首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Several lac diploid strains of Escherichia coli were constructed and tested to discover whether mutations in the lac promoter alleviate catabolite repression. 2. In each of these diploids the chromosome carries one of the promoter mutations, L8, L29 or L1; so that the rate of synthesis of the enzymes of the lac operon is only 2-6% of the fully induced wild-type. Each diploid harbours the episome F'lacM15 that specifies the synthesis of thiogalactoside transacetylase under the control of intact regulator, promoter and operator regions, but has a deletion in the structural gene for beta-galactosidase. In each diploid more than 90% of the thiogalactoside transacetylase is synthesized from the episome, and 100% of the beta-galactosidase is synthesized from the chromosome, and comparison of the extent of catabolite repression that the two enzymes suffered indicated whether the chromosomal promoter mutation relieves catabolite repression. 3. In the strains in which the promoter carries either of the point mutations L8 or L29 the enzymes were equally repressed, suggesting that neither L8 nor L29 affects catabolite repression. 4. In a diploid strain harbouring the same episome but carrying deletion L1 on the chromosome, synthesis of beta-galactosidase suffered much less repression than that of thiogalactoside transacetylase. 5. In a diploid strain in which the chromosome carries L1 and also a second mutation that increases the rate of expression of lac to that permitted by L8 or L29, the synthesis of beta-galactosidase again suffered much less repression than the synthesis of thiogalactoside transacetylase. 6. The effect of L1 (which deletes the boundary between the i gene and the lac promoter) is ascribed to its bringing the expression of lac under the control of the promoter of the i gene. 7. Even in strains carrying L1, some catabolite repression persists; this is not due to a trans effect from the episome since it occurs equally in a haploid strain with L1.  相似文献   

2.
Yudkin MD 《FEBS letters》1970,10(3):156-158
Experiments have been done to show whether the lac promoter delection L1, which partly alleviates catabolite repression, also affects transient repression of lac. In stain L1/F'M15 all of the beta-galactosidase is synthesized from a chromosomal gene cis to L1, whereas 98% of the thiogalactosidase transacetylase is synthesized from an episomal gene cis to an intact i-p-o region. The addition of glucose to induced cultures of strain L1/F'M15 growing in glycerol medium caused extensive transient repression of transacetylase but almost no transient repression of beta-galactosidase. In control experiments with a diploid stain of genotype p(+)z(+)a(-)/F'p(+)z(-)a(+) the two enzymes suffered equal transient repression. Thus L1 substantially relieves transient repression.  相似文献   

3.
4.
1. Catabolite repression of β-galactosidase and of thiogalactoside transacetylase was studied in several strains of Escherichia coli K 12, in an attempt to show whether a single site within the structural genes of the lac operon co-ordinately controls translational repression for the two enzymes. In all experiments the rate of synthesis of the enzymes was compared in glycerol–minimal medium and in glucose–minimal medium. 2. In a wild-type strain, glucose repressed the synthesis of the two enzymes equally. 3. The possibility that repression was co-ordinate was investigated by studies of mutant strains that carry deletions in the genes for β-galactosidase or galactoside permease or both. In all of the strains with deletions, the repression of thiogalactoside transacetylase persisted, and it is concluded that there is no part of the structural gene for β-galactosidase that is essential for catabolite repression of thiogalactoside transacetylase. 4. Subculture of one strain through several transfers in rich medium greatly increased its susceptibility to catabolite repression by glucose. It is concluded that unknown features of the genotype can markedly affect sensitivity to catabolite repression. 5. These results make it clear that one cannot draw valid conclusions about the effect of known genotypic differences on catabolite repression from a comparison of two separate strains; to study the effect of a particular genetic change in a lac operon it is necessary to construct a partially diploid strain so that catabolite repression suffered by one lac operon can be compared with that suffered by another. 6. Four such partial diploids were constructed. In all of them catabolite repression of β-galactosidase synthesized by one operon was equal in extent to catabolite repression of thiogalactoside transacetylase synthesized by the other. 7. Taken together, these results suggest that catabolite repression of β-galactosidase and thiogalactoside transacetylase is separate but equal.  相似文献   

5.
Polycistronic Effects of Catabolite Repression on the lac Operon   总被引:2,自引:2,他引:0       下载免费PDF全文
The catabolite repression caused by glucose and glucose-6-phosphate has been studied for both beta-galactosidase and thiogalactoside transacetylase, the products of the operator proximal and distal cistrons of the lac operon, respectively. We find that both cistrons are affected coordinately by this form of repression. We also find that a single alteration at the lac promoter region is sufficient to abolish sensitivity to repression of both cistrons. From this, we conclude that there is only one target site for catabolite repression in the lac operon.  相似文献   

