首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dynamic behavior of stem cells population of the "critical" tissue (normal population) and tumor cell population under periodic treatment with a phase-specific cytotoxic agent was considered. The results were used for optimization of anticancer chemotherapy. The schedules of treatment were found which provide a maximum rate of tumor-cell elimination for any given rate of the normal population size decrease. If the mean generation times of normal and tumor populations differ (which was stated for many tumors), usage of the optimal period markedly increases the selectivity of therapy, while application of other periods can result in selective elimination of the normal population. Problems concerned with practical realization of the proposed regimes are discussed.  相似文献   

2.
High specific activity tritiated thymidine (HSA-[3H]TdR) and colcemid were given in cytotoxic doses and regimens to B6CF1/Anl mice. The number of cells per intestinal crypt was reduced by the S-phase-specific (HSA-[3H]TdR and the metaphase blocking and cytotoxic effect of multiple injections of colcemid. In 50-day-old mice, the cytotoxic effect of multiple injections of colcemid reduced both the number of cells per crypt and the clonogenic cell survival. However, the number of surviving intestinal clonogenic or stem cells, assayed by the microcolony technique, did not change in 110--130-day old mice. These data suggest that most of the cells at risk from these cytotoxic agents are not clonogenic in adult 110--130-day old mice but are the cells in amplification division. However, since the stem cells of young mice are more susceptible to colcemid, they are apparently in a more rapid cell cycle than those of older mice. The clonogenic cell survival measured in 110--130-day old mice after a single radiation dose of 14 Gy (1400 rad) responded in a non-linear way to increasing time of continuous colcemid cytotoxicity. These data suggest that the intestinal stem cells can respond to amplification compartment cell death by a shortening of their cell cycle and thus, over time, the number of stem cells at risk to colcemid cytotoxicity increases.  相似文献   

3.
High specific activity tritiated thymidine (HSA-[3H]TdR) and colcemid were given in cytotoxic doses and regimens to B6CF1/Anl mice. The number of cells per intestinal crypt was reduced by the S-phase-specific HSA-[3H]TdR and the metaphase blocking and cytotoxic effect of multiple injections of colcemid. In 50-day old mice, the cytotoxic effect of multiple injections of colcemid reduced both the number of cells per crypt and the clonogenic cell survival. However, the number of surviving intestinal clonogenic or stem cells, assayed by the micro-colony technique, did not change in 110–130-day old mice. These data suggest that most of the cells at risk from these cytotoxic agents are not clonogenic in adult 110–130-day old mice but are the cells in amplification division. However, since the stem cells of young mice are more susceptible to colcemid, they are apparently in a more rapid cell cycle than those of older mice. The clonogenic cell survival measured in 110–130-day old mice after a single radiation dose of 14 Gy (1400 rad) responded in a non-linear way to increasing time of continuous colcemid cytotoxicity. These data suggest that the intestinal stem cells can respond to amplification compartment cell death by a shortening of their cell cycle and thus, over time, the number of stem cells at risk to colcemid cytotoxicity increases.  相似文献   

4.
The amount of variability in a population that experiences repeated restrictions in population size has been calculated. The restrictions in size occur cyclically with a fixed cycle length. Analytical formulas for describing the gene identity at any specific time in the expanded and restricted phases of the cycle, and for the average and second moment of the gene identity, have been derived. It is shown that the level of genetic diversity depends critically on the two parameters that account for the population size, mutation rate and the time of duration for each of the two phases in the cycle. If one or both of these composite parameters are small, the gene diversity will be much reduced, and population gene diversity will then be predictable from knowledge of the harmonic mean population size over the entire cycle. If these parameters take on intermediate values, diversity changes constantly during the cycle, fluctuating steadily from a high to a low value and back again. If these parameters are large, gene diversity will fluctuate rapidly between extreme values and will stay at the extremes for long periods of time.  相似文献   

5.
The effects of continuous low dose-rate irradiation are studied with a computer model that incorporates cell kinetics and the accumulation and repair of radiation damage. This theoretical approach independently explores the effects on survival curves of a phase block, inherited damage and proliferation by dying cells. The computer model is a Monte Carlo simulation which follows the evolution in time of the family trees of a growing cell population under continuous irradiation. The model uses as input the measured phase-specific survival curves for acute exposures and the cell kinetic parameters to generate survival curves for continuous low dose-rate irradiations. Cell survival curves for Chinese hamster lung cells (V79) for dose rates ranging from 15 to 500 cGy/h have been generated using various model assumptions. The model shows that for these cells a G2 block will maximize cell killing for an optimum dose rate near 75 cGy/h. The effect on survival curves of inherited damage, as well as that of the proliferation by dying cells, is shown to increase monotonically with decreasing dose rates, and to be quite large at low dose rates.  相似文献   

