共查询到20条相似文献,搜索用时 15 毫秒
1.
A model of the neural mechanisms responsible for pattern recognition and stimulus specific habituation in toads 总被引:2,自引:0,他引:2
A neural model of the mechanisms possibly responsible for stimulus-specific habituation in toads is proposed. The model follows the hypothesis that preypredator recognition is performed by command units as a result of retina-tectum-pretectum interaction. The model allow us to study the possible coding that the nervous system of toads uses for different prey stimuli, the neural mechanisms of habituation and dishabituation, and the dynamic changes that the command units may have during these processes. The model proposes specific hypothesis and experiments to clarify the nature of these processes and to test the validity of the command unit hypothesis.Research supported in part by CONACYT under grant PCCBBNA 021005Research supported in part by the NIH under grant NS 14971-05 from National Institute of Neurological and Communicative Disorders and Stroke 相似文献
2.
We describe the essential features of and the molecules involved in dorsoventral (DV) patterning in the neural tube. The neural tube is, from its very outset, patterned in this axis as there is a roof plate, floor plate, and differing numbers and types of neuroblasts. These neuroblasts develop into different types of neurons which express a different range of marker genes. Early embryological experiments identified the notochord and the somites as being responsible for the DV patterning of the neural tube and we now know that 4 signaling molecules are involved and are generated by these surrounding structures. Fibroblast growth factors (FGFs) are produced by the caudal mesoderm and must be down-regulated before neural differentiation can occur. Retinoic acid (RA) is produced by the paraxial mesoderm and is an inducer of neural differentiation and patterning and is responsible for down-regulating FGF. Sonic hedgehog (Shh) is produced by the notochord and floor plate and is responsible for inducing ventral neural cell types in a concentration-dependent manner. Bone morphogenetic proteins (BMPs) are produced by the roof plate and are responsible for inducing dorsal neural cell types in a concentration-dependent manner. Subsequently, RA is used twice more. Once from the somites for motor neuron differentiation and secondly RA is used to define the motor neuron subtypes, but in the latter case it is generated within the neural tube from differentiating motor neurons rather than from outside. These 4 signaling molecules also interact with each other, generally in a repressive fashion, and DV patterning shows how complex these interactions can be. 相似文献
3.
Hentschel HG Glimm T Glazier JA Newman SA 《Proceedings. Biological sciences / The Royal Society》2004,271(1549):1713-1722
We describe a 'reactor-diffusion' mechanism for precartilage condensation based on recent experiments on chondrogenesis in the early vertebrate limb and additional hypotheses. Cellular differentiation of mesenchymal cells into subtypes with different fibroblast growth factor (FGF) receptors occurs in the presence of spatio-temporal variations of FGFs and transforming growth factor-betas (TGF-betas). One class of differentiated cells produces elevated quantities of the extracellular matrix protein fibronectin, which initiates adhesion-mediated preskeletal mesenchymal condensation. The same class of cells also produces an FGF-dependent laterally acting inhibitor that keeps condensations from expanding beyond a critical size. We show that this 'reactor-diffusion' mechanism leads naturally to patterning consistent with skeletal form, and describe simulations of spatio-temporal distribution of these differentiated cell types and the TGF-beta and inhibitor concentrations in the developing limb bud. 相似文献
4.
David G. Wilkinson 《BioEssays : news and reviews in molecular, cellular and developmental biology》1993,15(8):499-505
Recent work has shown that segmentation underlies the patterning of the vertebrate hindbrain and its neural crest derivatives. Several genes have been identified with segment-restricted expression, and evidence is now emerging regarding their function and regulatory relationships. The expression patterns of Hox genes and the phenotype of null mutants indicate roles in specifying segment identity. A zinc finger gene Krox-20 is a segment-specific regulator of Hox expression, and it seems probable that retinoic acid receptors also regulate Hox genes in the hindbrain. The receptor tyrosine kinase gene Sek may mediate cell-cell interactions that lead to segmentation. These studies provide a starting point for understanding the molecular basis of segmental patterning in the hindbrain. 相似文献
5.
