首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
王大伟  赵宁  泽桑梓  杨斌 《昆虫学报》2013,56(5):570-574
为了研究环境中非寄主阔叶植物释放出的绿叶挥发性物质(GLVs)对针叶树蛀干害虫云南切梢小蠹Tomicus yunnanesis的影响, 选取了(E)-2-己烯醛、 (E)-2-己烯醇和(Z)-3-己烯醇3种释放量较大的绿叶挥发性物质, 通过室内松梢取食试验测试了单组分及两两混合后对云南切梢小蠹寄主定位行为的干扰作用。结果表明: 源于阔叶植物的3种绿叶挥发性物质及其混合物能够不同程度干扰云南切梢小蠹的寄主定位行为。当虫放入广口瓶12 h后, 3个单组分绿叶挥发性物质处理组[A: (E)-2-己烯醛, P<0.01; B: (E)-2-己烯醇, P<0.01; C: (Z)-3-己烯醇, P<0.01]及2个混合组分[D: (E)-2-己烯醛+(E)-2-己烯醇, P<0.01); E: (E)-2-己烯醛+(Z)-3-己烯醇, P<0.01]中滞留在松梢外部的虫数与对照组相比都有显著性差异, 绿叶挥发性物质的存在显著降低了云南切梢小蠹侵害云南松松梢的概率。但是, 24 h后只有D组(P<0.01)和E组(P<0.01)滞留在松梢外部的虫数与对照组相比具有显著性差异, 在48 h后只有D组(P<0.01)与对照相比仍具有显著性差异。本研究为利用非寄主植物的次生代谢产物防治云南切梢小蠹进行了有益的探索。  相似文献   

2.
Diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), is one of the most serious pests of Brassicaceae crops worldwide. Electrophysiological and behavioral responses of P. xylostella to green leaf volatiles (GLVs) alone or together with its female sex pheromone were investigated in laboratory and field. GLVs 1-hexanol and (Z)-3-hexen-1-ol elicited strong electroantennographic responses from unmated male and female P. xylostella, whereas (Z)-3-hexenyl acetate only produced a relatively weak response. The behavioral responses of unmated moths to GLVs were further tested in Y-tube olfactometer experiments. (E)-2-Hexenal, (Z)-3-hexen-1-ol, and (Z)-3-hexenyl acetate induced attraction of males, reaching up to 50%, significantly higher than the response to the unbaited control arm. In field experiments conducted in 2008 and 2009, significantly more moths were captured in traps baited with synthetic sex pheromone with either (Z)-3-hexenyl acetate alone or a blend of (Z)-3-hexenyl acetate, (Z)-3-hexen-1-ol, and (E)-2-hexenal compared with sex pheromone alone and other blend mixtures. These results demonstrated that GLVs could be used to enhance the attraction of P. xylostella males to sex pheromone-baited traps.  相似文献   

3.
Currently, techniques for managing western pine beetle, Dendroctonus brevicomis LeConte (Coleoptera: Curculionidae, Scolytinae), infestations are limited to tree removals (thinning) that reduce stand density and presumably host susceptibility, and/or the use of insecticides to protect individual trees. There continues to be significant interest in developing an effective semiochemical-based tool for protecting trees from D. brevicomis attack, largely as an alternative to conventional insecticides. The responses of D. brevicomis to tree volatiles and verbenone were documented in eight experiments (trapping assays) conducted over a 4-yr period in which 88,942 individuals were collected. Geraniol, a tree volatile unique to Pinus ponderosa that elicits female-specific antennal responses in D. brevicomis, did not affect D. brevicomis behavior. Blends of two green leaf alcohols [hexanol + (Z)-3-hexen-1-ol] tested at two release rates (5.0 and 100.0 mg/d) had no effect on the response of D. brevicomis to attractant-baited traps. A nine-component blend [benzaldehyde, benzyl alcohol, guaiacol, nonanal, salicylaldehyde, (E)-2-hexenal, (E)-2-hexen-1-ol, (Z)-2-hexen-1-ol, and (-) -verbenone; NAVV] and subsequent revisions of this blend disrupted the response of D. brevicomis to attractant-baited traps in all experiments. The inhibitory effect of a revised five-component blend [nonanal, (E)-2-hexenal, (E)-2-hexen-1-ol, (Z)-2-hexen-1-ol, and (-)-verbenone; NAVV5] on the response of mountain pine beetle, D. ponderosae Hopkins, to attractant-baited traps was also documented. Acetophenone significantly reduced D. brevicomis attraction, but was not as effective as verbenone alone. Acetophenone increased the effectiveness of NAVV5 in one of two experiments. Furthermore, by adding acetophenone to NAVV5 we were able to remove the aldehydes from NAVV5 without compromising effectiveness, resulting in a novel four-component blend [acetophenone, (E)-2-hexen-1-ol + (Z)-2-hexen-1-ol, and (-)-verbenone; Verbenone Plus]. We discuss the implications of these and other results to development of Verbenone Plus as a semiochemical-based tool for management of D. brevicomis and D. ponderosae infestations.  相似文献   