6.
The percentage of labeled cells in the uterine luminal epithelium of cycling mice showed the different zonal distributions at each stage of estrous cycle after cumulative labeling with 3H-thymidine for 36 hr. It was estimated that the proliferating fraction in the epithelium at proestrus, estrus, metestrus, and diestrus was 100%, 100%, 40% and 5%, respectively. The percentage of labeled cells in the uterine luminal epithelium of cycling mice treated with progesterone remained below 10% level for at least 20 hr after injections of progesterone. Total labeling was attained in the uterine epithelium of castrated mice by the administration of estradiol-17beta. On the other hand, the cell proliferation in the uterine epithelium of castrated mice treated with estradiol and progesterone was markedly suppressed and the percentage of labeled cells remained approximately at 35%. The remaining cell population, however, still showed the mitotic potency when mice received estradiol. It is suggested from this study that the effect of progesterone is to suppress the epithelial cell proliferation and transfer cells into resting cell fraction which is still evoked to proliferate as the effect of estradiol and that a key factor controlling epithelial proliferation in mouse uterus during the estrous cycle is proliferating fraction rather than cell cycle time.  相似文献   

7.
On the basis of a general kinetic model of the cell cycle, the time schedule of administration of a blocking agent for cell synchronization was optimized. As blockers we considered agents that slow down the rate of transit through the short phase of the cycle. The Pontryagin maximum principle is used. Only stationary populations (the model of the steady state normal tissues) were considered. For such populations the exact form of optimal protocols may be simplified, without any significant loss in effectiveness, to the periodic alternation of suitably chosen intervals of maximum treatment and intervals of rest. The proper lengths of these intervals were obtained from the optimal protocols; their values for various parameters characterizing the cell cycle and the blocker action are presented. With the periodic form of protocols the synchronous movement of cells through any number of cycles may be obtained. The utilization of periodic protocols of synchronization in multiple cancer chemotherapy is discussed.  相似文献   

8.
Abstract. The effects of continuous low dose-rate irradiation are studied with a computer model that incorporates cell kinetics and the accumulation and repair of radiation damage. This theoretical approach independently explores the effects on survival curves of a phase block, inherited damage and proliferation by dying cells. the computer model is a Monte Carlo simulation which follows the evolution in time of the family trees of a growing cell population under continuous irradiation. the model uses as input the measured phase-specific survival curves for acute exposures and the cell kinetic parameters to generate survival curves for continous low dose-rate irradiations. Cell survival curves for Chinese hamster lung cells (V79) for dose rates ranging from 15 to 500 cGy/h have been generated using various model assumptions. the model shows that for these cells a G2 block will maximize cell killing for an optimum dose rate near 75 cGy/h. the effect on survival curves of inherited damage, as well as that of the proliferation by dying cells, is shown to increase monotonically with decreasing dose rates, and to be quite large at low dose rates.  相似文献   

9.
The parameters of cell population kinetics of symmetrical 1,2-dimethylhydrazine-induced colonic neoplasms and their adjacent colonic mucosa in the mouse were analyzed using the fraction labeled-mitoses curve method and compared with those of three groups of epithelial cells in the crypt of the descending colon of normal mouse. The analysis of three groups of epithelial cells in the crypt of normal mouse indicates that differentiation of epithelial cells was associated not only with a smaller proliferative pool of cells but also with a shortening of the duration of G2 phase and a prolongation of mitotic time. Other parameters of cell cycle did not change significantly. The mean cell cycle time of neoplastic cells in chemically induced colonic neoplasms was similar to that of epithelial cells in normal colon, but the variance was much greater in neoplastic cells. In neoplastic cells, the proliferative pool was greater, the G1 phase prlonged, and the S phase and the mitotic time became shorter as compared to epithelial cells in normal colon. The duration of G2 phase of neoplastic cells fell between the values of presumptive stem cells and differentiating cells in normal colon, compatible with the hypothesis that neoplastic cells are transformed stem cells defective in cellular differentiation. In the colonic mucosa immediately adjacent to neoplasms, the fraction-labeled-mitoses curve showed a flat second wave, indicating that the group of cells initially labeled by the pulse became a mixture of cells, some continuing the proliferative cycle normally, some going out of cycle, some slowing down in their passage from S through G2 to M, and some being arrested in mitotic phase. Such heterogeneous behavior of cells may be closely related to expansion of neoplasms. With some assumptions, however, cell cycle parameters of those normally cycling cells were estimated: the cell cycle time and the duration of G1 phase and mitotic phase were prolonged as compared to neoplastic cells and epithelial cells of normal colon.  相似文献   

