共查询到20条相似文献,搜索用时 0 毫秒
1.
The rise in atmospheric CO2 concentrations (Ca) has been related to tree growth enhancement and increasing intrinsic water‐use efficiency (iWUE). However, the extent that rising Ca has led to increased long‐term iWUE and whether climate could explain deviations from expected Ca‐induced growth enhancement are still poorly understood. The aim of this research was to use Ca and local climatic variability to explain changes during the 20th century in growth and tree ring and needle δ13C in declining and nondeclining Abies alba stands from the Spanish Pyrenees, near the southern distribution limit of this species. The temporal trends of iWUE were calculated under three theoretical scenarios for the regulation of plant‐gas exchange at increasing Ca. We tested different linear mixed‐effects models by multimodel selection criteria to predict basal area increment (BAI), a proxy of tree radial growth, using these scenarios and local temperature together with precipitation data as predictors. The theoretical scenario assuming the strongest response to Ca explained 66–81% of the iWUE variance and 28–56% of the observed BAI variance, whereas local climatic variables together explained less than 11–21% of the BAI variance. Our results are consistent with a drought‐induced limitation of the tree growth response to rising CO2 and a decreasing rate of iWUE improvement from the 1980s onward in declining A. alba stands subjected to lower water availability. 相似文献
2.
J. Julio Camarero Antonio Gazol Juan Diego Galván Gabriel Sangüesa‐Barreda Emilia Gutiérrez 《Global Change Biology》2015,21(2):738-749
Theory predicts that the postindustrial rise in the concentration of CO2 in the atmosphere (ca) should enhance tree growth either through a direct fertilization effect or indirectly by improving water use efficiency in dry areas. However, this hypothesis has received little support in cold‐limited and subalpine forests where positive growth responses to either rising ca or warmer temperatures are still under debate. In this study, we address this issue by analyzing an extensive dendrochronological network of high‐elevation Pinus uncinata forests in Spain (28 sites, 544 trees) encompassing the whole biogeographical extent of the species. We determine if the basal area increment (BAI) trends are linked to climate warming and increased ca by focusing on region‐ and age‐dependent responses. The largest improvement in BAI over the past six centuries occurred during the last 150 years affecting young trees and being driven by recent warming. Indeed, most studied regions and age classes presented BAI patterns mainly controlled by temperature trends, while growing‐season precipitation was only relevant in the driest sites. Growth enhancement was linked to rising ca in mature (151–300 year‐old trees) and old‐mature trees (301–450 year‐old trees) from the wettest sites only. This finding implies that any potential fertilization effect of elevated ca on forest growth is contingent on tree features that vary with ontogeny and it depends on site conditions (for instance water availability). Furthermore, we found widespread growth decline in drought‐prone sites probably indicating that the rise in ca did not compensate for the reduction in water availability. Thus, warming‐triggered drought stress may become a more important direct driver of growth than rising ca in similar subalpine forests. We argue that broad approaches in biogeographical and temporal terms are required to adequately evaluate any effect of rising ca on forest growth. 相似文献
3.
Improving our understanding of the potential of forest adaptation is an urgent task in the light of predicted climate change. Long‐term alternatives for susceptible yet economically important tree species such as Norway spruce (Picea abies) are required, if the frequency and intensity of summer droughts will continue to increase. Although Silver fir (Abies alba) and Douglas fir (Pseudotsuga menziesii) have both been described as drought‐tolerant species, our understanding of their growth responses to drought extremes is still limited. Here, we use a dendroecological approach to assess the resistance, resilience, and recovery of these important central Europe to conifer species the exceptional droughts in 1976 and 2003. A total of 270 trees per species were sampled in 18 managed mixed‐species stands along an altitudinal gradient (400–1200 m a.s.l.) at the western slopes of the southern and central Black Forest in southwest Germany. While radial growth in all species responded similarly to the 1976 drought, Norway spruce was least resistant and resilient to the 2003 summer drought. Silver fir showed the overall highest resistance to drought, similarly to Douglas fir, which exhibited the widest growth rings. Silver fir trees from lower elevations were more drought prone than trees at higher elevations. Douglas fir and Norway spruce, however, revealed lower drought resilience at higher altitudes. Although the 1976 and 2003 drought extremes were quite different, Douglas fir maintained consistently the highest radial growth. Although our study did not examine population‐level responses, it clearly indicates that Silver fir and Douglas fir are generally more resistant and resilient to previous drought extremes and are therefore suitable alternatives to Norway spruce; Silver fir more so at higher altitudes. Cultivating these species instead of Norway spruce will contribute to maintaining a high level of productivity across many Central European mountain forests under future climate change. 相似文献
4.
