共查询到20条相似文献,搜索用时 0 毫秒
1.
A transposon with an unusual LTR arrangement from Chlamydomonas reinhardtii contains an internal tandem array of 76 bp repeats. 总被引:2,自引:2,他引:2 下载免费PDF全文
TOC1, a transposable element from Chlamydomonas reinhardtii, is 5662 bases long. The 217 and 237 base long terminal repeat sequences of TOC1 are unusually arranged around the 4600 and 123 base unique regions: [217]-4600-[237] [217]-123-[237]. Although TOC1 contains long terminal repeats and most TOC1 elements are complete, features shared with virus-like retroposons, its unique 4600 base region is more similar to the structure of the L1 family of non-virus retroposons: first, 11 3/4 tandemly repeated copies of a 76 base repeat are found 813 bases from the left end of TOC1, and second using the universal genetic code large open reading frames were not found in TOC1. The relationship between TOC1, virus-like retroposons and the L1 family of non-virus retroposons is unclear and may be very distant since only poor similarity was found between the TOC1 encoded ORFs and retrovirus polypeptides. The length of the tandem array of 76 base repeat sequences was conserved in most TOC1 elements and solo 76 base repeat sequences were not found outside TOC1 elements in the C. reinhardtii genome. Nucleotide substitutions allow all copies of the 76 base repeat to be distinguished from one another. 相似文献
2.
3.
4.
5.
6.
7.
Anil Day 《Plant molecular biology》1995,28(3):437-442
A 1.2 kb DNA sequence, flanked by a potential seven base target-site duplication, was found inserted into a TOC1 transposable element from Chlamydomonas reinhardtii. The insertion sequence, named TOC2, is a member of a family of repeated DNA sequences that is present in all the C. reinhardtii strains tested. It resembles class II transposable elements: it possesses short 14 bp imperfect terminal repeats that begin AGGAGGGT, and sub-terminal direct repeats located within 250 bp of the termini. No large open reading frames were found. The terminal bases and length of target-site duplication are important in classifying transposable elements. On this basis TOC2 does not fall readily into existing families of class II transposable elements found in plants. 相似文献
8.
The green alga Chlamydomonas reinhardtii has been used as a model system to study flagellar assembly, centriole assembly, and cell cycle events. These processes are dynamic. Therefore, protein targeting and protein-protein interactions should be evaluated in vivo. To be able to study dynamic processes in C. reinhardtii in vivo, we have explored the use of the green fluorescent protein (GFP). A construct containing a fusion of centrin and GFP was incorporated into the genome as a single copy. The selected clone shows expression in 25-50% of the cells. Centrin-GFP was targeted in vivo to the nuclear basal body connectors and the distal connecting fibers. At the electron microscopic level, it was also localized to the flagellar transitional regions. EM data of transformants indicate that there are some abnormalities in the centrin-containing structures. The transitional region consists of only the transverse septum or has lesions in the H-piece. The distal connecting fibers are thinner and their characteristic crossbands seem to be incomplete. Deflagellation is not affected since more than 95% of the cells deflagellate. Also basal body segregation is not affected since cells with an abnormal flagellar number were not detected. Functional studies of the centrin-GFP fusion show the characteristic calcium-induced mobility shift in SDS-PAGE. Immunofluorescence revealed that during cell division, centrin-GFP remains associated with the basal bodies. In vivo localization of the fusion protein during cell division shows that in metaphase centrin-GFP appears as two opposing spots located close to the spindle poles. The distance between the spots increases as the cells progress through anaphase and then decreases during telophase. GFP is a useful tool to study dynamic processes in the cytoskeleton of C. reinhardtii. 相似文献
9.