6.
Summary We have constructed and tested three lac diploid strains in an attempt to show whether operator-constitutive mutations relieve catabolite repression of the lac operon. Each of these carries a different operator mutation on the chromosome, and all three have the genotype I+P+OcZ+Y-polar/Flac I+P+O+ZdelY+A+. When these strains were grown in medium containing glucose plus gluconate, synthesis of -galactosidase (directed by a gene cis to a mutant operator) and of thiogalactoside transacetylase (directed by a gene cis to an intact operator) suffered equal catabolite repression. We conclude that the operator-constitutive mutations have no effect on catabolite repression. Since it has been shown in analogous experiments that all promoter mutations tested do alleviate catabolite repression, these results are consistent with the view that the operator and promoter are functionally distinct.  相似文献   

7.
Different levels of beta-galactosidase are found in various trp-lac fusion strains. These levels of beta-galactosidase fall within a 60-fold range. The amount of thiogalactoside transacetylase activity detected in these same strains only varies 10-fold and is found in amounts greater than those predicted from the beta-galactosidase levels. The observation that the beta-galactosidase and thiogalactoside transacetylase levels are not directly proportional, that the lacZ messenger ribonucleic acid (mRNA) levels are not proportional to the beta-galactosidase activity, that, at least for the one fusion strain tested, the SuA polarity suppressor does not affect the beta-galactosidase level, and that, in all but one strain, the beta-galactosidase activity appears to reside in normal beta-galactosidase molecules suggests that the disproportionately low production of beta-galactosidase is due to a decrease in the frequency of translation initiation of lacZ mRNA in these strains. Several mechanisms are proposed to explain this decrease. Some possible bases for the disproportional production of beta-galactosidase and thiogalactoside transacetylase are also described. The preferred explanation for these disproportional enzyme levels is that only a fraction of the full complement of ribosomes need initiate translation at lacZ for the functional synthesis of lac mRNA to occur and that once the lac ribonucleic acid is made a full complement of ribosomes can bind at internal translation initiation sites at Y and A.  相似文献   

8.
The physiological state of Escherichia coli with respect to (permanent) catabolite repression was assessed by measuring the steady-state level of beta-galactosidase in induced or in constitutive cells under a variety of growth conditions. Four results were obtained. (i) Catabolite repression had a major effect on fully induced or constitutive expression of the lac gene, and the magnitude of this effect was found to be dependent on the promoter structure; cells with a wild-type lac promoter showed an 18-fold variation in lac expression, and cells with the lacP37 (formerly lac-L37) promoter exhibited several hundred-fold variation. (ii) Exogenous adenosine cyclic 3',5'-monophosphoric acid (cAMP) could not abolish catabolite repression, even though several controls demonstrated that cAMP was entering the cells in significant amounts. (Rapid intracellular degradation of cAMP could not be ruled out.) (iii) Neither the growth rate nor the presence of biosynthetic products altered the degree of catabolite repression; all variation could be related to the catabolites present in the growth medium. (iv) Slowing by imposing an amino acid restriction decreased the differential rate of beta-galactosidase synthesis from the wild-type lac promoter when bacteria were cultured in either the absence or presence of cAMP; this decreased lac expression also occurred when the bacteria harbored the catabolite-insensitive lacP5 (formerly lacUV5) promoter mutation. These findings support the idea that (permanent) catabolite repression is set by the catabolites in the growth medium and may not be related to an imbalance between catabolism and anabolism.  相似文献   

9.
10.
11.
Galactose appears to be the physiological inducer of the chromosomal lac operon in Klebsiella aerogenes. Both lactose and galactose are poor inducers in strains having a functional galactose catabolism (gal) operon, but both are excellent inducers in gal mutants. Thus the slow growth of K. aerogenes on lactose reflects the rapid degradation of the inducer. Several pts mutations were characterized and shown to affect both inducer exclusion and permanent catabolite repression. The beta-galactosidase of pts mutants cannot be induced at all by lactose, and pts mutants appear to have a permanent and constitutive inducer exclusion phenotype. In addition, pts mutants show a reduced rate of glucose metabolism, leading to slower growth on glucose and a reduced degree of glucose-mediated permanent catabolite repression. The crr-type pseudorevertants of pts mutations relieve the constitutive inducer exclusion for lac but do not restore the full level of glucose-mediated permanent catabolite repression and only slightly weaken the glucose-mediated inducer exclusion. Except for weakening the glucose-mediated permanent catabolite repression, pts and crr mutations have no effect on expression of the histidine utilization (hut) operons.  相似文献   