J. Julio Camarero Antonio Gazol Jacques C. Tardif France Conciatori 《Journal of Biogeography》2015,42(11):2220-2233
5.
Juan Carlos Linares J. Julio Camarero José Antonio Carreira 《Global Ecology and Biogeography》2009,18(4):485-497
Aims The combined effects of changes in climate and land use on tree mortality and growth patterns have rarely been addressed. Relict tree species from the Mediterranean Basin serve as appropriate models to investigate these effects, since they grow in climatically stressed areas which have undergone intense cover changes. The aim is to use climate, aerial photographs, stand structure and radial‐growth data to explain the mortality and historical patterns of growth of Abies pinsapo in the area where this relict species was first protected. Location Sierra de las Nieves, West Baetic Range, southern Spain. Methods We assessed variations of tree cover in A. pinsapo forests through image analyses of aerial photographs spanning the last 50 years. We sampled 31 stands to assess current altitudinal patterns of forest structure and mortality. We evaluated the relationships between radial growth and regional climate using linear models in three sites at different elevations. Results Regional warming and a decrease in precipitation were detected. Forest tree cover increased at all elevations from 1957 until 1991, but it afterwards decreased below 1100 m. Currently, the likelihood of tree mortality increases downwards and is associated with dense, closed stands with a low living basal area. In contrast to previous droughts, a sharp synchronized reduction in tree growth, not fully accounted for in linear climate–growth models, occurred at low elevations in 1994–95, but not upwards. It was preceded by a weakening of the negative association between low‐elevation growth and water deficit since the late 1970s. Conclusions The intense densification of A. pinsapo forests following strict protection measures in the late 1950s enhanced the vulnerability of climate‐sensitive A. pinsapo forests to recent drier conditions. Such abrupt land‐use changes help to explain recent patterns of mortality and growth decline in low‐elevation A. pinsapo forests. 相似文献
6.
Raúl Sánchez‐Salguero Jesus Julio Camarero Emilia Gutiérrez Fidel González Rouco Antonio Gazol Gabriel Sangüesa‐Barreda Laia Andreu‐Hayles Juan Carlos Linares Kristina Seftigen 《Global Change Biology》2017,23(7):2705-2719
Growth models can be used to assess forest vulnerability to climate warming. If global warming amplifies water deficit in drought‐prone areas, tree populations located at the driest and southernmost distribution limits (rear‐edges) should be particularly threatened. Here, we address these statements by analyzing and projecting growth responses to climate of three major tree species (silver fir, Abies alba; Scots pine, Pinus sylvestris; and mountain pine, Pinus uncinata) in mountainous areas of NE Spain. This region is subjected to Mediterranean continental conditions, it encompasses wide climatic, topographic and environmental gradients, and, more importantly, it includes rear‐edges of the continuous distributions of these tree species. We used tree‐ring width data from a network of 110 forests in combination with the process‐based Vaganov–Shashkin‐Lite growth model and climate–growth analyses to forecast changes in tree growth during the 21st century. Climatic projections were based on four ensembles CO2 emission scenarios. Warm and dry conditions during the growing season constrain silver fir and Scots pine growth, particularly at the species rear‐edge. By contrast, growth of high‐elevation mountain pine forests is enhanced by climate warming. The emission scenario (RCP 8.5) corresponding to the most pronounced warming (+1.4 to 4.8 °C) forecasted mean growth reductions of ?10.7% and ?16.4% in silver fir and Scots pine, respectively, after 2050. This indicates that rising temperatures could amplify drought stress and thus constrain the growth of silver fir and Scots pine rear‐edge populations growing at xeric sites. Contrastingly, mountain pine growth is expected to increase by +12.5% due to a longer and warmer growing season. The projections of growth reduction in silver fir and Scots pine portend dieback and a contraction of their species distribution areas through potential local extinctions of the most vulnerable driest rear‐edge stands. Our modeling approach provides accessible tools to evaluate forest vulnerability to warmer conditions. 相似文献
7.