10.
Effects of IL-11 on the growth of intestinal epithelial cells in vitro   总被引:6,自引:0,他引:6  
The network of interacting factors that control proliferation in the intestinal epithelium is largely unknown. Recently, IL-11 was found to protect animals from lethal doses of cytotoxic agents. Part of this protective action was ascribed to a reduced level of damage in the intestinal epithelium. Whether this was due to a direct effect on epithelial cell cycle progression was unclear. We have addressed this question in vitro and found that IL-11 reversibly inhibited proliferation in untransformed small intestinal IEC18 cells. However, IL-11 did not inhibit transformed SW620 or HT29 colonic cell lines. IL-6 behaved in a similar manner to IL-11. Thus, these results suggest that IL-11 may be an ideal therapy adjuvant, protecting normal cells and further, these results suggest that IL-11 may be involved in the normal growth controls in the intestinal epithelium. The inhibitory response evoked by IL-11 is lost during carcinogenic transformation.  相似文献   

11.
We propose a model for the growth of individual crypts that is able to account for the observed changes in the number of cells in crypts under normal conditions, after irradiation, and after 30% resection. Parameter values for this model are estimated both for mouse and man, and detailed predictions of crypt growth rates are made. This model does not predict a steady-state crypt size; rather it suggests that crypts grow until they bifurcate. We therefore propose a crypt cycle (analogous to the cell cycle) and present evidence that most if not all crypts in the adult mouse are cycling asynchronously and independently. This evidence consists of four experiments that indicate that branching crypts are randomly distributed over the intestinal epithelium, that the plane of bifurcation of branching crypts is randomly oriented with respect to the villus base, and that the size distribution of crypts is consistent with an expanding crypt population. We also report for the first time evidence of villus production in the adult mouse intestinal epithelium. We conclude that the crypt and villus populations in the adult mouse are not in a steady state.  相似文献   

12.
After a single dose of ethane dimethanesulphonate (EDS) (75 mg/kg) to rats the prolonged antispermatogenic action is due to a temporary elimination of the functional Leydig cell population. Replacement therapy with testosterone propionate (3 mg/day) maintains the spermatogenic epithelium but the EDS effect develops when hormone treatment is discontinued. In contrast, a short treatment with hCG (10-100 i.u./day) or LH (714 micrograms/day), starting before the EDS dose, permanently protects the spermatogenic epithelium. FSH treatment was completely ineffective. Although histological protection of spermatogenesis appeared complete with testosterone or hCG, effects on fertility remained but over different periods of time. Antispermatogenic and antifertility effects were produced in mice using much higher doses of EDS (5 X 250 mg/kg) but there was no protection from androgen or hCG. It is suggested that EDS binds to Leydig cells irreversibly, interfering with the action of gonadotrophin. At the dose level used the evidence suggests that the degree of reaction renders most of the Leydig cell population non-viable. A direct cytotoxic effect of the compound upon the spermatogenic epithelium might account for the inability of testosterone or hCG alone or in combination to maintain fertility at normal levels.  相似文献   

13.
To evaluate whether DNA alterations in mature spermatozoa could stem from DNA damage induced in immature germ cells, testis cells and spermatozoa were analyzed by the comet assay and by the sperm chromatin structure assay 14, 45 and 100 days after in vivo X irradiation of the testes. These times were selected, according to the mouse seminiferous epithelium cycle, to follow the DNA damage induced in different germ cell compartments. The cytotoxic action was assessed by DNA flow cytometric analysis of testicular cells. A dose-dependent increase of DNA damage in testis cells was observed 14 days after irradiation, whereas mature sperm cells were not affected. On the other hand, an increase in DNA strand breaks was seen in spermatozoa 45 days after treatment. DNA damage returned to the control levels 100 days after irradiation. The methods used to evaluate DNA damage gave comparable results, emphasizing the correlation between DNA fragmentation and susceptibility of sperm chromatin to denaturation. Both techniques showed the high radiosensitivity of differentiating spermatogonia. The overall results showed that DNA damage induced in pre-meiotic germ cells is detectable in primary spermatocytes and is still present in mature spermatozoa.  相似文献   

