apical membrane. Cd++ is assumed to compete with Ca++ for binding to centers of the allosteric inhibition, thereby accelerating the sodium ion flux across the cells of the proximal tubules.  相似文献   

7.
Exogenous cyclic 3',5'-AMP (cAMP) and substances known to increase the intracellular concentration of this nucleotide (isoproterenol, theophylline, noradrenaline, lactate) were shown to inhibit the transport of fluorescein (a weak organic acid) into the rat renal proximal tubules at 20 degrees C. Carbacholine decreasing intracellular cAMP concentration stimulated the transport. Propranolol, a beta-adrenergic blockator, diminished significantly the inhibitory effect of noradrenaline on the transport. Lactate and carbacholine when added simultaneously, neutralize their action. The inhibitory action of intracellular cAMP on the transport is supposed to be a result of the diminition of a pool of endogenous weak organic acids which may take part in the exchange of diffusion with the marker anion across basal plasma membrane.  相似文献   

8.
Basolateral membrane vesicles made from rabbit kidney proximal tubules were frozen and irradiated with a high energy electron beam and the effects of irradiation on Na,K-ATPase activity, p-aminohippurate (PAH) transport, the membrane diffusion barrier and vesicle volume were measured. The vesicle volume and diffusion barrier were not significantly changed by radiation exposure. Na,K-ATPase activity was inactivated as a simple exponential function of radiation dose. Target size analysis of the data yielded a molecular size of 267 +/- 17 kDa, consistent with its existence as a (alpha beta)2 dimer. The carrier-mediated PAH uptake by basolateral membrane vesicles was also inactivated as a function of radiation dose. A target molecular size of 74 +/- 16 kDa was calculated for the PAH transport system. This study is the first measurement of the functional size of the organic acid transport system based directly on flux measurements.  相似文献   

9.
This review updates our current knowledge on the regulation of Na+/H+ exchanger, Na+,K+,Cl- cotransporter, Na+,Pi cotransporter, and Na+,K+ pump in isolated epithelial cells from mammalian kidney by protein kinase C (PKC). In cells derived from different tubule segments, an activator of PKC, 4beta-phorbol 12-myristate 13-acetate (PMA), inhibits apical Na+/H+ exchanger (NHE3), Na+,Pi cotransport, and basolateral Na+,K+ cotransport (NKCCl) and augments Na+,K+ pump. In PMA-treated proximal tubules, activation of Na+,K+ pump probably plays a major role in increased reabsorption of salt and osmotically obliged water. In Madin-Darby canine kidney (MDCK) cells, which are highly abundant with intercalated cells from the collecting duct, PMA completely blocks Na+,K+,Cl- cotransport and decreases the activity of Na+,Pi cotransport by 30-40%. In these cells, agonists of P2 purinoceptors inhibit Na+,K+,Cl- and Na+,Pi cotransport by 50-70% via a PKC-independent pathway. In contrast with MDCK cells, in epithelial cells derived from proximal and distal tubules of the rabbit kidney, Na+,K+,Cl- cotransport is inhibited by PMA but is insensitive to P2 receptor activation. In proximal tubules, PKC-induced inhibition of NHE3 and Na+,Pi cotransporter can be triggered by parathyroid hormone. Both PKC and cAMP signaling contribute to dopaminergic inhibition of NHE3 and Na+,K+ pump. The receptors triggering PKC-mediated activation of Na+,K+ pump remain unknown. Recent data suggest that the PKC signaling system is involved in abnormalities of dopaminergic regulation of renal ion transport in hypertension and in the development of diabetic complications. The physiological and pathophysiological implications of PKC-independent regulation of renal ion transporters by P2 purinoceptors has not yet been examined.  相似文献   

