首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In outcrossing plants, seed dispersal distance is often less than pollen movement. If the scale of environmental heterogeneity within a population is greater than typical seed dispersal distances but less than pollen movement, an individual's environment will be similar to that of its mother but not necessarily its father. Under these conditions, environmental maternal effects may evolve as a source of adaptive plasticity between generations, enhancing offspring fitness in the environment that they are likely to experience. This idea is illustrated using Campanula americana, an herb that grows in understory and light-gap habitats. Estimates of seed dispersal suggest that offspring typically experience the same light environment as their mother. In a field experiment testing the effect of open vs understory maternal light environments, maternal light directly influenced offspring germination rate and season, and indirectly affected germination season by altering maternal flowering time. Results to date indicate that these maternal effects are adaptive; further experimental tests are ongoing. Evaluating maternal environmental effects in an ecological context demonstrates that they may provide phenotypic adaptation to local environmental conditions.  相似文献   

3.
Many organisms have geographical distributions extending from the tropics to near polar regions or can experience up to 30°C temperature variation within the lifespan of an individual. Two forms of evolutionary adaptation to such wide ranges in ambient temperatures are frequently discussed: local adaptation and phenotypic plasticity. The freshwater planktonic crustacean Daphnia magna, whose range extends from South Africa to near arctic sites, shows strong phenotypic and genotypic variation in response to temperature. In this study, we use D. magna clones from 22 populations (one clone per population) ranging from latitude 0° (Kenya) to 66° North (White Sea) to explore the contributions of phenotypic plasticity and local adaptation to high temperature tolerance. Temperature tolerance was studied as knockout time (time until immobilization, Timm) at 37°C in clones acclimatized to either 20°C or 28°C. Acclimatization to 28°C strongly increased Timm, testifying to adaptive phenotypic plasticity. At the same time, Timm significantly correlated with average high temperature at the clones’ sites of origin, suggesting local adaptation. As earlier studies have found that haemoglobin expression contributes to temperature tolerance, we also quantified haemoglobin concentration in experimental animals and found that both acclimatization temperature (AccT) and temperature at the site of origin are positively correlated with haemoglobin concentration. Furthermore, Daphnia from warmer climates upregulate haemoglobin much more strongly in response to AccT, suggesting local adaptation for plasticity in haemoglobin expression. Our results show that both local adaptation and phenotypic plasticity contribute to temperature tolerance, and elucidate a possible role of haemoglobin in mediating these effects that differs along a cold–warm gradient.  相似文献   

4.
5.
The degree of plasticity an individual expresses when moving into a new environment is likely to influence the probability of colonization and potential for subsequent evolution. Yet few empirical examples exist where the ancestral and derived conditions suggest a role for plasticity in adaptive genetic divergence of populations. Here we explore the genetic and plastic components of shoaling behaviour in two pairs of populations of Poecilia reticulata (Trinidadian guppies). We contrast shoaling behaviour of guppies derived from high‐ and low‐predation populations from two separate drainages by measuring the shoaling response of second generation laboratory‐reared individuals in the presence and absence of predator induced alarm pheromones. We find persistent differences in mean shoaling cohesion that suggest a genetic basis; when measured under the same conditions high‐predation guppies form more cohesive shoals than low‐predation guppies. Both high and low‐predation guppies also exhibit plasticity in the response to alarm pheromones, by forming tighter, more cohesive shoals. These patterns suggest a conserved capacity for adaptive behavioural plasticity when moving between variable predation communities that are consistent with models of genetic accommodation.  相似文献   

6.
7.
Two different, but related, evolutionary theories pertaining to phenotypic plasticity were proposed by James Mark Baldwin and Conrad Hal Waddington. Unfortunately, these theories are often confused with one another. Baldwin's notion of organic selection posits that plasticity influences whether an individual will survive in a new environment, thus dictating the course of future evolution. Heritable variations can then be selected upon to direct phenotypic evolution (i.e., "orthoplasy"). The combination of these two processes (organic selection and orthoplasy) is now commonly referred to as the "Baldwin effect." Alternately, Waddington's genetic assimilation is a process whereby an environmentally induced phenotype, or "acquired character," becomes canalized through selection acting upon the developmental system. Genetic accommodation is a modern term used to describe the process of heritable changes that occur in response to a novel induction. Genetic accommodation is a key component of the Baldwin effect, and genetic assimilation is a type of genetic accommodation. I here define both the Baldwin effect and genetic assimilation in terms of genetic accommodation, describe cases in which either should occur in nature, and propose that each could play a role in evolutionary diversification.  相似文献   

