首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coastal populations are often connected by unidirectional current systems, but the biological effects of such asymmetric oceanographic connectivity remain relatively unstudied. We used mtDNA analysis to determine the phylogeographic origins of beach‐cast bull‐kelp (Durvillaea antarctica) adults in the Canterbury Bight, a 180 km coastal region devoid of rocky‐reef habitat in southern New Zealand. A multi‐year, quantitative analysis supports the oceanographically derived hypothesis of asymmetric dispersal mediated by the north‐flowing Southland Current. Specifically, 92% of beach‐cast specimens examined had originated south of the Bight, many drifting north for hundreds of kilometres, and some traversing at least 500 km of ocean from subantarctic sources. In contrast, only 8% of specimens had dispersed south against the prevailing current, and these counter‐current dispersers likely travelled relatively small distances (tens of kilometres). These data show that oceanographic connectivity models can provide robust estimates of passive biological dispersal, even for highly buoyant taxa. The results also indicate that there are no oceanographic barriers to kelp dispersal across the Canterbury Bight, indicating that other ecological factors explain the phylogeographic disjunction across this kelp‐free zone. The large number of long‐distance dispersal events detected suggests drifting macroalgae have potential to facilitate ongoing connectivity between otherwise isolated benthic populations.  相似文献   

2.
Population differentiation and diversification depend in large part on the ability and propensity of organisms to successfully disperse. However, our understanding of these processes in organisms with high dispersal ability is biased by the limited genetic resolution offered by traditional genotypic markers. Many neustonic animals disperse not only as pelagic larvae, but also as juveniles and adults while drifting or rafting at the surface of the open ocean. In theory, the heightened dispersal ability of these animals should limit opportunities for species diversification and population differentiation. To test these predictions, we used next‐generation sequencing of genomewide restriction‐site‐associated DNA tags (RADseq) and traditional mitochondrial DNA sequencing, to investigate the species‐level relationships and global population structure of Planes crabs collected from oceanic flotsam and sea turtles. Our results indicate that species diversity in this clade is low—likely three closely related species—with no evidence of cryptic or undescribed species. Moreover, our results indicate weak population differentiation among widely separated aggregations with genetic indices showing only subtle genetic discontinuities across all oceans of the world (RADseq FST = 0.08–0.16). The results of this study provide unprecedented resolution of the systematics and global biogeography of this group and contribute valuable information to our understanding of how theoretical dispersal potential relates to actual population differentiation and diversification among marine organisms. Moreover, these results demonstrate the limitations of single gene analyses and the value of genomic‐level resolution for estimating contemporary population structure in organisms with large, highly connected populations.  相似文献   

3.
Continental boundary currents are projected to be altered under future scenarios of climate change. As these currents often influence dispersal and connectivity among populations of many marine organisms, changes to boundary currents may have dramatic implications for population persistence. Networks of marine protected areas (MPAs) often aim to maintain connectivity, but anticipation of the scale and extent of climatic impacts on connectivity are required to achieve this critical conservation goal in a future of climate change. For two key marine species (kelp and sea urchins), we use oceanographic modelling to predict how continental boundary currents are likely to change connectivity among a network of MPAs spanning over 1000 km of coastline off the coast of eastern Australia. Overall change in predicted connectivity among pairs of MPAs within the network did not change significantly over and above temporal variation within climatic scenarios, highlighting the need for future studies to incorporate temporal variation in dispersal to robustly anticipate likely change. However, the intricacies of connectivity between different pairs of MPAs were noteworthy. For kelp, poleward connectivity among pairs of MPAs tended to increase in the future, whereas equatorward connectivity tended to decrease. In contrast, for sea urchins, connectivity among pairs of MPAs generally decreased in both directions. Self‐seeding within higher‐latitude MPAs tended to increase, and the role of low‐latitude MPAs as a sink for urchins changed significantly in contrasting ways. These projected changes have the potential to alter important genetic parameters with implications for adaptation and ecosystem vulnerability to climate change. Considering such changes, in the context of managing and designing MPA networks, may ensure that conservation goals are achieved into the future.  相似文献   