Melanie Ruosch Renato Spahni Fortunat Joos Paul D. Henne Willem O. van der Knaap Willy Tinner 《Global Change Biology》2016,22(2):727-740
Information on how species distributions and ecosystem services are impacted by anthropogenic climate change is important for adaptation planning. Palaeo data suggest that Abies alba formed forests under significantly warmer‐than‐present conditions in Europe and might be a native substitute for widespread drought‐sensitive temperate and boreal tree species such as beech (Fagus sylvatica) and spruce (Picea abies) under future global warming conditions. Here, we combine pollen and macrofossil data, modern observations, and results from transient simulations with the LPX‐Bern dynamic global vegetation model to assess past and future distributions of A. alba in Europe. LPX‐Bern is forced with climate anomalies from a run over the past 21 000 years with the Community Earth System Model, modern climatology, and with 21st‐century multimodel ensemble results for the high‐emission RCP8.5 and the stringent mitigation RCP2.6 pathway. The simulated distribution for present climate encompasses the modern range of A. alba, with the model exceeding the present distribution in north‐western and southern Europe. Mid‐Holocene pollen data and model results agree for southern Europe, suggesting that at present, human impacts suppress the distribution in southern Europe. Pollen and model results both show range expansion starting during the Bølling–Allerød warm period, interrupted by the Younger Dryas cold, and resuming during the Holocene. The distribution of A. alba expands to the north‐east in all future scenarios, whereas the potential (currently unrealized) range would be substantially reduced in southern Europe under RCP8.5. A. alba maintains its current range in central Europe despite competition by other thermophilous tree species. Our combined palaeoecological and model evidence suggest that A. alba may ensure important ecosystem services including stand and slope stability, infrastructure protection, and carbon sequestration under significantly warmer‐than‐present conditions in central Europe. 相似文献
8.
9.
Studies on Fagus sylvatica show that growth in populations toward the southern limit of this species' distribution is limited strongly by drought. Warming temperatures in the Mediterranean region are expected to exacerbate drought where they are not accompanied by increases in precipitation. We studied levels of annual growth in mature F. sylvatica trees over the last half‐century in the Montseny Mountains in Catalonia (northeast Spain). Our results show significantly lower growth of mature trees at the lower limit of this species' distribution when compared with trees at higher altitudes. Growth at the lower Fagus limit is characterized by a rapid recent decline starting in approximately 1975. By 2003, growth of mature trees had fallen by 49% when compared with predecline levels. This is not an age‐related phenomenon, nor is it seen in comparable populations at higher altitudes. Analysis of climate‐growth relationships suggests that the observed decline in growth is a result of warming temperatures and that, as precipitation in the region has not increased, precipitation is now insufficient to ameliorate the negative effects of increased temperatures on tree growth. As the climate‐response of the studied forest is comparable with that of F. sylvatica forests in other southern European regions, it is possible that this growth decline is a more widespread phenomenon. Warming temperatures may lead to a rapid decline in the growth of range‐edge populations and a consequent retreat of the species distribution in southern Europe. Assessment of long‐term growth trends across the southern range edge of F. sylvatica therefore merits further attention. 相似文献
10.
11.
Sybryn L. Maes Michael P. Perring Margot Vanhellemont Leen Depauw Jan Van den Bulcke Guntis Brmelis Jrg Brunet Guillaume Decocq Jan den Ouden Werner Hrdtle Radim Hdl Thilo Heinken Steffi Heinrichs Bogdan Jaroszewicz Martin Kopecký Frantiek Mli Monika Wulf Kris Verheyen 《Global Change Biology》2019,25(1):201-217
Forecasting the growth of tree species to future environmental changes requires a better understanding of its determinants. Tree growth is known to respond to global‐change drivers such as climate change or atmospheric deposition, as well as to local land‐use drivers such as forest management. Yet, large geographical scale studies examining interactive growth responses to multiple global‐change drivers are relatively scarce and rarely consider management effects. Here, we assessed the interactive effects of three global‐change drivers (temperature, precipitation and nitrogen deposition) on individual tree growth of three study species (Quercus robur/petraea, Fagus sylvatica and Fraxinus excelsior). We sampled trees along spatial environmental gradients across Europe and accounted for the effects of management for Quercus. We collected increment cores from 267 trees distributed over 151 plots in 19 forest regions and characterized their neighbouring environment to take into account potentially confounding factors such as tree size, competition, soil conditions and elevation. We demonstrate that growth responds interactively to global‐change drivers, with species‐specific sensitivities to the combined factors. Simultaneously high levels of precipitation and deposition benefited Fraxinus, but negatively affected Quercus’ growth, highlighting species‐specific interactive tree growth responses to combined drivers. For Fagus, a stronger growth response to higher temperatures was found when precipitation was also higher, illustrating the potential negative effects of drought stress under warming for this species. Furthermore, we show that past forest management can modulate the effects of changing temperatures on Quercus’ growth; individuals in plots with a coppicing history showed stronger growth responses to higher temperatures. Overall, our findings highlight how tree growth can be interactively determined by global‐change drivers, and how these growth responses might be modulated by past forest management. By showing future growth changes for scenarios of environmental change, we stress the importance of considering multiple drivers, including past management and their interactions, when predicting tree growth. 相似文献
12.