10.
The dependence of the Na pump activity of intact renal tubules on the ATP concentration was investigated using a suspension of rabbit cortical tubules. Rotenone (an inhibitor of mitochondrial oxidative phosphorylation) was used in graded fashion to alter the cellular ATP, and the Na pump activity was measured when the pump was stimulated by adding KCl to tubules suspended in a K+-free medium. The K+ uptake into the tubule was measured using an extracellular K+ electrode, and the oxygen consumption (QO2) was measured using a Clark-type oxygen electrode. The Na pump activity was found to have a linear, nonsaturating dependence on the ATP concentration. However, the Na,K- ATPase hydrolytic activity (assayed biochemically) of lysed proximal tubule membranes demonstrated saturation and had a K0.5 value of 0.4 mM ATP. Presumably, unknown cytosolic factors present in the intact renal cell but not normally present in the biochemical assay accounted for the differences between the two measurements. The data suggest that an alteration in the intracellular ATP will result in a proportional change in active ion transport activity. Moreover, additional findings also suggest that the basal (non-transport-related) QO2 may be redirected to support the proximal Na pump activity when transport activity is stressed. Thus, basal respiration is not invariant under all conditions, and ion transport activity appears to be maintained foremost among cellular ATP-dependent processes.  相似文献   

11.
Angiotensin-(1-7) (Ang-(1-7)) modulates the Na+-ATPase, but not the Na+,K+-ATPase activity present in pig kidney proximal tubules. The Na+-ATPase, insensitive to ouabain, but sensitive to furosemide, is stimulated by Ang-(1-7) (68% by 10(-9) M), in a dose-dependent manner. This effect is due to an increase in Vmax, while the apparent affinity of the enzyme for Na+ is not modified. Saralasin, a general angiotensin receptor antagonist, abolishes the stimulation, demonstrating that the Ang-(1-7) effect is mediated by receptor. The Ang-(1-7) stimulatory effect is not changed by either PD 123319, an AT2 receptor antagonist, or A779, an Ang-(1-7) receptor antagonist. On the other hand, increasing the concentration of the AT1 receptor antagonist losartan from 10(-11) to 10(-9) M, reverses the Ang(1-7) stimulation completely. A further increase to 10(-3) M losartan reverses the Na+-ATPase activity to a level similar to that obtained with Ang-(1-7) (10(-9) M) alone. The stimulatory effect of Ang-(1-7) at 10(-9) M is similar to the effect of angiotensin II (AG II) alone. However, when the two peptides are both present, Na+-ATPase activity is restored to control values. These data suggest that Ang-(1-7) selectively modulates the Na+-ATPase activity present in basolateral membranes of kidney proximal tubules through a losartan-sensitive receptor. This receptor is probably different from the receptor involved in the stimulation of the Na+-ATPase activity by angiotensin II.  相似文献   

12.
In contrast to transport across basolateral membranes, the mechanism governing transport of organic anions across the luminal membranes of proximal tubules has remained unclear. We recently found Tetracycline transporter-like protein (TETRAN), a human ortholog of yeast Tpo1p that can transport anionic Non-steroidal anti-inflammatory drugs (NSAIDs). In this study, we examine the expression and function of TETRAN. TETRAN mRNA is expressed in various human tissues, including kidney. When overexpressed in cultured cells, TETRAN was predominantly localized on cytoplasmic membranes. Immunohistochemical analysis of human and mouse kidney tissue showed that TETRAN was expressed at the luminal membranes of proximal tubules. Overexpression of TETRAN in cultured cells facilitated the uptake of organic anions such as indomethacin (a NSAID) and fluorescein. The results suggest that TETRAN is a novel human organic anion transporter, and that it serves as a transporter for some NSAIDs and various other organic anions at the final excretion step.  相似文献   