The function of the brain depends on highly specific patterns of connections between populations of neurons. The establishment of these connections requires the targeting of axons and dendrites to defined zones or laminae, the recognition of individual target cells, the formation of synapses on particular regions of the dendritic tree, and the differentiation of pre- and postsynaptic specializations. Recent studies provide compelling evidence that transmembrane adhesion proteins of the immunoglobulin, cadherin, and leucine-rich repeat protein families, as well as secreted proteins such as semaphorins and FGFs, regulate distinct aspects of neuronal connectivity. These observations suggest that the coordinated actions of a number of molecular signals contribute to the specification and differentiation of synaptic connections in the developing brain. 相似文献
6.
Laxminarayan S Tadmor G Diamond SG Miller E Franceschini MA Brooks DH 《Biological cybernetics》2011,105(5-6):371-397
Habituation is a generic property of the neural response to repeated stimuli. Its strength often increases as inter-stimuli relaxation periods decrease. We propose a simple, broadly applicable control structure that enables a neural mass model of the evoked EEG response to exhibit habituated behavior. A key motivation for this investigation is the ongoing effort to develop model-based reconstruction of multi-modal functional neuroimaging data. The control structure proposed here is illustrated and validated in the context of a biophysical neural mass model, developed by Riera et?al. (Hum Brain Mapp 27(11):896-914, 2006; 28(4):335-354, 2007), and of simplifications thereof, using data from rat EEG response to medial nerve stimuli presented at frequencies from 1 to 8?Hz. Performance was tested by predictions of both the response to the next stimulus based on the current one, and also of continued stimuli trains over 4-s time intervals based on the first stimulus in the interval, with similar success statistics. These tests demonstrate the ability of simple generative models to capture key features of the evoked response, including habituation. 相似文献
7.
During early development of the central nervous system, the neuroepithelial cells undergo dynamic changes in shape, cumulative action of which cause the neural plate to bend mediolaterally to form the neural tube. The apicobasal elongation changes the cuboidal cells into columnar ones, whereas apical constriction minimizes the cell apices, causing them to adopt wedge-like shapes. To achieve the morphological changes required for the formation of a hollow structure, these cellular changes must be controlled in time and space. To date, it is widely accepted that spatial and temporal changes of the cytoskeletal organization are fundamental to epithelial cell shape changes, and that noncetrosomal microtubules assembled along apicobasal axis and actin filaments and non-muscle myosin II at the apical side are central machineries of cell elongation and apical constriction, respectively. Hence, especially in the last decade, intracellular mechanisms regulating these cytoskeletons have been extensively investigated at the molecular level. As a result, several actin-binding proteins, Rho/ROCK pathway, and cell-cell adhesion molecules have been proven to be the central regulators of apical constriction, while the regulatory mechanisms of cell elongation remain obscure. In this review, we first describe the distribution and role of cytoskeleton in cell shape changes during neural tube closure, and then summarize the current knowledge about the intracellular proteins that directly modulate the cytoskeletal organization and thus the neural tube closure. 相似文献
8.
Retinoids and vertebrate limb pattern formation 总被引:32,自引:0,他引:32
G Eichele 《Trends in genetics : TIG》1989,5(8):246-251
It has long been suggested that pattern formation depends in part on signalling molecules known as 'morphogens', diffusible substances that determine cell fate in a concentration-dependent way. Retinoic acid, a small hydrophobic molecule that binds to nuclear receptors, is a candidate morphogen for specifying the anteroposterior pattern of vertebrate limbs. 相似文献
9.
Pattern recognition was an important goal in the early work on artificial neural networks. Without arousing dramatic speculation, the paper describes, how a "natural" method of dealing with the configuration of the input layer can considerably improve learning behaviour and classification rate of a modified multi-layered perception with backpropagation of the error learning rule. Using this method, recognition of complex patterns in electrophysiological signals can be performed more accurately, without rules or complicated heuristic procedures. The proposed technique is demonstrated using recognition of the J-point in the ECG as an example. 相似文献
10.