Regulation of molybdenum cofactor species in the green alga Chlamydomonas reinhardtii 总被引:1,自引:0,他引:1
Molybdenum cofactor (MoCo) of molybdoenzymes is constitutively produced in cells of the green alga Chlamydomonas reinhardtii grown in ammonium media, under which conditions certain molybdoenzymes are not synthesized. In soluble form, MoCo was found to be present in several forms: (i) as a low Mr free species; (ii) bound to a MoCo-carrier protein of about 50 kDa that could release MoCo to directly reconstitute in vitro nitrate reductase activity in the nit-1 mutant of Neurospora crassa, but not to Thiol-Sepharose which, in contrast, bonded free MoCo; and (iii) bound to other proteins, putatively constitutive molybdoenzymes, which only released MoCo after a denaturing treatment. The amount of total MoCo (free, carrier-bound and heat releasable forms) was dependent on the growth phase of cell cultures. Constitutive levels of total MoCo in ammonium-grown cells markedly increased when cells were transferred to media lacking ammonium (nitrate, urea or nitrogen-free media). This increase did not require de novo protein synthesis and was stimulated by light. Levels of both total MoCo and free plus carrier-bound MoCo seemed to be unrelated to either nitrate reductase synthesis or functioning of nit-1 and nit-2 genes responsible for nitrate reductase structure and regulation, respectively. Results suggest that MoCo is continuously synthesized in C. reinhardtii and that its levels are regulated by ammonium in a way independent of nitrate reductase synthesis. 相似文献
10.
This method has been developed to yield highly purified intact chloroplasts from Chlamydomonas reinhardtii. This procedure involves breaking cell-wall-deficient cells by passage through a narrow-bore syringe needle and purifying the intact chloroplasts by differential centrifugation and Percoll gradient centrifugation. This procedure can be completed in less than 3 h and is capable of generating relatively high yields of chloroplasts that should be useful for researchers studying the biochemistry and cell biology of C. reinhardtii chloroplasts. 相似文献
11.
12.
13.
All aerobic organisms have developed sophisticated mechanisms to prevent, detect and respond to cell damage caused by the unavoidable production of reactive oxygen species (ROS). Plants and algae are able to synthesize specific pigments in the chloroplast called carotenoids to prevent photo-oxidative damage caused by highly reactive by-products of photosynthesis. In this study we used the unicellular green alga Chlamydomonas reinhardtii to demonstrate that defects in carotenoid biosynthesis lead to the activation of autophagy, a membrane-trafficking process that participates in the recycling and degradation of damaged or toxic cellular components. Carotenoid depletion caused by either the mutation of phytoene synthase or the inhibition of phytoene desaturase by the herbicide norflurazon, resulted in a strong induction of autophagy. We found that high light transiently activates autophagy in wild-type Chlamydomonas cells as part of an adaptation response to this stress. Our results showed that a Chlamydomonas mutant defective in the synthesis of specific carotenoids that accumulate during high light stress exhibits constitutive autophagy. Moreover, inhibition of the ROS-generating NADPH oxidase partially reduced the autophagy induction associated to carotenoid deficiency, which revealed a link between photo-oxidative damage, ROS accumulation and autophagy activation in Chlamydomonas cells with a reduced carotenoid content. 相似文献
14.
《Autophagy》2013,9(3):376-388
All aerobic organisms have developed sophisticated mechanisms to prevent, detect and respond to cell damage caused by the unavoidable production of reactive oxygen species (ROS). Plants and algae are able to synthesize specific pigments in the chloroplast called carotenoids to prevent photo-oxidative damage caused by highly reactive by-products of photosynthesis. In this study we used the unicellular green alga Chlamydomonas reinhardtii to demonstrate that defects in carotenoid biosynthesis lead to the activation of autophagy, a membrane-trafficking process that participates in the recycling and degradation of damaged or toxic cellular components. Carotenoid depletion caused by either the mutation of phytoene synthase or the inhibition of phytoene desaturase by the herbicide norflurazon, resulted in a strong induction of autophagy. We found that high light transiently activates autophagy in wild-type Chlamydomonas cells as part of an adaptation response to this stress. Our results showed that a Chlamydomonas mutant defective in the synthesis of specific carotenoids that accumulate during high light stress exhibits constitutive autophagy. Moreover, inhibition of the ROS-generating NADPH oxidase partially reduced the autophagy induction associated to carotenoid deficiency, which revealed a link between photo-oxidative damage, ROS accumulation and autophagy activation in Chlamydomonas cells with a reduced carotenoid content. 相似文献
15.