8.
9.
Species can adapt to new environmental conditions either through individual phenotypic plasticity, intraspecific genetic differentiation in adaptive traits, or both. Wild emmer wheat, Triticum dicoccoides, an annual grass with major distribution in Eastern Mediterranean region, is predicted to experience in the near future, as a result of global climate change, conditions more arid than in any part of the current species distribution. To understand the role of the above two means of adaptation, and the effect of population range position, we analyzed reaction norms, extent of plasticity, and phenotypic selection across two experimental environments of high and low water availability in two core and two peripheral populations of this species. We studied 12 quantitative traits, but focused primarily on the onset of reproduction and maternal investment, which are traits that are closely related to fitness and presumably involved in local adaptation in the studied species. We hypothesized that the population showing superior performance under novel environmental conditions will either be genetically differentiated in quantitative traits or exhibit higher phenotypic plasticity than the less successful populations. We found the core population K to be the most plastic in all three trait categories (phenology, reproductive traits, and fitness) and most successful among populations studied, in both experimental environments; at the same time, the core K population was clearly genetically differentiated from the two edge populations. Our results suggest that (1) two means of successful adaptation to new environmental conditions, phenotypic plasticity and adaptive genetic differentiation, are not mutually exclusive ways of achieving high adaptive ability; and (2) colonists from some core populations can be more successful in establishing beyond the current species range than colonists from the range extreme periphery with conditions seemingly closest to those in the new environment.  相似文献   

10.
In many species, temperature‐sensitive phenotypic plasticity (i.e., an individual's phenotypic response to temperature) displays a positive correlation with latitude, a pattern presumed to reflect local adaptation. This geographical pattern raises two general questions: (a) Do a few large‐effect genes contribute to latitudinal variation in a trait? (b) Is the thermal plasticity of different traits regulated pleiotropically? To address the questions, we crossed individuals of Plantago lanceolata derived from northern and southern European populations. Individuals naturally exhibited high and low thermal plasticity in floral reflectance and flowering time. We grew parents and offspring in controlled cool‐ and warm‐temperature environments, mimicking what plants would encounter in nature. We obtained genetic markers via genotype‐by‐sequencing, produced the first recombination map for this ecologically important nonmodel species, and performed quantitative trait locus (QTL) mapping of thermal plasticity and single‐environment values for both traits. We identified a large‐effect QTL that largely explained the reflectance plasticity differences between northern and southern populations. We identified multiple smaller‐effect QTLs affecting aspects of flowering time, one of which affected flowering time plasticity. The results indicate that the genetic architecture of thermal plasticity in flowering is more complex than for reflectance. One flowering time QTL showed strong cytonuclear interactions under cool temperatures. Reflectance and flowering plasticity QTLs did not colocalize, suggesting little pleiotropic genetic control and freedom for independent trait evolution. Such genetic information about the architecture of plasticity is environmentally important because it informs us about the potential for plasticity to offset negative effects of climate change.  相似文献   

11.
Adaptive phenotypic plasticity and fixed genotypic differences have long been considered opposing strategies in adaptation. More recently, these mechanisms have been proposed to act complementarily and under certain conditions jointly facilitate evolution, speciation, and even adaptive radiations. Here, we investigate the relative contributions of adaptive phenotypic plasticity vs. local adaptation to fitness, using an emerging model system to study early phases of adaptive divergence, the generalist cichlid fish species Astatotilapia burtoni. We tested direct fitness consequences of morphological divergence between lake and river populations in nature by performing two transplant experiments in Lake Tanganyika. In the first experiment, we used wild‐caught juvenile lake and river individuals, while in the second experiment, we used F1 crosses between lake and river fish bred in a common garden setup. By tracking the survival and growth of translocated individuals in enclosures in the lake over several weeks, we revealed local adaptation evidenced by faster growth of the wild‐caught resident population in the first experiment. On the other hand, we did not find difference in growth between different types of F1 crosses in the second experiment, suggesting a substantial contribution of adaptive phenotypic plasticity to increased immigrant fitness. Our findings highlight the value of formally comparing fitness of wild‐caught and common garden‐reared individuals and emphasize the necessity of considering adaptive phenotypic plasticity in the study of adaptive divergence.  相似文献   