11.
Experiments on cats showed that complete operative exclusion of the reticular formation by precollicular section prevents the development of habituation of evoked potentials in the primary visual projection area and lateral geniculate body. Similar results were obtained after postcollicular section of the mesencephalon. The phenomenon of habituation of visual evoked potentials is found in posttrigeminal preparations. It is postulated that the tonic inhibitory division of the reticular formation plays an important role in the development of the habituation phenomenon.Odessa State Medical Institute. Translated from Neirofiziologiya, Vol. 4, No. 5, pp. 540–544, September–October, 1972. 相似文献
12.
13.
We have measured response times for the detection of a single target presented against a set of reference elements which are characterised by combinations of four different stimulus parameters; colour, contrast polarity, magnification and orientation. The aim of the experiments was to determine the response characteristics of visual mechanisms which mediate target detection through the discrimination of orientation and magnification. In the first experiments, we determined sensitivity to differences in colour and contrast polarity, and show that the mechanisms responsible for the discrimination of orientation and of magnification are both selective in their responses to colour and to contrast polarity. There are, nonetheless, residual interactions between patterns of different contrast polarities and between those of different colour, and in the latter case, weak interactions persist under equiluminance conditions. In a second set of experiments, we examined the interactions between orientation and magnification. We conclude that the responses of visual mechanisms which mediate target detection through discrimination of orientation are markedly dependent on stimulus magnification whereas those which mediate detection through discrimination of magnification are, in contrast, relatively insensitive to stimulus orientation. 相似文献
14.
Persistent neural activity refers to a sustained change in action potential discharge that long outlasts a stimulus. It is found in a diverse set of brain regions and organisms and several in vitro systems, suggesting that it can be considered a universal form of circuit dynamics that can be used as a mechanism for short-term storage and accumulation of sensory or motor information. Both single cell and network mechanisms are likely to co-operate in generating persistent activity in many brain areas. 相似文献
15.
The relative quantity of 5-methyl cytosine in vertebrate nuclear DNA shows species and tissue variation. To determine whether this is due to the action of species or cell specific DNA methylases the sequence specificity of the 5-methyl cytosine distribution in the DNA of a range of cells has been partially characterised. The pattern of methylation was found to be remarkably constant and indicates stringent evolutionary conservation of the characteristics of vertebrate DNA methylation. 相似文献
16.
Dahm R van Marle J Quinlan RA Prescott AR Vrensen GF 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2011,366(1568):1265-1277
The eye lens is avascular, deriving nutrients from the aqueous and vitreous humours. It is, however, unclear which mechanisms mediate the transfer of solutes between these humours and the lens' fibre cells (FCs). In this review, we integrate the published data with the previously unpublished ultrastructural, dye loading and magnetic resonance imaging results. The picture emerging is that solute transfer between the humours and the fibre mass is determined by four processes: (i) paracellular transport of ions, water and small molecules along the intercellular spaces between epithelial and FCs, driven by Na(+)-leak conductance; (ii) membrane transport of such solutes from the intercellular spaces into the fibre cytoplasm by specific carriers and transporters; (iii) gap-junctional coupling mediating solute flux between superficial and deeper fibres, Na(+)/K(+)-ATPase-driven efflux of waste products in the equator, and electrical coupling of fibres; and (iv) transcellular transfer via caveoli and coated vesicles for the uptake of macromolecules and cholesterol. There is evidence that the Na(+)-driven influx of solutes occurs via paracellular and membrane transport and the Na(+)/K(+)-ATPase-driven efflux of waste products via gap junctions. This micro-circulation is likely restricted to the superficial cortex and nearly absent beyond the zone of organelle loss, forming a solute exchange barrier in the lens. 相似文献
17.
