首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
MHC class II molecules are pivotal for the adaptive immune system, because they guide the development and activation of CD4+ T helper cells. Fulfilling these functions requires that the genes encoding MHC class II molecules are transcribed according to a strict cell-type-specific and quantitatively modulated pattern. This complex gene-expression profile is controlled almost exclusively by a single master regulatory factor, which is known as the class II transactivator. As we discuss here, differential activation of the three independent promoters that drive expression of the gene encoding the class II transactivator ultimately determines the exquisitely regulated pattern of MHC class II gene expression.  相似文献   

3.
It has been demonstrated previously that mixed cell suspensions from the female reproductive tract consisting of human epithelial and stromal cells were capable of presenting foreign antigen to autologous T cells. There have been, however, no reported studies examining antigen presentation by isolated epithelial cells from the human female reproductive tract. It is now shown that freshly isolated epithelial cells from the uterine endometrium constitutively express MHC class II antigen and that class II was upregulated on cultured epithelium by interferon gamma (IFNγ). Using a highly purified preparation, it was demonstrated that these epithelial cells were able to process and present tetanus toxoid recall antigen driving autologous T cell proliferation. Cells isolated from the basolateral sub-epithelium stroma were also potent antigen presenting cells in this model system. Thus, isolated endometrial epithelial cells were able to directly process and present antigen to T cells and may be responsible for the transcytosis and delivery of antigen to professional antigen presenting cells found in the sub-epithelial stroma.  相似文献   

4.
Modulation of gene expression by the MHC class II transactivator   总被引:6,自引:0,他引:6  
The class II transactivator (CIITA) is a master regulator of MHC class II expression. CIITA also modulates the expression of MHC class I genes, suggesting that it may have a more global role in gene expression. To determine whether CIITA regulates genes other than the MHC class II and I family, DNA microarray analysis was used to compare the expression profiles of the CIITA expressing B cell line Raji and its CIITA-negative counterpart RJ2.2.5. The comparison identified a wide variety of genes whose expression was modulated by CIITA. Real time RT-PCR from Raji, RJ2.2.5, an RJ2.2.5 cell line complemented with CIITA, was performed to confirm the results and to further identify CIITA-regulated genes. CIITA-regulated genes were found to have diverse functions, which could impact Ag processing, signaling, and proliferation. Of note was the identification of a set of genes localized to chromosome 1p34-35. The global modulation of genes in a local region suggests that this region may share some regulatory control with the MHC.  相似文献   

5.
6.
Summary In this review the role of various subpopulations of macrophages in the pathogenesis of experimental autoimmune encephalomyetitis is discussed. Immunohistochemistry with macrophage markers shows that in this disease different populations of macrophages (i.e. perivascular cells, microglia and infiltrating blood-borne macrophages) are present in the central nervous system. These subpopulations partially overlap in some functional activity while other activities seem to be restricted to a distinct subpopulation, indicating that these subpopulations have different roles in the pathogenesis of encephalomyelitis. The studies discussed in this review reveal that immunocytochemical and morphological studies, combined with new techniques such asin situ nick translation and experimental approaches like the use of bone marrow chimeras and macrophage depletion techniques, give valuable information about the types and functions of cells involved in central nervous system inflammation. The review is divided in three parts. In the first part the experimental autoimmune encephalomyelitis model is introduced. The second part gives an overview of the origin, morphology and functions of the various subpopulations. In the third part the role of these subpopulations is discussed in relation to the various stages (i.e. preclinical, clinical and recovery) of the experimental disease.  相似文献   

7.
The molecular details of antigen processing and presentation by MHC class I and class II molecules have been studied extensively for almost three decades. Although the basic principles of these processes were laid out approximately 10 years ago, the recent years have revealed many details and provided new insights into their control and specificity. MHC molecules use various biochemical reactions to achieve successful presentation of antigenic fragments to the immune system. Here we present a timely evaluation of the biology of antigen presentation and a survey of issues that are considered unresolved. The continuing flow of new details into our understanding of the biology of MHC class I and class II antigen presentation builds a system involving several cell biological processes, which is discussed in this Review.  相似文献   

8.
MHC class II invariant chains in antigen processing and presentation   总被引:1,自引:0,他引:1  
Most protein antigens cannot elicit a T-cell response unless they are processed to peptides, which are then presented to T lymphocytes by surface MHC class II molecules. Recent evidence supports an essential role of the invariant chain associated with class II MHC polypeptides in antigen processing.  相似文献   