12.
Catabolite repression of the lac operon. Repression of translation   总被引:3,自引:2,他引:1  
  相似文献   

13.
The lac thiogalactoside transacetylase was purified from both a wild-type Escherichia coli K-12 strain (H3000) and an E. coli ML strain (ML308). These enzymes are indistinguishable by using several criteria. The subunit molecular weight of the enzyme is 24,800, which is significantly less than the previously reported value of 30,000. Although the function of the thiogalactoside transacetylase is unknown, it is suggested that this enzyme plays an important role in lactose utilization since its structure and enzymatic activity have been conserved.  相似文献   

14.
Loomis, William F., Jr. (Massachusetts Institute of Technology, Cambridge, Mass.), and Boris Magasanik. Nature of the effector of catabolite repression of beta-galactosidase in Escherichia coli. J. Bacteriol. 92:170-177. 1966.-Many carbon sources were found to give rise to catabolite repression of beta-galactosidase in a mutant strain of Escherichia coli lacking hexose phosphate isomerase activity. Compounds containing glucose or galactose cannot be formed from several of these carbon sources in this mutant strain, and, therefore, appear not to be required for catabolite repression of beta-galactosidase. Glucose was observed to elicit catabolite repression of beta-galactosidase in another mutant strain under conditions in which the formation of compounds of the citric acid cycle is inhibited. If catabolite repression of the lac operon is mediated by a single compound, it appears that the compound is related to the pentoses and trioses of intermediary metabolism. The repression of beta-galactosidase by galactose in galactokinase negative strains was shown to be independent of the gene, CR, which determines catabolite sensitivity of the lac operon, and to be dependent on a functional i gene.  相似文献   

15.
Acetylated amino sugars, normally used in the biosynthesis of cell walls and cell membranes, were found to play a role as corepressors for catabolite repression of the lac operon in Escherichia coli. This conclusion was derived from studies conducted on mutants of E. coli that were able to assimilate an exogenous source of N-acetylglucosamine (AcGN) but were unable to dissimilate or grow on this compound. At concentrations less than 10(-4)m, AcGN caused severe catabolite repression of beta-galactosidase synthesis in cultures grown under either nonrepressed or partially repressed conditions. This repression occurred in the absence of any effect of AcGN on either the carbon and energy metabolism or the growth of the organism. In addition, this repression by AcGN occurred in a mutant strain that is constitutive for beta-galactosidase production, demonstrating that the AcGN effect does not involve the uptake of inducer. This model for the corepressor system of catabolite repression is discussed in relation to the existing theories on repression of the lac operon.  相似文献   

16.
1. Acute transient catabolite repression of beta-galactosidase synthesis, observed when glucose is added to glycerol-grown cells of Escherichia coli (Moses & Prevost, 1966), requires the presence of a functional operator gene (o) in the lactose operon. Total deletion of the operator gene abolished acute transient repression, even in the presence of a functional regulator gene (i). 2. Regulator constitutives (i(-)) also show transient repression provided that the operator gene is functional. Regulator deletion mutants (i(del)), with which to test specifically the role of the i gene, have not so far been available. 3. The above mutants, showing various changes in the lactose operon, show no alteration in the effect of glucose on induced tryptophanase synthesis. Glucose metabolism, as measured in terms of the release of (14)CO(2) from [1-(14)C]glucose and [6-(14)C]glucose, also showed no differences between strains exhibiting or not exhibiting transient repression. This suggests no change in the operation of the pentose phosphate cycle, a metabolic activity known to be of paramount importance for glucose repression of beta-galactosidase synthesis (Prevost & Moses, 1967). 4. Chronic permanent repression by glucose of beta-galactosidase synthesis (less severe in degree than acute transient repression) persists in strains in which transient repression has been genetically abolished. Constitutive alkaline-phosphatase synthesis, which shows no transient repression, also demonstrates chronic permanent repression by glucose. 5. Chloramphenicol repression also persists in mutants with no transient repression, and also affects alkaline phosphatase. It is suggested that chronic permanent repression and chloramphenicol repression are non-specific, and that they do not influence beta-galactosidase synthesis via the regulatory system of the lactose operon.  相似文献   