Kumar Mainali Bharat Babu Shrestha Ravi Kumar Sharma Arjun Adhikari Eliezer Gurarie Michael Singer Camille Parmesan 《Ecology and evolution》2020,10(3):1209-1222
- Alpine treelines are expected to shift upward due to recent climate change. However, interpretation of changes in montane systems has been problematic because effects of climate change are frequently confounded with those of land use changes. The eastern Himalaya, particularly Langtang National Park, Central Nepal, has been relatively undisturbed for centuries and thus presents an opportunity for studying climate change impacts on alpine treeline uncontaminated by potential confounding factors.
- We studied two dominant species, Abies spectabilis (AS) and Rhododendron campanulatum (RC), above and below the treeline on two mountains. We constructed 13 transects, each spanning up to 400 m in elevation, in which we recorded height and state (dead or alive) of all trees, as well as slope, aspect, canopy density, and measures of anthropogenic and animal disturbance.
- All size classes of RC plants had lower mortality above treeline than below it, and young RC plants (<2 m tall) were at higher density above treeline than below. AS shows little evidence of a position change from the historic treeline, with a sudden extreme drop in density above treeline compared to below. Recruitment, as measured by size–class distribution, was greater above treeline than below for both species but AS is confined to ~25 m above treeline whereas RC is luxuriantly growing up to 200 m above treeline.
- Synthesis. Evidence suggests that the elevational limits of RC have shifted upward both because (a) young plants above treeline benefited from facilitation of recruitment by surrounding vegetation, allowing upward expansion of recruitment, and (b) temperature amelioration to mature plants increased adult survival. We predict that the current pure stand of RC growing above treeline will be colonized by AS that will, in turn, outshade and eventually relegate RC to be a minor component of the community, as is the current situation below the treeline.
13.
Armando Gómez‐Guerrero Lucas C. R. Silva Miguel Barrera‐Reyes Barbara Kishchuk Alejandro Velázquez‐Martínez Tomás Martínez‐Trinidad Francisca Ofelia Plascencia‐Escalante William R. Horwath 《Global Change Biology》2013,19(6):1748-1758
Human‐induced changes in atmospheric composition are expected to affect primary productivity across terrestrial biomes. Recent changes in productivity have been observed in many forest ecosystems, but low‐latitude upper tree line forests remain to be investigated. Here, we use dendrochronological methods and isotopic analysis to examine changes in productivity, and their physiological basis, in Abies religiosa (Ar) and Pinus hartwegii (Ph) trees growing in high‐elevation forests of central Mexico. Six sites were selected across a longitudinal transect (Transverse Volcanic Axis), from the Pacific Ocean toward the Gulf of Mexico, where mature dominant trees were sampled at altitudes ranging from 3200 to 4000 m asl. A total of 60 Ar and 84 Ph trees were analyzed to describe changes in growth (annual‐resolution) and isotopic composition (decadal‐resolution) since the early 1900s. Our results show an initial widespread increase in basal area increment (BAI) during the first half of the past century. However, BAI has decreased significantly since the 1950s with accentuated decline after the 1980s in both species and across sites. We found a consistent reduction in atmosphere to wood 13C discrimination, resulting from increasing water use efficiency (20–60%), coinciding with rising atmospheric CO2. Changes in 13C discrimination were not followed, however, by shifts in tree ring δ18O, indicating site‐ and species‐specific differences in water source or uptake strategy. Our results indicate that CO2 stimulation has not been enough to counteract warming‐induced drought stress, but other stressors, such as progressive nutrient limitation, could also have contributed to growth decline. Future studies should explore the distinct role of resource limitation (water vs. nutrients) in modulating the response of high‐elevation ecosystems to atmospheric change. 相似文献
14.