The development of the vertebrate limb depends on an interplay of cellular differentiation, pattern formation, and tissue morphogenesis on multiple spatial and temporal scales. While numerous gene products have been described that participate in, and influence, the generation of the limb skeletal pattern, an understanding of the most salient feature of the developing limb--its quasiperiodic arrangement of bones, requires additional organizational principles. We review several such principles, drawing on concepts of physics and chemical dynamics along with molecular genetics and cell biology. First, a "core mechanism" for precartilage mesenchymal condensation is described, based on positive autoregulation of the morphogen transforming growth factor (TGF)-beta, induction of the extracellular matrix (ECM) protein fibronectin, and focal accumulation of cells via haptotaxis. This core mechanism is shown to be part of a local autoactivation-lateral inhibition (LALI) system that ensures that the condensations will be regularly spaced. Next, a "bare-bones" model for limb development is described in which the LALI-core mechanism is placed in a growing geometric framework with predifferentiated "apical," differentiating "active," and irreversibly differentiated "frozen" zones defined by distance from an apical source of a fibroblast growth factor (FGF)-type morphogen. This model is shown to account for classic features of the developing limb, including the proximodistal (PD) emergence over time of increasing numbers of bones. We review earlier and recent work suggesting that the inhibitory component of the LALI system for condensation may not be a diffusible morphogen, and propose an alternative mechanism for lateral inhibition, based on synchronization of oscillations of a Hes mediator of the Notch signaling pathway. Finally, we discuss how viewing development as an interplay between molecular-genetic and dynamic physical processes can provide new insight into the origin of congenital anomalies. 相似文献
18.
Adam S Arterbery Daniel J Fergus Elizabeth A Fogarty John Mayberry David L Deitcher W Lee Kraus Andrew H Bass 《BMC evolutionary biology》2011,11(1):14
Background
Corticosteroid receptors include mineralocorticoid (MR) and glucocorticoid (GR) receptors. Teleost fishes have a single MR and duplicate GRs that show variable sensitivities to mineralocorticoids and glucocorticoids. How these receptors compare functionally to tetrapod MR and GR, and the evolutionary significance of maintaining two GRs, remains unclear. 相似文献19.
Wingfield JC 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2008,363(1490):425-441
The majority of vertebrates have a life span of greater than one year. Therefore individuals must be able to adapt to the annual cycle of changing conditions by adjusting morphology, physiology and behaviour. Phenotypic flexibility, in which an individual switches from one life history stage to another, is one way to maximize fitness in a changing environment. When environmental variation is low, few life history stages are needed. If environmental variation is large, there are more life history stages. Each life history stage has a characteristic set of sub-stages that can be expressed in various combinations and patterns to determine state at any point in the life of the individual. Thus individuals have a finite number of states that can be expressed over the spectrum of environmental conditions in their life spans. Life history stages have three phases-development, mature capability (when characteristic sub-stages can be expressed) and termination. Expression of a stage is time dependent (probably a minimum of one month), and termination of one stage overlaps development of the next stage. It follows that the more life history stages an individual expresses, the less flexibility it will have in timing those stages. Having fewer life history stages increases flexibility in timing, but less tolerance of variation in environmental conditions. To varying degrees it is possible to overlap mature capability of some life history stages to effectively reduce 'finite stage diversity' and maximize flexibility in timing. Theoretical ways by which this can be done, and the implications for neuroendocrine and endocrine control mechanisms are discussed. Twelve testable hypotheses are posed that relate directly to control mechanisms. 相似文献
20.
Lineage and pattern in the developing vertebrate limb 总被引:4,自引:0,他引:4
S A Newman 《Trends in genetics : TIG》1988,4(12):329-332
Skeletal development in the vertebrate limb occurs independently of that of associated muscles and nerves. Patterning of muscles and nerves within the vertebrate limb depends on cues provided by the developing skeleton. Recent work suggests that skeletal pattern formation depends on spatially periodic prepatterns of extracellular matrix, the biosynthesis of which may be stimulated by diffusible growth factors. In concert with the regulation of limb bud size and shape by endogenous retinoids and other substances, this mechanism could explain how characteristic limb asymmetries are generated. 相似文献