12.
Divergent natural selection, adaptive divergence and gene flow may interact in a number of ways. Recent studies have focused on the balance between selection and gene flow in natural populations, and empirical work has shown that gene flow can constrain adaptive divergence, and that divergent selection can constrain gene flow. A caveat is that phenotypic diversification may be under the direct influence of environmental factors (i.e. it may be due to phenotypic plasticity), in addition to partial genetic influence. In this case, phenotypic divergence may occur between populations despite high gene flow that imposes a constraint on genetic divergence. Plasticity may dampen the effects of natural selection by allowing individuals to rapidly adapt phenotypically to new conditions, thus slowing adaptive genetic divergence. On the other hand, plasticity may promote future adaptive divergence by allowing populations to persist in novel environments. Plasticity may promote gene flow between selective regimes by allowing dispersers to adapt to alternate conditions, or high gene flow may result in the selection for increased plasticity. Here I expand frameworks for understanding relationships among selection, adaptation and gene flow to include the effects of phenotypic plasticity in natural populations, and highlight its importance in evolutionary diversification.  相似文献   

13.
During the early stages of adaptive radiation, populations diverge in life history traits such as egg size and growth rates, in addition to eco‐morphological and behavioral characteristics. However, there are few studies of life history divergence within ongoing adaptive radiations. Here, we studied Astatotilapia calliptera, a maternal mouthbrooding cichlid fish within the Lake Malawi haplochromine radiation. This species occupies a rich diversity of habitats, including the main body of Lake Malawi, as well as peripheral rivers and shallow lakes. We used common garden experiments to test for life history divergence among populations, focussing on clutch size, duration of incubation, egg mass, offspring size, and growth rates. In a first experiment, we found significant differences among populations in average clutch size and egg mass, and larger clutches were associated with smaller eggs. In a second experiment, we found significant differences among populations in brood size, duration of incubation, juvenile length when released, and growth rates. Larger broods were associated with smaller juveniles when released and shorter incubation times. Although juvenile growth rates differed between populations, these were not strongly related to initial size on release. Overall, differences in life history characters among populations were not predicted by major habitat classifications (Lake Malawi or peripheral habitats) or population genetic divergence (microsatellite‐based FST). We suggest that the observed patterns are consistent with local selective forces driving the observed patterns of trait divergence. The results provide strong evidence of evolutionary divergence and covariance of life history traits among populations within a radiating cichlid species, highlighting opportunities for further work to identify the processes driving the observed divergence.  相似文献   

14.
Plants have a remarkable capacity to adapt to local environmental conditions, which can result in ecotypic differentiation. Patterns of differentiation can, however, also be influenced by the extensive phenotypic plasticity exhibited by many plant species. In this study, we evaluated the distinctness of two putative ecotypes of the parasitic herb Rhinanthus angustifolius. We compared population means of characters commonly used to distinguish between the putative ecotypes after growing individuals of R. angustifolius with a variety of host species in a common garden. Resulting data were also pooled over environments to study how phenotypic plasticity affects the distinctness of ecotypes and individual populations. Except for node number, most of the characters were plastic. The pattern of differentiation was consistent with the existence of two, or possibly three, habitat‐related groups of populations; however, we observed considerable overlap in flowering time and morphological characters after pooling data across host environments. The results show that the complex phenological and morphological variation in R. angustifolius is caused by a combination of genetically determined ecotypic differentiation and plastic responses to the host environment and other factors. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2016, 180 , 89–103.  相似文献   