14.
The alkylating agent busulfan (Myleran) adversely affects spermatogenesis in mammals. We treated male mice with single doses of busulfan in order to quantitate its cytotoxic action on spermatogonial cells for comparison with effects of other chemotherapeutic agents, to determine its long-term effects on fertility, and to assess its possible mutagenic action. Both stem cell and differentiating spermatogonia were killed and, at doses above 13 mg/kg, stem cell killing was more complete than that of differentiating spermatogonia. Azoospermia at 56 days after treatment, which is a result of stem cell killing, was achieved at doses of over 30 mg/kg; this dose is below the LD50 for animal survival, which was over 40 mg/kg. Busulfan is the only antineoplastic agent studied thus far that produces such extensive damage to stem, as opposed to differentiating, spermatogonia. The duration of sterility following busulfan treatment depended on the level of stem cell killing and varied according to quantitative predictions based on stem cell killing by other cytotoxic agents. The return of fertility after a sterile period did not occur unless testicular sperm count reached 15% of control levels. Dominant lethal mutations, measured for assessment of possible genetic damage, were not increased, suggesting that stem cells surviving treatment did not propagate a significant number of chromosomal aberrations. Sperm head abnormalities remained significantly increased at 44 weeks after busulfan treatment, however, the genetic implications of this observation are not clear. Thus, we conclude that single doses of busulfan can permanently sterilize mice at nonlethal doses and cause long-term morphological damage to sperm produced by surviving stem spermatogonia.  相似文献   

15.
A dynamic model of the cell cycle for eukaryotic cells, which takes into account the rates of ribosome and protein synthesis and the discontinuous events of DNA replication and cell division, is analyzed. It is shown that, by changing the values of the parameters, three different cell cycle regimens are possible, which are similar to cell cycle patterns experimentally observed and which show the action of different control mechanisms. The model allows the determination of the macromolecular levels as a function of the cycle time. Taking into consideration the age distribution function of the cells in an ideal exponentially growing population, mathematical relations are calculated that link the levels of macromolecular components (protein, ribosomes and DNA) to the temporal parameters of the cell cycle, such as the relative duration of the S phase. It is also shown that the relative length of all cell cycle phases may be determined if the labelling index and the relative DNA content of the cell population are known. All these relations suggest new and convenient procedures to determine cell cycle parameters.  相似文献   

16.
It is well known that disinfection methods that successfully kill suspended bacterial populations often fail to eliminate bacterial biofilms. Recent efforts to understand biofilm survival have focused on the existence of small, but very tolerant, subsets of the bacterial population termed persisters. In this investigation, we analyze a mathematical model of disinfection that consists of a susceptible-persister population system embedded within a growing domain. This system is coupled to a reaction-diffusion system governing the antibiotic and nutrient. We analyze the effect of periodic and continuous dosing protocols on persisters in a one-dimensional biofilm model, using both analytic and numerical method. We provide sufficient conditions for the existence of steady-state solutions and show that these solutions may not be unique. Our results also indicate that the dosing ratio (the ratio of dosing time to period) plays an important role. For long periods, large dosing ratios are more effective than similar ratios for short periods. We also compare periodic to continuous dosing and find that the results also depend on the method of distributing the antibiotic within the dosing cycle.  相似文献   

17.
Summary Techniques available for the calculation of the time variation of the number of viable mammaliar cells in a cell population are reviewed. Events in the course of the cell's growth may include one or more exposures to ionizing radiations or other cytotoxic agents. The dependence of cell killing upon the cell's position in the cell cycle is emphasized, and a unified model for calculation of cell kinetics and cell survival is discussed. For a cell population not limited in growth by contact inhibition or by nutritional factors, experimental data agree with predictions of the model.The possibility of utilizing the model to arrive at optimum treatment schedules for the management of some malignant diseases is discussed. The conclusion drawn is that the state of knowledge with respect to cellular events in solid tumors is such as to leave most such applications in the realm of speculation.This work was supported by the National Institutes of Health, United States Public Health Service, under Grants CA 5008 and CA 4542.  相似文献   

18.
19.
20.
Vitamin E (VE) can effectively prevent occurrence of lung cancer caused by passive smoking in mice. However, whether VE prevents smoking-induced cytotoxicity remains unclear. In this study, a primary culture of embryonic lung cells (ELCs) was used to observe the cytotoxic effects of cigarette smoke extract (CSE), including its influence on cell survival, cell cycle, apoptosis, and DNA damage, and also to examine the effects of VE intervention on CSE-induced cytotoxicity. Our results showed that CSE could significantly inhibit the survival of ELCs with dose- and time-dependent effects. Furthermore, CSE clearly disturbed the cell cycle of ELCs by decreasing the proportion of cells at the S and G?/M phases and increasing the proportion of cells at the G?/G? phase. CSE promoted cell apoptosis, with the highest apoptosis rate reaching more than 40%. CSE also significantly caused DNA damage of ELCs. VE supplementation could evidently inhibit or reverse the cytotoxic effects of CSE in a dose- and time-dependent manner. The mechanism of CSE effects on ELCs and that of VE intervention might involve the mitochondrial pathway of cytochrome c-mediated caspase activation. Our study validate that VE plays a clearly protective effect against CSE-induced cytotoxicity in mouse embryonic lung cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号