13.
Chronic exposure to cadmium causes preferential accumulation of cadmium in the kidney, leading to nephrotoxicity. In the process of renal cadmium accumulation, the cadmium bound to a low-molecular-weight metal-binding protein, metallothionein, has been considered to play an important role in reabsorption by epithelial cells of proximal tubules in the kidney. However, the role and mechanism of the transport of Cd(2+) ions in proximal tubule cells remain unclear. Zinc transporters such as Zrt, Irt-related protein 8 (ZIP8) and ZIP14, and divalent metal transporter 1 (DMT1) have been reported to have affinities for Cd(2+) and Mn(2+). To examine the roles of these metal transporters in the absorption of luminal Cd(2+) and Mn(2+) into proximal tubule cells, we utilized a cell culture system, in which apical and basolateral transport of metals can be separately examined. The uptake of Cd(2+) and Mn(2+) from the apical side of proximal tubule cells was inhibited by simultaneous addition of Mn(2+) and Cd(2+), respectively. The knockdown of ZIP8, ZIP14 or DMT1 by siRNA transfection significantly reduced the uptake of Cd(2+) and Mn(2+) from the apical membrane. The excretion of Cd(2+) and Mn(2+) was detected predominantly in the apical side of the proximal tubule cells. In situ hybridization of these transporters revealed that ZIP8 and ZIP14 are highly expressed in the proximal tubules of the outer stripe of the outer medulla. These results suggest that ZIP8 and ZIP14 expressed in the S3 segment of proximal tubules play significant roles in the absorption of Cd(2+) and Mn(2+) in the kidney.  相似文献   

14.
In isolated, nonperfused chicken proximal tubules from both loopless reptilian-type and long-looped mammalian-type nephrons, resting intracellular pH (pHi), measured with pH-sensitive fluorescent dye 2',7'-bis(2-carboxyethyl)-5,6-carboxyfluorescein (BCECF), was approximately 7.1 under control HCO3- conditions [20 mM N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES)/5 mM HCO3(-)-buffered medium with pH 7.4 at 37 degrees C] and was reduced to approximately 6.8 in response to NH4Cl pulse. The rate of recovery of pHi (dpHi/dt) from this level to the resting level in proximal tubules from both nephron types was (1) significantly reduced by the removal of Na+ or both Na+ and Cl- from the bath, and (2) unaffected by the removal of Cl- from the bath or the presence of a high K+ concentration or Ba2+ in the bath. In proximal tubules from long-looped mammalian-type, but not loopless reptilian-type, nephrons, dpHi/dt was significantly reduced by the addition of either 5-(N-ethyl-N-isopropyl) amiloride (EIPA) or 4,4'-diisothiocyanostilbene-2,2'disulfonate (DIDS) to the bath. These data suggest that a Na+/H+ exchanger and most likely a Na(+)-dependent Cl-/HCO3- exchanger are involved in basolateral regulation of pHi in mammalian-type nephrons whereas none of the commonly identified basolateral acid-base transporters appear to be involved in regulation of pHi in reptilian-type nephrons.  相似文献   

15.
Renal tubular transport and its regulation are reviewed for Na(+) (and Cl(-)), and for fluid and organic anions (including urate). Filtered Na(+) (and Cl(-)) is reabsorbed along the tubules but only in mammals and birds does most reabsorption occur in the proximal tubules. Reabsorption involves active transport of Na(+) and passive reabsorption of Cl(-). The active Na(+) step always involves Na-K-ATPase at the basolateral membrane, but the entry step at luminal membrane varies among tubule segments and among vertebrate classes (except for Na(+)-2Cl(-)-K(+) cotransporter in diluting segment). Regulation can involve intrinsic, neural and endocrine factors. Proximal tubule fluid reabsorption is dependent on Na(+) reabsorption in all vertebrates studied, except ophidian reptiles. Fluid secretion occurs in glomerular and aglomerular fishes, reptiles and even mammals, but its significance is not always clear. A non-specific transport system for net secretion of organic anions (OAs) exists in the proximal renal tubules of almost all vertebrates. Net transepithelial secretion involves: (1) transport into the cells at the basolateral side against an electrochemical gradient by a tertiary active transport process, in which the final step involves OA/alpha-ketoglutarate exchange and (2) movement out of the cells across the luminal membrane down an electrochemical gradient by unknown carrier-mediated process(es). Regulation may involve protein kinase C and mitogen-activated protein kinase. Urate is net secreted in the proximal tubules of birds and reptiles. This process is urate-specific in reptiles but in birds, it may involve both a urate-specific system and the general OA system.  相似文献   