17.
Paradoxical effect of weak inducers on the lac operon of Escherichia coli   总被引:1,自引:1,他引:0  
Previously, we reported the existence of a group of compounds whose function in the regulation of the lac operon was "paradoxical" in that they acted as either inducers or repressors depending on the circumstances. We now show that this group of compounds does not repress the lac operon by catabolite repression, transient repression, or by preventing the uptake of inducers. A model is presented which shows that "paradoxical" behavior is to be expected if a weak inducer is present at a concentration that is high relative to its binding affinity for the regulatory macromolecule. This model depends on the assumptions that the regulatory macromolecule is an allosteric protein which undergoes a transition between two conformational states and that the rate of enzyme synthesis depends on the fraction of protein molecules in each state. The previous observations on the responses of lac regulatory mutants to weak inducers have been extended to a series of such mutants. Weak inducers repress beta-galactosidase synthesis in several i(-) mutants. When this happens, enzyme synthesis can be reinduced by using a strong inducer such as isopropyl-beta-d-thiogalactoside. These compounds induce operator constitutives and the i(t) mutant more easily than they induce a wild-type strain.  相似文献   

18.
In gram-positive bacteria, HPr, a phosphocarrier protein of the phosphoenolpyruvate:sugar phosphotransferase system (PTS), is phosphorylated by an ATP-dependent, metabolite-activated protein kinase on seryl residue 46. In a Bacillus subtilis mutant strain in which Ser-46 of HPr was replaced with a nonphosphorylatable alanyl residue (ptsH1 mutation), synthesis of gluconate kinase, glucitol dehydrogenase, mannitol-1-P dehydrogenase and the mannitol-specific PTS permease was completely relieved from repression by glucose, fructose, or mannitol, whereas synthesis of inositol dehydrogenase was partially relieved from catabolite repression and synthesis of alpha-glucosidase and glycerol kinase was still subject to catabolite repression. When the S46A mutation in HPr was reverted to give S46 wild-type HPr, expression of gluconate kinase and glucitol dehydrogenase regained full sensitivity to repression by PTS sugars. These results suggest that phosphorylation of HPr at Ser-46 is directly or indirectly involved in catabolite repression. A strain deleted for the ptsGHI genes was transformed with plasmids expressing either the wild-type ptsH gene or various S46 mutant ptsH genes (S46A or S46D). Expression of the gene encoding S46D HPr, having a structure similar to that of P-ser-HPr according to nuclear magnetic resonance data, caused significant reduction of gluconate kinase activity, whereas expression of the genes encoding wild-type or S46A HPr had no effect on this enzyme activity. When the promoterless lacZ gene was put under the control of the gnt promoter and was subsequently incorporated into the amyE gene on the B. subtilis chromosome, expression of beta-galactosidase was inducible by gluconate and repressed by glucose. However, we observed no repression of beta-galactosidase activity in a strain carrying the ptsH1 mutation. Additionally, we investigated a ccpA mutant strain and observed that all of the enzymes which we found to be relieved from carbon catabolite repression in the ptsH1 mutant strain were also insensitive to catabolite repression in the ccpA mutant. Enzymes that were repressed in the ptsH1 mutant were also repressed in the ccpA mutant.  相似文献   

19.
Transient Repression of the lac Operon   总被引:20,自引:9,他引:11       下载免费PDF全文
Severe transient repression of constitutive or induced beta-galactosidase synthesis occurs upon the addition of glucose to cells of Escherichia coli growing on glycerol, succinic acid, or lactic acid. Only mutants particularily well adapted to growth on glucose exhibit this phenomenon when transferred to a glucose-containing medium. No change in ribonucleic acid (RNA) metabolism was observed during transient repression. We could show that transient repression is pleiotropic, affecting all products of the lac operon. It occurs in a mutant insensitive to catabolite repression. It is established much more rapidly than catabolite repression, and is elicited by glucose analogues that are phosphorylated but not further catabolized by the cell. Thus, transient repression is not a consequence of the exclusion of inducer from the cell, does not require catabolism of the added compound, and does not involve a gross change in RNA metabolism. We conclude that transient repression is distinct from catabolite repression.  相似文献   

20.
The genes coding for the binding-protein-dependent lactose transport system and beta-galactosidase in Agrobacterium radiobacter strain AR50 were cloned and partially sequenced. A novel lac operon was identified which contains genes coding for a lactose-binding protein (lacE), two integral membrane proteins (lacF and lacG), an ATP-binding protein (lacK) and beta-galactosidase (lacZ). The operon is transcribed in the order lacEFGZK. The operon is controlled by an upstream regulatory region containing putative -35 and -10 promoter sites, an operator site, a CRP-binding site probably mediating catabolite repression by glucose and galactose, and a regulatory gene (lacl) encoding a repressor protein which mediates induction by lactose and other galactosides in wild-type A. radiobacter (but not in strain AR50, thus allowing constitutive expression of the lac operon). The derived amino acid sequences of the gene products indicate marked similarities with other binding-protein-dependent transport systems in bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号