9.
10.
The MHC class II-like molecule HLA-DM (DM) (H-2M in mice) catalyzes the exchange of CLIP for antigenic peptides in the endosomes of APCs. HLA-DO (DO) (H-2O in mice) is another class II-like molecule that is expressed in B cells, but not in other APCs. Studies have shown that DO impairs or modifies the peptide exchange activity of DM. To further evaluate the role of DO in Ag processing and presentation, we generated transgenic mice that expressed the human HLA-DOA and HLA-DOB genes under the control of a dendritic cell (DC)-specific promoter. Our analyses of DCs from these mice showed that as DO levels increased, cell surface levels of A(b)-CLIP also increased while class II-peptide levels decreased. The presentation of some, but not all, exogenous Ags to T cells or T hybridomas was significantly inhibited by DO. Surprisingly, H-2M accumulated in DO-expressing DCs and B cells, suggesting that H-2O/DO prolongs the half-life of H-2M. Overall, our studies showed that DO expression impaired H-2M function, resulting in Ag-specific down-modulation of class II Ag processing and presentation.  相似文献   

11.
12.
13.
Dendritic cells (DCs) initiate primary immune responses by presenting pathogen-derived antigens in association with major histocompatibility Class II molecules (MHC II) to T cells. In DCs, MHC II is constitutively synthesized and loaded at endosomes with peptides from hydrolyzed endogenous proteins or exogenously acquired antigens. Whether peptide loaded MHC II (MHC II-p) is subsequently recruited to and stably expressed at the plasma membrane or degraded in lysosomes is determined by the status of the DC. In immature DCs, MHC II-p is ubiquitinated after peptide loading, driving its sorting to the luminal vesicles of multivesicular bodies. These luminal vesicles, and the MHC II-p they carry, are delivered to lysosomes for degradation. MHC II-p is inefficiently ubiquitinated in DCs that are activated by pathogens or inflammatory stimuli, thus allowing its transfer to and stable expression at the plasma membrane.  相似文献   

14.
Major histocompatibility complex class II (MHC II) molecules are targeted to endocytic compartments, known as MIIC, by the invariant chain (Ii) that is degraded upon arrival in these compartments. MHC II acquire antigenic fragments from endocytosed proteins for presentation at the cell surface. In a unique and complex series of reactions, MHC II succeed in exchanging a remaining fragment of Ii for other protein fragments in subdomains of MIIC before transport to the cell surface. Here, the mechanisms regulating loading and intracellular trafficking of MHC II are discussed.  相似文献   

15.
The MHC class II transactivator (CIITA) is a critical regulator of MHC class II genes and other genes involved in the Ag presentation pathway. CIITA-deficient mice lack MHC class II expression on almost all APCs. In this study, we show that these mice also have aberrant Fas ligand expression on both CD4 T cells and B cells. We found that Fas ligand expression was greatly increased on CIITA-deficient CD4 T cells during the Th1 differentiation process. However, both CIITA-deficient and control Th1 effector cells up-regulated Fas ligand to similar levels if cells were reactivated. The introduction of CIITA into primary CD4 T cells via retroviral infection resulted in a reduction in the level of Fas ligand and delay in apoptosis after activation. Interestingly, activated B cells from the CIITA-deficient mice also showed increased levels of Fas ligand that could be to some degree inhibited by the introduction of IL-4.  相似文献   

16.
Treatment with glatiramer acetate (GA, copolymer-1, Copaxone), a drug approved for multiple sclerosis (MS), in a mouse model promoted development of anti-inflammatory type II monocytes, characterized by increased secretion of interleukin (IL)-10 and transforming growth factor (TGF)-beta, and decreased production of IL-12 and tumor necrosis factor (TNF). This anti-inflammatory cytokine shift was associated with reduced STAT-1 signaling. Type II monocytes directed differentiation of T(H)2 cells and CD4+CD25+FoxP3+ regulatory T cells (T(reg)) independent of antigen specificity. Type II monocyte-induced regulatory T cells specific for a foreign antigen ameliorated experimental autoimmune encephalomyelitis (EAE), indicating that neither GA specificity nor recognition of self-antigen was required for their therapeutic effect. Adoptive transfer of type II monocytes reversed EAE, suppressed T(H)17 cell development and promoted both T(H)2 differentiation and expansion of T(reg) cells in recipient mice. This demonstration of adoptive immunotherapy by type II monocytes identifies a central role for these cells in T cell immune modulation of autoimmunity.  相似文献   