15.
《植物生态学报》2017,41(3):359
Aims Adaptation mechanisms of plants to environment can be classified as genetic differentiation and phenotypic plasticity (environmental modification). The strategy and mechanism of plant adaptation is a hot topic in the field of evolutionary ecology. Leymus chinensis is one of constructive species in the Nei Mongol grassland. Particularly, Leymus chinensis is a rhizomatous and clonally reproductive grass, a genotype that can play an important role in the community. In this study, we aimed to (1) investigate the phenotypic plasticity of L. chinensis under different conditions, and (2) test the genetic differentiation and reaction norms (the relationship between the environment and the phenotype of an individual or a group of individuals) under four environmental conditions among different genotypes of L. chinensis. Methods Ten genotypes of L. chinensis were randomly selected. Under the control condition, we studied the effects of genotype, defoliation, drought and their interactions on 11 quantitative traits of growth (8 traits including photochemical efficiency of photosystem II, maximum net photosynthetic rate, transpiration rate, specific leaf area, relative growth rate, the number of tillers increased, aboveground and underground biomass growth), defense (total phenol concentration of leaf) and tolerance (non-structural carbohydrate content of root, root/shoot ratio) of L. chinensis. We studied the phenotypic plasticity, genetic differentiation and reaction norms mainly through tested the effect of environment and genotype on these traits. Important findings First, all 11 traits showed obvious phenotypic plasticity (i.e., significant effect of drought, defoliation and their interactions). The expression of 10 genotypes of L. chinensis was divergent under different environmental conditions. Interactions of genotype and environment significantly affected the maximum net photosynthetic rate, transpiration rate, specific leaf area, relative growth rate, total phenolic concentration of leaf, and total non-structural carbohydrate content of root. This indicated that the phenotypic plasticity of these five traits exhibited genetic differentiation. Second, the increase of number of tillers, belowground biomass and non-structural carbohydrate content of root did not show genetic differentiation under the same condition. The other eight traits showed significantly genetic differentiation, and the heritabilities (H2) of six traits related to growth were higher than 0.5. The leaf total phenol concentration and root/shoot ratio showed genetically differentiation only under the drought and defoliation condition, with the heritabilities being 0.145 and 0.201, respectively. These results explained why L. chinensis widely distributed in the Nei Mongol grassland, and provided genetic and environmental basis for related application and species conservation in this grassland ecosystem.  相似文献   

16.
I document a genetic basis for parallel evolution of life-history phenotypes in the livebearing fish Brachyrhaphis rhabdophora from northwestern Costa Rica. In previous work, I showed that populations of B. rhabdophora that co-occur with predators attain maturity at smaller sizes than populations that live in predator-free environments. I also demonstrated that this pattern of phenotypic divergence in life histories was independently repeated in at least five isolated drainages. However, life-history phenotypes measured from wild-caught fish could be attributed to environmental effects rather than to genetic differences among populations. In the present study, I reared male fish from four populations (two that co-occur with predators and two from predator-free environments) under four sets of environmental conditions. The pattern of phenotypic divergence in maturation size documented in the field between populations collected from different predation environments persisted after two generations in the laboratory. I also found a genetic basis for differences between populations in the age at which males attain maturity and in growth rates. By rearing fish in four different common environments, I tested for phenotypic plasticity in male life-history traits in response to nonlethal exposure to predators. There was a significant delay in the onset of sexual maturity in fish exposed to predators relative to those in the control, but no differences among treatments in size at maturity or growth rates. These results, coupled with previous work on B. rhabdophora, demonstrate a repeated pattern of parallel evolutionary divergence among genetically isolated populations that is strongly associated with predation.  相似文献   

17.
Aims Phenotypic plasticity and local adaptation of populations at their distributional limits are crucial to understand species colonization and persistence in novel or marginal environments, as well as species divergence and niche width evolution. We assess the contribution of these processes to shape current elevational limits and determine elevational phenotypic divergence between two subspecies of Aquilegia vulgaris (subsp. vulgaris and nevadensis).Methods We conducted sowing and transplant experiments considering four elevations throughout the current elevational range of A. vulgaris in southern Iberian Peninsula. Experiments were designed to explore, on the one hand, local adaptation through three components of performance (germination, survival and growth) and, on the other hand, the phenotypic differentiation and/or plasticity associated to local adaptation. Four populations per subspecies (three from the elevational core and one from the elevational boundary) were used as seed sources. Patterns of local adaptation and phenotypic differentiation are examined in the context of the 'centre-periphery' hypothesis.Important findings Central populations of both subspecies performed better at their local elevations while marginal populations were maladapted, confirming the hypothesis and contributing to explain the current elevational segregation of these subspecies. Density of glandular pubescence and germination timing seem to be related to local adaptation, through phenotypic differentiation between subspecies or elevations. The widespread subsp. vulgaris showed signals of adaptive plasticity in the timing of germination while it was not the case in the endemic subsp. nevadensis .  相似文献   