Chloroplast thioredoxin m from the green alga Chlamydomomas reinhardtii is very efficiently reduced in vitro and in vivo in the presence of photoreduced ferredoxin and a ferredoxin dependent ferredoxin-thioredoxin reductase. Once reduced, thioredoxin m has the capability to quickly activate the NADP malate dehydrogenase (EC 1.1.1.82) a regulatory enzyme involved in an energy-dependent assimilation of carbon dioxide in C4 plants. This activation is the result of the reduction of two disulfide bridges by thioredoxin m, that are located at the N- and C-terminii of the NADP malate dehydrogenase. The molecular structure of thioredoxin m was solved using NMR and compared to other known thioredoxins. Thioredoxin m belongs to the prokaryotic type of thioredoxin, which is divergent from the eukaryotic-type thioredoxins also represented in plants by the h (cytosolic) and f (chloroplastic) types of thioredoxins. The dynamics of the molecule have been assessed using (15)N relaxation data and are found to correlate well with regions of disorder found in the calculated NMR ensemble. The results obtained provide a novel basis to interpret the thioredoxin dependence of the activation of chloroplast NADP-malate dehydrogenase. The specific catalytic mechanism that takes place in the active site of thioredoxins is also discussed on the basis of the recent new understanding and especially in the light of the dual general acid-base catalysis exerted on the two cysteines of the redox active site. It is proposed that the two cysteines of the redox active site may insulate each other from solvent attack by specific packing of invariable hydrophobic amino acids. 相似文献
16.
The H1 histones of the unicellular green alga Chlamydomonas reinhardtii were extracted from isolated nuclei, fractionated by high performance liquid chromatography, and analyzed by two-dimensional electrophoresis, peptide mapping, and N-terminal sequencing. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of 5% perchloric acid extracts of isolated C. reinhardtii nuclei revealed two H1 proteins (H1A and H1B). Two-dimensional gel analysis did not reveal heterogeneity of either algal H1 protein, but did detect differences in the hydrophobic amino acid content of the C. reinhardtii H1A and H1B. Digestion of H1A and H1B with V8 protease revealed two distinctly different peptide maps. C. reinhardtii H1 peptide maps were not at all similar to those of Pisum H1, but algal and pea H2B peptide maps did show some peptides in common. Seventeen amino acid residues were obtained from C. reinhardtii H1A amino terminal sequencing, while the H1B N-terminus was blocked. A search of protein data bases revealed no sequence homology of the H1A N-terminus with any known protein. Chlamydomonas histones fractionated by high performance liquid chromatography revealed minor components (histone variants) for H2A and H2B. The amino acid composition of Chlamydomonas lysine-rich histones was compared to those of various other unicellular algae. 相似文献
17.
Heather C. Huppe Frédéric de Lamotte-Guéry Jean-Pierre Jacquot Bob B. Buchanan 《Planta》1990,180(3):341-351
The components of the ferredoxin-thioredoxin (FT) system of Chlamydomonas reinhardtii have been purified and characterized. The system resembled that of higher plants in consisting of a ferredoxin-thioredoxin reductase (FTR) and two types of thioredoxin, a single f and two m species, m1 and m2. The Chlamydomonas m and f thioredoxins were antigenically similar to their higher-plant counterparts, but not to one another. The m thioredoxins were recognized by antibodies to both higher-plant m and bacterial thioredoxins, whereas the thioredoxin f was not. Chlamydomonas thioredoxin f reacted, although weakly, with the antibody to spinach thioredoxin f. The algal thioredoxin f differed from thioredoxins studied previously in behaving as a basic protein on ion-exchange columns. Purification revealed that the algal thioredoxins had molecular masses (Mrs) typical of thioredoxins from other sources, m1 and m2 being 10700 and f 11 500. Chlamydomonas FTR had two dissimilar subunits, a feature common to all FTRs studied thus far. One, the 13-kDa (similar) subunit, resembled its counterpart from other sources in both size and antigenicity. The other, 10-kDa (variable) sub-unit was not recognized by antibodies to any FTR tested. When combined with spinach, (Spinacia oleracea L.) thylakoid membranes, the components of the FT system functioned in the light activation of the standard target enzymes from chloroplasts, corn (Zea mays L.) NADP-malate dehydrogenase (EC 1.1.1.82) and spinach fructose 1,6-bisphosphatase (EC 3.1.3.11) as well as the chloroplast-type fructose 1,6-bisphosphatase from Chlamydomonas. Activity was greatest if ferredoxin and other components of the FT system were from Chlamydomonas. The capacity of the Chlamydomonas FT system to activate autologous FBPase indicates that light regulates the photosynthetic carbon metabolism of green algae as in other oxygenic photosynthetic organisms.Abbreviations DEAE
diethylaminoethyl
- ELISA
enzyme-linked immunosorption assay
- FBPase
fructose 1,6-bisphosphatase
- Fd
ferredoxin
- FPLC
fast protein liquid chromatography
- FTR
ferredoxin-thioredoxin reductase
- FT system
ferredoxin-thioredoxin system
- kDa
kilodaltons
- Mr
relative molecular mass
- NADP-MDH
NADP-malate dehydrogenase
- SDS-PAGE
sodium dodecyl sulfate-polyacrylamide gel electrophoresis
This work was supported in part by a grant from the National Aeronautics and Space Administration. We would like to thank Don Carlson and Jacqueline Girard for their assistance with cell cultures. 相似文献
18.