16.
The kinetics of active transport of an organic acid (fluorescein) through the membranes of the choroid plexus from the lateral ventricules of the brain of rabbit was studied both morphologically and functionally. It was shown that fluorescein is actively translocated through the apical and basal membrane of the epithelium and is accumulated in blood capillaries at a concentration exceeding one order of magnitude that in the incubation medium. The kinetic curves displaying saturation and the demonstration of inhibition by other acids shows that a specific carrier is involved in the transfer across the membrane. The active transport of fluorescein at 20 degrees C was found to be sodium independent. Total exclusion of sodium from the incubation medium does not change the Michaelis constant (Km) and maximal velocity (V). The active transport depends on the operation of (Na+ + K+)-ATPase as energy source but obviously no specific complexes with the participation of sodium are involved.  相似文献   

17.
Primary cultures of rabbit-kidney epithelial cells derived from purified proximal tubules were maintained without fibroblast overgrowth in a hormone-supplemented serum-free medium (Medium RK-1). A hormone- deletion study indicated that the primary cultures derived from purified rabbit proximal tubules required all of the three supplements in Medium RK-1 (insulin, transferrin, and hydrocortisone) for optimal growth but did not grow in response to EGF and T3. In contrast, the epithelial cells in primary cultures derived from an unpurified preparation of rabbit kidney tubules and glomeruli grew in response to EGF and T3, as well as insulin, transferrin, and hydrocortisone. These observations suggest that kidney epithelial cells derived from different segments of the nephron grow differently in response to hormones and growth factors. Differentiated functions of the primary cultures derived from proximal tubules were examined. Multicellular domes were observed, indicative of transepithelial solute transport by the monolayers. The proximal tubule cultures also accumulated alpha- methylglucoside (alpha-MG) against a concentration gradient. However, little or no alpha-MG accumulation was observed in the absence of Na+. Metabolic inhibitor studies also indicated that alpha-MG uptake by the primaries is an energy-dependent process, and depends upon the activity of the Na+/K+ ATPase. Phlorizin at 0.1 mM significantly inhibited 1 mM alpha-MG uptake whereas 0.1 mM phloretin did not have a significant inhibitory effect. Similar observations have been made concerning the Na+-dependent sugar-transport system located on the lumenal side of the proximal tubule, whereas the Na+-independent sugar transporter on the peritubular side is more sensitive to inhibition by phloretin than phlorizin. The cultures also exhibited PTH-sensitive cyclic AMP synthesis and brush-border enzymes typical of proximal cells. However, the activities of the enzymes leucine aminopeptidase, alkaline phosphatase, and gamma-glutamyl-transpeptidase were lower in the cultures than in purified proximal-tubule preparations from which they are derived.  相似文献   

18.
The localization of Na+-cotransport proteins in cortex and outer medulla of rat kidney was investigated with five monoclonal antibodies. Recently, it was found that these antibodies altered Na+-D-glucose cotransport and/or Na+-dependent high affinity phlorizin binding in pig kidney cortex and that three of these antibodies interacted also with Na+-cotransporters for lactate, L-alanine and/or L-glutamate (Koepsell, H., K. Korn, A. Raszeja-Specht, S. Bernotat-Danielowski, D. Ollig, J. Biol. Chem. 263, 18,419-18,429 (1988]. In pig and rat the monoclonal antibodies bind to two brush-border membrane polypeptides with identical molecular weights and isoelectric points of 75,000 and pI 5.5, and 47,000 and pI 5.4. These polypeptides have been previously identified as components of the porcine renal Na+-D-glucose cotransporter (Neeb, M., U. Kunz, H. Koepsell, J. Biol. Chem. 262, 10,718-10,727 (1987] and may also be part of other Na+-cotransporters. The electron microscopic localization of antibody binding was demonstrated by protein A-gold labeling on ultrathin plastic sections. Three antibodies bound to brush-border membranes of proximal convoluted and straight tubules. In the proximal convoluted tubules all antibodies reacted with apical endocytic vacuoles, apical dense tubules and lysosomes. Since dense tubules are supposed to originate from endocytic vacuoles and to fuse with brush-border membranes the data suggest recycling of Na+-cotransporters in the proximal convoluted tubule. In the outer medulla two antibodies bound to apical membranes of descending thin limbs (DTL) of short loops of Henle and to apical and basal membranes of DTL of long loops of Henle. Three antibodies bound to apical membranes of collecting ducts. These data indicate that Na+-cotransporters or homologous proteins exist beyond the proximal tubule.  相似文献   