15.
Elisabet Martínez‐Sancho Isabel Dorado‐Liñán Emilia Gutiérrez Merino Michael Matiu Gerhard Helle Ingo Heinrich Annette Menzel 《Global Change Biology》2018,24(3):1012-1028
In forests, the increase in atmospheric CO2 concentrations (Ca) has been related to enhanced tree growth and intrinsic water‐use efficiency (iWUE). However, in drought‐prone areas such as the Mediterranean Basin, it is not yet clear to what extent this “fertilizing” effect may compensate for drought‐induced growth reduction. We investigated tree growth and physiological responses at five Scots pine (Pinus sylvestris L.) and five sessile oak (Quercus petraea (Matt.) Liebl.) sites located at their southernmost distribution limits in Europe for the period 1960–2012 using annually resolved tree‐ring width and δ13C data to track ecophysiological processes. Results indicated that all 10 natural stands significantly increased their leaf intercellular CO2 concentration (Ci), and consequently iWUE. Different trends in the theoretical gas‐exchange scenarios as a response to increasing Ca were found: generally, Ci tended to increase proportionally to Ca, except for trees at the driest sites in which Ci remained constant. Ci from the oak sites displaying higher water availability tended to increase at a comparable rate to Ca. Multiple linear models fitted at site level to predict basal area increment (BAI) using iWUE and climatic variables better explained tree growth in pines (31.9%–71.4%) than in oak stands (15.8%–46.8%). iWUE was negatively linked to pine growth, whereas its effect on growth of oak differed across sites. Tree growth in the western and central oak stands was negatively related to iWUE, whereas BAI from the easternmost stand was positively associated with iWUE. Thus, some Q. petraea stands might have partially benefited from the “fertilizing” effect of rising Ca, whereas P. sylvestris stands due to their strict closure of stomata did not profit from increased iWUE and consequently showed in general growth reductions across sites. Additionally, the inter‐annual variability of BAI and iWUE displayed a geographical polarity in the Mediterranean. 相似文献
16.
Zihaohan Sang Jaime Sebastian‐Azcona Andreas Hamann Annette Menzel Uwe Hacke 《Evolutionary Applications》2019,12(9):1850-1860
17.
Aline Frank Glenn T. Howe Christoph Sperisen Peter Brang J. Bradley St. Clair Dirk R. Schmatz Caroline Heiri 《Global Change Biology》2017,23(12):5358-5371
Tree populations usually show adaptations to their local environments as a result of natural selection. As climates change, populations can become locally maladapted and decline in fitness. Evaluating the expected degree of genetic maladaptation due to climate change will allow forest managers to assess forest vulnerability, and develop strategies to preserve forest health and productivity. We studied potential genetic maladaptation to future climates in three major European tree species, Norway spruce (Picea abies), silver fir (Abies alba), and European beech (Fagus sylvatica). A common garden experiment was conducted to evaluate the quantitative genetic variation in growth and phenology of seedlings from 77 to 92 native populations of each species from across Switzerland. We used multivariate genecological models to associate population variation with past seed source climates, and to estimate relative risk of maladaptation to current and future climates based on key phenotypic traits and three regional climate projections within the A1B scenario. Current risks from climate change were similar to average risks from current seed transfer practices. For all three climate models, future risks increased in spruce and beech until the end of the century, but remained low in fir. Largest average risks associated with climate projections for the period 2061–2090 were found for spruce seedling height (0.64), and for beech bud break and leaf senescence (0.52 and 0.46). Future risks for spruce were high across Switzerland. However, areas of high risk were also found in drought‐prone regions for beech and in the southern Alps for fir. Genetic maladaptation to future climates is likely to become a problem for spruce and beech by the end of this century, but probably not for fir. Consequently, forest management strategies should be adjusted in the study area for spruce and beech to maintain productive and healthy forests in the future. 相似文献
18.