Turkina MV Kargul J Blanco-Rivero A Villarejo A Barber J Vener AV 《Molecular & cellular proteomics : MCP》2006,5(8):1412-1425
Mapping of in vivo protein phosphorylation sites in photosynthetic membranes of the green alga Chlamydomonas reinhardtii revealed that the major environmentally dependent changes in phosphorylation are clustered at the interface between the photosystem II (PSII) core and its light-harvesting antennae (LHCII). The photosynthetic membranes that were isolated form the algal cells exposed to four distinct environmental conditions affecting photosynthesis: (i) dark aerobic, corresponding to photosynthetic State 1; (ii) dark under nitrogen atmosphere, corresponding to photosynthetic State 2; (iii) moderate light; and (iv) high light. The surface-exposed phosphorylated peptides were cleaved from the membrane by trypsin, methyl-esterified, enriched by immobilized metal affinity chromatography, and sequenced by nanospray-quadrupole time-of-flight mass spectrometry. A total of 19 in vivo phosphorylation sites were mapped in the proteins corresponding to 15 genes in C. reinhardtii. Amino-terminal acetylation of seven proteins was concomitantly determined. Sequenced amino termini of six mature LHCII proteins differed from the predicted ones. The State 1-to-State 2 transition induced phosphorylation of the PSII core components D2 and PsbR and quadruple phosphorylation of a minor LHCII antennae subunit, CP29, as well as phosphorylation of constituents of a major LHCII complex, Lhcbm1 and Lhcbm10. Exposure of the algal cells to either moderate or high light caused additional phosphorylation of the D1 and CP43 proteins of the PSII core. The high light treatment led to specific hyperphosphorylation of CP29 at seven distinct residues, phosphorylation of another minor LHCII constituent, CP26, at a single threonine, and double phosphorylation of additional subunits of a major LHCII complex including Lhcbm4, Lhcbm6, Lhcbm9, and Lhcbm11. Environmentally induced protein phosphorylation at the interface of PSII core and the associated antenna proteins, particularly multiple differential phosphorylations of CP29 linker protein, suggests the mechanisms for control of photosynthetic state transitions and for LHCII uncoupling from PSII under high light stress to allow thermal energy dissipation. 相似文献
19.
Frdric Chaux-Jukic Samuel ODonnell Rory J Craig Stephan Eberhard Olivier Vallon Zhou Xu 《Nucleic acids research》2021,49(13):7571
In most eukaryotes, subtelomeres are dynamic genomic regions populated by multi-copy sequences of different origins, which can promote segmental duplications and chromosomal rearrangements. However, their repetitive nature has complicated the efforts to sequence them, analyse their structure and infer how they evolved. Here, we use recent genome assemblies of Chlamydomonas reinhardtii based on long-read sequencing to comprehensively describe the subtelomere architecture of the 17 chromosomes of this model unicellular green alga. We identify three main repeated elements present at subtelomeres, which we call Sultan, Subtile and Suber, alongside three chromosome extremities with ribosomal DNA as the only identified component of their subtelomeres. The most common architecture, present in 27 out of 34 subtelomeres, is a heterochromatic array of Sultan elements adjacent to the telomere, followed by a transcribed Spacer sequence, a G-rich microsatellite and transposable elements. Sequence similarity analyses suggest that Sultan elements underwent segmental duplications within each subtelomere and rearranged between subtelomeres at a much lower frequency. Analysis of other green algae reveals species-specific repeated elements that are shared across subtelomeres, with an overall organization similar to C. reinhardtii. This work uncovers the complexity and evolution of subtelomere architecture in green algae. 相似文献