18.
植物可以通过关键功能性状的表型可塑性来适应气候变暖背景下环境温度的增加。表型可塑性增强进化假说(evolution of increased phenotypic plasticity hypothesis)认为外来植物在引入地进化出了更强的表型可塑性。以往对该假说的验证多集中于外来植物对光照、水分、养分、邻体以及天敌等的可塑性进化, 而对增温条件下植物生长和功能性状可塑性进化的研究相对较少。仅有的几项研究多集中在温带地区, 且多集中于研究植物生长相关的性状, 而对植物的抗性和草食作用对增温的响应的关注相对较少。本研究采用同质园实验比较了喜旱莲子草(Alternanthera philoxeroides)引入地(中国)和原产地(阿根廷)各8个种群的生物量、功能性状和草食作用在热带地区(广州市增城区)对模拟全天增温2℃的响应差异。结果表明: (1)模拟全天增温显著降低了喜旱莲子草总生物量(-7.8%)、贮藏根生物量(-12.8%)、分枝强度(-11.6%)和茎端取食率(-34.4%)。(2)模拟全天增温造成的引入地种群总生物量降低幅度大于原产地种群; 模拟全天增温使引入地种群的比茎长和茎端取食率降低, 而原产地种群则相反。(3)无论是否模拟全天增温, 引入地种群的贮藏根生物量(+31.5%)、分枝强度(+38.5%)、比茎长(+30.2%)、根冠比(+24.5%)和比叶面积(+20.0%)均高于原产地种群, 茎端取食率则低于原产地种群(-35.8%)。这些结果表明, 热带地区全天增温2℃对喜旱莲子草是一种胁迫; 引入地种群的生物量对模拟全天增温2℃的响应更强, 而其株形相关性状(比茎长)和草食作用(茎端取食率)对模拟全天增温的可塑性方向与原产地种群相反。由于引入地种群在热带地区模拟全天增温条件下生物量的下降和草食作用的增加明显高于原产地种群, 因此在未来全球气候变暖的背景下, 热带地区温度升高可能不利于喜旱莲子草种群多度的增加。  相似文献   

19.
We examine the interaction between phenotypic plasticity and evolutionary adaptation using muscle gene expression levels among populations of the fish Fundulus heteroclitus acclimated to three temperatures. Our analysis reveals shared patterns of phenotypic plasticity due to thermal acclimation as well as non‐neutral patterns of variation among populations adapted to different thermal environments. For the majority of significant differences in gene expression levels, phenotypic plasticity and adaptation operate on different suites of genes. The subset of genes that demonstrate both adaptive differences and phenotypic plasticity, however, exhibit countergradient variation of expression. Thus, expression differences among populations counteract environmental effects, reducing the phenotypic differentiation between populations. Finally, gene‐by‐environment interactions among genes with non‐neutral patterns of expression suggest that the penetrance of adaptive variation depends on the environmental conditions experienced by the individual.  相似文献   

20.
紫茎泽兰是我国危害最严重的外来入侵物种之一,为探讨表型可塑性和局域适应在其入侵中的作用,在高、低海拔的两个样地内,测定了来自云南南部640~2450 m海拔范围的6个种源的紫茎泽兰种群的株高、冠宽、分枝数和高温半致死温度(HSLT).结果表明,在高海拔样地,各种群紫茎泽兰株高、冠宽、分枝数和HSLT(2130 m的哀牢山种群除外)均显著低于在低海拔样地,紫茎泽兰各种群的株高、冠宽和分枝数的可塑性指数(0.881~0.975)均较大,而HSLT的可塑性(0.052~0.200)较小.无论在高还是低海拔样地,紫茎泽兰的株高、冠宽和分枝数在种群间的差异均不显著,而HSLT在种群间的差异达极显著水平,表现出明显的遗传分化,但其在种群间的差异仍小于其在样地间的差异.在高海拔样地,紫茎泽兰各种群的分枝数与种源海拔呈显著正相关;在低海拔样地,紫茎泽兰的HSLT与种源海拔呈显著负相关,表现出明显的局域适应特征.表型可塑性和局域适应均与紫茎泽兰的入侵有关,但前者的作用可能更大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号