19.
Sulphate and phosphate transport in the renal proximal tubule   总被引:2,自引:0,他引:2  
Experiments performed on microperfused proximal tubules and brush-border membrane vesicles revealed that inorganic phosphate is actively reabsorbed in the proximal tubule involving a 2 Na+-HPO2-4 or H2PO-4 co-transport step in the brush-border membrane and a sodium-independent exit step in the basolateral cell membrane. Na+-phosphate co-transport is competitively inhibited by arsenate. The transtubular transport regulation is mirrored by the brush-border transport step: it is inhibited by parathyroid hormone intracellularly mediated by cyclic AMP. Transepithelial inorganic phosphate (Pi) transport and Na+-dependent Pi transport across the brush-border membrane correlates inversely with the Pi content of the diet. Intraluminal acidification as well as intracellular alkalinization led to a reduction of transepithelial Pi transport. Data from brush-border membrane vesicles indicate that high luminal H+ concentrations reduce the affinity for Na+ of the Na+-phosphate co-transport system, and that this mechanism might be responsible for the pH dependence of phosphate reabsorption. Contraluminal influx of Pi from the interstitium into the cell could be partly inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulphonic acid (DIDS). It is not, however, changed when dicarboxylic acids are present or when the pH of the perfusate is reduced to pH 6. Sulphate is actively reabsorbed, involving electroneutral 2 Na+-SO2-4 co-transport through the brush-border membrane. This transport step is inhibited by thiosulphate and molybdate, but not by phosphate or tungstate. The transtubular active sulphate reabsorption is not pH dependent, but is diminished by the absence of bicarbonate. The transport of sulphate through the contraluminal cell side is inhibited by DIDS and diminished when the capillary perfusate contains no bicarbonate or chloride. The latter data indicate the presence of an anion exchange system in the contraluminal cell membrane like that in the erythrocyte membrane.  相似文献   

20.
The ouabain-insensitive, active Na+ uptake of inside-out vesicles prepared with basolateral plasma membranes from rat kidney proximal tubular cells can be increased by the presence of micromolar concentrations of Ca2+ in the assay medium. The concomitant ATP hydrolysis associated with the Na+ uptake is also increased by the presence of Ca2+. The Na+ uptake and the concomitant ATP hydrolysis are inhibited by 2 mM furosemide. The effect of Ca2+ is not due to the activity of an Na+-Ca2+ exchanger. The present results are in accordance with our previous model (Proverbio, F., Proverbio, T. and Marín, R. (1982) Biochim. Biophys. Acta 688, 757-763) in which we proposed that Ca2+ seems to modulate the activity of the ouabain-insensitive Na+ pump, in two different ways: (1) in a strong association with the membranes in which Ca2+ (stable component) is essential for the pump activity and (2) in a weak association with the membranes in which Ca2+ (labile component) can be quickly and easily removed by reducing the free Ca2+ concentration of the assay medium to values lower than 1 microM. The Ka for Ca2+ (for the labile component) is around 5 microM. The Ca2+ modulation of the ouabain-insensitive Na+ pump is an indication that Ca2+ could regulate the magnitude of the Na+ extrusion accompanied by Cl- and water present in rat kidney proximal tubular cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号