4.
The marine cave‐dwelling mysid Hemimysis margalefi is distributed over the whole Mediterranean Sea, which contrasts with the poor dispersal capabilities of this brooding species. In addition, underwater marine caves are a highly fragmented habitat which further promotes strong genetic structuring, therefore providing highly informative data on the levels of marine population connectivity across biogeographical regions. This study investigates how habitat and geography have shaped the connectivity network of this poor disperser over the entire Mediterranean Sea through the use of several mitochondrial and nuclear markers. Five deeply divergent lineages were observed among H. margalefi populations resulting from deep phylogeographical breaks, some dating back to the Oligo‐Miocene. Whether looking at the intralineage or interlineage levels, H. margalefi populations present a high genetic diversity and population structuring. This study suggests that the five distinct lineages observed in H. margalefi actually correspond to as many separate cryptic taxa. The nominal species, H. margalefi sensu stricto, corresponds to the westernmost lineage here surveyed from the Alboran Sea to southeastern Italy. Typical genetic breaks such as the Almeria‐Oran Front or the Siculo‐Tunisian Strait do not appear to be influential on the studied loci in H. margalefi sensu stricto. Instead, population structuring appears more complex and subtle than usually found for model species with a pelagic dispersal phase. The remaining four cryptic taxa are all found in the eastern basin, but incomplete lineage sorting is suspected and speciation might still be in process. Present‐day population structure of the different H. margalefi cryptic species appears to result from past vicariance events started in the Oligo‐Miocene and maintained by present‐day coastal topography, water circulation and habitat fragmentation.  相似文献   

5.
6.
Although New Zealand is a biodiversity hotspot, there has been little genetic investigation of why so many of its threatened and uncommon plants have naturally disjunct distributions. We investigated the small tree Pseudopanax ferox (Araliaceae), which has a widespread but highly disjunct lowland distribution within New Zealand. Genotyping of nuclear microsatellites and a chloroplast locus revealed pronounced genetic differentiation and four principal genetic clusters. Our results indicate that the disjunct distribution is a product of vicariance rather than long‐distance dispersal. This highlights the need to preserve multiple populations when disjunct distributions are the result of vicariance, rather than focusing conservation efforts on a core area, in order to retain as much as possible of a species’ evolutionary legacy and potential. Additionally, based on our genetic findings and the ecology of P. ferox, we hypothesize that it was more continuously distributed during the drier (but not maximally colder) interstadials of glacial periods and/or on the fertile soils available immediately postglacial. We further hypothesize that P. ferox belongs to a suite of species of drought‐prone and/or fertile habitats whose distributions are actually restricted during warmer and wetter interglacial periods, despite being principally of the lowlands. Our genetic data for P. ferox are also the first consistent with the survival during the Last Glacial Maxima of a lowland tree at high latitudes in the south‐eastern South Island.  相似文献   

7.
Climate, behavior, ecology, and oceanography shape patterns of biodiversity in marine faunas in the absence of obvious geographic barriers. Marine turtles are an example of highly migratory creatures with deep evolutionary lineages and complex life histories that span both terrestrial and marine environments. Previous studies have focused on the deep isolation of evolutionary lineages (>3 mya) through vicariance; however, little attention has been given to the pathways of colonization of the eastern Pacific and the processes that have shaped diversity within the most recent evolutionary time. We sequenced 770 bp of the mtDNA control region to examine the stock structure and phylogeography of 545 green turtles from eight different rookeries in the central and eastern Pacific. We found significant differentiation between the geographically separated nesting populations and identified five distinct stocks (FST = 0.08–0.44, P < 0.005). Central and eastern Pacific Chelonia mydas form a monophyletic group containing 3 subclades, with Hawaii more closely related to the eastern Pacific than western Pacific populations. The split between sampled central/eastern and western Pacific haplotypes was estimated at around 0.34 mya, suggesting that the Pacific region west of Hawaii has been a more formidable barrier to gene flow in C. mydas than the East Pacific Barrier. Our results suggest that the eastern Pacific was colonized from the western Pacific via the Central North Pacific and that the Revillagigedos Islands provided a stepping‐stone for radiation of green turtles from the Hawaiian Archipelago to the eastern Pacific. Our results fit with a broader paradigm that has been described for marine biodiversity, where oceanic islands, such as Hawaii and Revillagigedo, rather than being peripheral evolutionary “graveyards”, serve as sources and recipients of diversity and provide a mechanism for further radiation.  相似文献   