17.
Immature dendritic cells (DCs) sample their environment for antigens and after stimulation present peptide associated with major histocompatibility complex class II (MHC II) to naive T cells. We have studied the intracellular trafficking of MHC II in cultured DCs. In immature cells, the majority of MHC II was stored intracellularly at the internal vesicles of multivesicular bodies (MVBs). In contrast, DM, an accessory molecule required for peptide loading, was located predominantly at the limiting membrane of MVBs. After stimulation, the internal vesicles carrying MHC II were transferred to the limiting membrane of the MVB, bringing MHC II and DM to the same membrane domain. Concomitantly, the MVBs transformed into long tubular organelles that extended into the periphery of the cells. Vesicles that were formed at the tips of these tubules nonselectively incorporated MHC II and DM and presumably mediated transport to the plasma membrane. We propose that in maturing DCs, the reorganization of MVBs is fundamental for the timing of MHC II antigen loading and transport to the plasma membrane.  相似文献   

18.
Antigen (Ag) capture and presentation onto major histocompatibility complex (MHC) class II molecules by B lymphocytes is mediated by their surface Ag receptor (B cell receptor [BCR]). Therefore, the transport of vesicles that carry MHC class II and BCR-Ag complexes must be coordinated for them to converge for processing. In this study, we identify the actin-associated motor protein myosin II as being essential for this process. Myosin II is activated upon BCR engagement and associates with MHC class II-invariant chain complexes. Myosin II inhibition or depletion compromises the convergence and concentration of MHC class II and BCR-Ag complexes into lysosomes devoted to Ag processing. Accordingly, the formation of MHC class II-peptides and subsequent CD4 T cell activation are impaired in cells lacking myosin II activity. Therefore, myosin II emerges as a key motor protein in BCR-driven Ag processing and presentation.  相似文献   

19.
Class II major histocompatibility molecules are the primary susceptibility locus for many autoimmune disorders, including type 1 diabetes. Human DQ8 and I-A(g7), in the NOD mouse model of spontaneous autoimmune diabetes, confers diabetes risk by modulating presentation of specific islet peptides in the thymus and periphery. We used an in silico molecular docking program to screen a large "druglike" chemical library to define small molecules capable of occupying specific structural pockets along the I-A(g7) binding groove, with the objective of influencing presentation to T cells of the autoantigen insulin B chain peptide consisting of amino acids 9-23. In this study we show, using both murine and human cells, that small molecules can enhance or inhibit specific TCR signaling in the presence of cognate target peptides, based upon the structural pocket targeted. The influence of compounds on the TCR response was pocket dependent, with pocket 1 and 6 compounds inhibiting responses and molecules directed at pocket 9 enhancing responses to peptide. At nanomolar concentrations, the inhibitory molecules block the insulin B chain peptide consisting of amino acids 9-23, endogenous insulin, and islet-stimulated T cell responses. Glyphosine, a pocket 9 compound, enhances insulin peptide presentation to T cells at concentrations as low as 10 nM, upregulates IL-10 secretion, and prevents diabetes in NOD mice. These studies present a novel method for identifying small molecules capable of both stimulating and inhibiting T cell responses, with potentially therapeutic applications.  相似文献   

20.
Several different Mycoplasma species have been shown to act as mitogens for either T or B cells and as stimulators of macrophage tumoricidal activity. In this report, we show that at least five different species of Mycoplasma are capable of inducing class II MHC expression on macrophages. We have observed significant induction of class II MHC surface expression on the myelomonocytic cell line, WEHI-3, as early as 24 h after deliberate infection of cultures, reaching maximal levels by 4 days. This induction was also apparent at the mRNA level as assessed by Northern blot analysis by using A alpha, E alpha, and A beta probes. However, unlike many other previously described MHC-inducing agents, mycoplasmas failed to induce class I MHC expression at either the cell surface or mRNA levels. Kinetic analysis revealed that induction of class II mRNA by mycoplasmas was slower than induction by IFN-gamma requiring 24 h rather than 8 h for significant increases to be noted. Induction by mycoplasmas does not require the presence of live organisms and remains active after heat treatment of 90 degrees C for 30 min. We have also demonstrated that mycoplasma infection of primary bone marrow macrophage cultures leads to the induction of both class I and class II genes and, as in the case of WEHI-3, this induction does not require the presence of live organisms. These data indicate that several Mycoplasma species have the capacity to induce class II MHC expression in WEHI-3 and both class I and class II MHC expression in bone marrow macrophage cultures in the absence of any T cell products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号