Mathieu Jonard Alfred Fürst Arne Verstraeten Anne Thimonier Volkmar Timmermann Nenad Potočić Peter Waldner Sue Benham Karin Hansen Päivi Merilä Quentin Ponette Ana C de la Cruz Peter Roskams Manuel Nicolas Luc Croisé Morten Ingerslev Giorgio Matteucci Bruno Decinti Marco Bascietto Pasi Rautio 《Global Change Biology》2015,21(1):418-430
The response of forest ecosystems to increased atmospheric CO2 is constrained by nutrient availability. It is thus crucial to account for nutrient limitation when studying the forest response to climate change. The objectives of this study were to describe the nutritional status of the main European tree species, to identify growth‐limiting nutrients and to assess changes in tree nutrition during the past two decades. We analysed the foliar nutrition data collected during 1992–2009 on the intensive forest monitoring plots of the ICP Forests programme. Of the 22 significant temporal trends that were observed in foliar nutrient concentrations, 20 were decreasing and two were increasing. Some of these trends were alarming, among which the foliar P concentration in F. sylvatica, Q. Petraea and P. sylvestris that significantly deteriorated during 1992–2009. In Q. Petraea and P. sylvestris, the decrease in foliar P concentration was more pronounced on plots with low foliar P status, meaning that trees with latent P deficiency could become deficient in the near future. Increased tree productivity, possibly resulting from high N deposition and from the global increase in atmospheric CO2, has led to higher nutrient demand by trees. As the soil nutrient supply was not always sufficient to meet the demands of faster growing trees, this could partly explain the deterioration of tree mineral nutrition. The results suggest that when evaluating forest carbon storage capacity and when planning to reduce CO2 emissions by increasing use of wood biomass for bioenergy, it is crucial that nutrient limitations for forest growth are considered. 相似文献
19.
Morine Lempereur Jean‐Marc Limousin Frédéric Guibal Jean‐Marc Ourcival Serge Rambal Julien Ruffault Florent Mouillot 《Global Change Biology》2017,23(1):42-55
A better understanding of stem growth phenology and its climate drivers would improve projections of the impact of climate change on forest productivity. Under a Mediterranean climate, tree growth is primarily limited by soil water availability during summer, but cold temperatures in winter also prevent tree growth in evergreen forests. In the widespread Mediterranean evergreen tree species Quercus ilex, the duration of stem growth has been shown to predict annual stem increment, and to be limited by winter temperatures on the one hand, and by the summer drought onset on the other hand. We tested how these climatic controls of Q. ilex growth varied with recent climate change by correlating a 40‐year tree ring record and a 30‐year annual diameter inventory against winter temperature, spring precipitation, and simulated growth duration. Our results showed that growth duration was the best predictor of annual tree growth. We predicted that recent climate changes have resulted in earlier growth onset (?10 days) due to winter warming and earlier growth cessation (?26 days) due to earlier drought onset. These climatic trends partly offset one another, as we observed no significant trend of change in tree growth between 1968 and 2008. A moving‐window correlation analysis revealed that in the past, Q. ilex growth was only correlated with water availability, but that since the 2000s, growth suddenly became correlated with winter temperature in addition to spring drought. This change in the climate–growth correlations matches the start of the recent atmospheric warming pause also known as the ‘climate hiatus’. The duration of growth of Q. ilex is thus shortened because winter warming has stopped compensating for increasing drought in the last decade. Decoupled trends in precipitation and temperature, a neglected aspect of climate change, might reduce forest productivity through phenological constraints and have more consequences than climate warming alone. 相似文献
20.
Forecasts of widespread range shifts with climate change stem from assumptions that climate drives species' distributions. However, local adaptation and biotic interactions also influence range limits and thus may impact range shifts. Despite the potential importance of these factors, few studies have directly tested their effects on performance at range limits. We address how population‐level variation and biotic interactions may affect range shifts by transplanting seeds and seedlings of western North American conifers of different origin populations into different competitive neighborhoods within and beyond their elevational ranges and monitoring their performance. We find evidence that competition with neighboring trees limits performance within current ranges, but that interactions between adults and juveniles switch from competitive to facilitative at upper range limits. Local adaptation had weaker effects on performance that did not predictably vary with range position or seed origin. Our findings suggest that competitive interactions may slow species turnover within forests at lower range limits, whereas facilitative interactions may accelerate the pace of tree expansions upward near timberline. 相似文献