8.
Measuring population connectivity is a critical task in conservation biology. While genetic markers can provide reliable long‐term historical estimates of population connectivity, scientists are still limited in their ability to determine contemporary patterns of gene flow, the most practical time frame for management. Here, we tackled this issue by developing a new approach that only requires juvenile sampling at a single time period. To demonstrate the usefulness of our method, we used the Speartooth shark (Glyphis glyphis), a critically endangered species of river shark found only in tropical northern Australia and southern Papua New Guinea. Contemporary adult and juvenile shark movements, estimated with the spatial distribution of kin pairs across and within three river systems, was contrasted with historical long‐term connectivity patterns, estimated from mitogenomes and genome‐wide SNP data. We found strong support for river fidelity in juveniles with the within‐cohort relationship analysis. Male breeding movements were highlighted with the cross‐cohort relationship analysis, and female reproductive philopatry to the river systems was revealed by the mitogenomic analysis. We show that accounting for juvenile river fidelity and female philopatry is important in population structure analysis and that targeted sampling in nurseries and juvenile aggregations should be included in the genomic toolbox of threatened species management.  相似文献   

9.
Characterizing movement dynamics and spatial aspects of gene flow within a species permits inference on population structuring. As patterns of structuring are products of historical and current demographics and gene flow, assessment of structure through time can yield an understanding of evolutionary dynamics acting on populations that are necessary to inform management. Recent dramatic population declines in hibernating bats in eastern North America from white‐nose syndrome have prompted the need for information on movement dynamics for multiple bat species. We characterized population genetic structure of the little brown bat, Myotis lucifugus, at swarming sites in southeastern Canada using 9 nuclear microsatellites and a 292‐bp region of the mitochondrial genome. Analyses of FST, ΦST, and Bayesian clustering (STRUCTURE) found weak levels of genetic structure among swarming sites for the nuclear and mitochondrial genome (Global FST = 0.001, < 0.05, Global ΦST = 0.045, < 0.01, STRUCTURE = 1) suggesting high contemporary gene flow. Hierarchical AMOVA also suggests little structuring at a regional (provincial) level. Metrics of nuclear genetic structure were not found to differ between males and females suggesting weak asymmetries in gene flow between the sexes. However, a greater degree of mitochondrial structuring does support male‐biased dispersal long term. Demographic analyses were consistent with past population growth and suggest a population expansion occurred from approximately 1250 to 12,500 BP, following Pleistocene deglaciation in the region. Our study suggests high gene flow and thus a high degree of connectivity among bats that visit swarming sites whereby mainland areas of the region may be best considered as one large gene pool for management and conservation.  相似文献   

10.
The pine processionary moth (Thaumetopoea pityocampa) is an important pest of coniferous forests at the southern edge of its range in Maghreb. Based on mitochondrial markers, a strong genetic differentiation was previously found in this species between western (pityocampa clade) and eastern Maghreb populations (ENA clade), with the contact zone between the clades located in Algeria. We focused on the moth range in Algeria, using both mitochondrial (a 648 bp fragment of the tRNA‐cox2) and nuclear (11 microsatellite loci) markers. A further analysis using a shorter mtDNA fragment and the same microsatellite loci was carried out on a transect in the contact zone between the mitochondrial clades. Mitochondrial diversity showed a strong geographical structure and a well‐defined contact zone between the two clades. In particular, in the pityocampa clade, two inner subclades were found whereas ENA did not show any further structure. Microsatellite analysis outlined a different pattern of differentiation, with two main groups not overlapping with the mitochondrial clades. The inconsistency between mitochondrial and nuclear markers is probably explained by sex‐biased dispersal and recent afforestation efforts that have bridged isolated populations.  相似文献   

11.
12.
13.
14.
L. Ming  L. Yi  R. Sa  Z. X. Wang  Z. Wang  R. Ji 《Animal genetics》2017,48(2):217-220
The Bactrian camel includes various domestic (Camelus bactrianus) and wild (Camelus ferus) breeds that are important for transportation and for their nutritional value. However, there is a lack of extensive information on their genetic diversity and phylogeographic structure. Here, we studied these parameters by examining an 809‐bp mtDNA fragment from 113 individuals, representing 11 domestic breeds, one wild breed and two hybrid individuals. We found 15 different haplotypes, and the phylogenetic analysis suggests that domestic and wild Bactrian camels have two distinct lineages. The analysis of molecular variance placed most of the genetic variance (90.14%, < 0.01) between wild and domestic camel lineages, suggesting that domestic and wild Bactrian camel do not have the same maternal origin. The analysis of domestic Bactrian camels from different geographical locations found there was no significant genetic divergence in China, Russia and Mongolia. This suggests a strong gene flow due to wide movement of domestic Bactrian camels.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号