4.
The Mediterranean pine shoot beetle Tomicus destruens is one of the most damaging bark beetles attacking Mediterranean pine forests in southern Europe and north Africa. We studied the attractiveness of the host volatiles α-pinene and ethanol at a range of release rates, alone or in combination, to T. destruens , in order to develop an attractive lure for the management of this beetle. T. destruens was attracted slightly to the host volatile α-pinene, but a strong synergistic effect was found in the attraction towards monoterpene when ethanol was added to the bait. The highest catches of T. destruens were obtained by the optimal blend releasing 300 mg/day of α-pinene and 900 mg/day of ethanol. In contrast to data reported for the related species T. piniperda , Mediterranean pine shoot beetles were clearly attracted to baits releasing ethanol alone (1350 mg/day). trans -Verbenol, which was also added to host volatiles in some tests, did not affect the response. The use of the attractive blend proposed would have a low impact on the natural enemy population of Thanasimus formicarius because of asynchronies in flight periods. Other non-target insects, such as the facultative predator or competitor Oxipleurus nodieri , were also significantly attracted. These results allow the development of an operative lure for the effective monitoring of T. destruens , although improvements by the addition of other host volatiles should be studied.  相似文献   

5.
A number of angiosperm nonhost volatiles (NHVs) and green leaf volatiles (GLVs) were tested alone and as supplements to the antiaggregation pheromone, verbenone, for their ability to disrupt attack by the mountain pine beetle (MPB), Dendroctonus ponderosae Hopkins (Coleoptera: Scolytidae), on lodgepole pine, Pinus contorta Dougl. ex Loud. var. latifolia Engel. Preliminary experiments led to a refined NHV blend [benzyl alcohol, guaiacol, benzaldehyde, nonanal, salicylaldehyde, and conophthorin] and a refined GLV blend [(Z)-3-hexen-1-ol and (E)-2-hexen-1-ol]. In a 20-replicate experiment, NHV and GLV groups both singly, and verbenone alone, significantly reduced MPB mass attack on pheromone-baited trees and on trees within 5 m of the pheromone-baited trees. Both blends in combination with verbenone reduced the number of mass attacked, baited trees to three out of 20 compared to 20 out of 20 of the baited controls. Each binary combination was also effective at reducing mass attack. In these experiments, all tested repellents were released from devices stapled to trees at the same point as the pheromone bait, suggesting that the repellency could have been to a point source, rather than to the whole tree. Therefore, in two further experiments bands of release devices were wrapped around the treated trees and the pheromone bait was removed from the treated trees. In one experiment, when the aggregation pheromone bait was suspended between pairs of trees treated with the NHV blend plus GLV blend plus verbenone, only three out of 25 treated pairs had mass attack on at least one member of the pair. In the other 60-replicate experiment, with no pheromone baits present, attack occurred on 13 untreated and 11 banded trees, all in the path of a large advancing infestation. However, the mean attack density on the banded trees was significantly reduced to a level below the 40 attacks m–2 of bark surface required to kill a healthy lodgepole pine. As a result of these experiments, operational trials are recommended.  相似文献   

6.
Green leaf volatiles (GLV), a series of saturated and monounsaturated six-carbon aldehydes, alcohols, and esters are emitted by plants upon mechanical damage. Evidence is increasing that intact plants respond to GLV by activating their own defense mechanisms, thus suggesting that they function in plant-plant communication. The present paper demonstrates that exposure of maize plants to naturally occurring GLV, including (Z)-3-, (E)-2- and saturated derivatives, induce the emission of volatile blends typically associated with herbivory. Position or configuration of a double bond, but not the functional group of the GLV influenced the strength of the emissions. (Z)-3-Configured compounds elicited stronger responses than (E)-2- and saturated derivatives. The response to (Z)-3-hexen-1-ol increased linearly with the dose between 200 and 1000 nmol per plant. Not only the naturally occurring (E)-2-hexenal, but also (E)-2-pentenal and (E)-2-heptenal induced maize plants, although to a lesser extent. Externally applied terpenoids [(3E)-4,8-dimethyl-1,3,7-nonatriene, beta-caryophyllene, and (E)-beta-farnesene] did not significantly increase the total amount of inducible volatiles in maize. Of three tested maize cultivars Delprim and Pactol responded much stronger than Attribut. Recovery experiments in the presence and absence of maize plants demonstrated that large proportions of externally applied GLV were assimilated by the plants, whereas (3E)-4,8-dimethyl-1,3,7-nonatriene was recovered in much higher amounts. The results furthermore suggested that plants converted a part of the assimilated leaf aldehydes and alcohols to the respective acetates. We propose that GLV not only can alert neighboring plants, but may facilitate intra-plant information transfer and can help mediate the systemic defense response in a plant.  相似文献   

7.
Optimized trap lure for male Melolontha cockchafers   总被引:1,自引:0,他引:1  
Abstract:  Melolontha cockchafer males search for mates using green leaf volatiles (GLV), released by host plants after female feeding. Thus, the feeding-induced plant volatiles act as sexual kairomones. Males of both Melontha hippocastani and Melontha melolontha are strongly attracted by the GLV ( Z )-3-hexen-1-ol ( Z -3-ol). Sex pheromones enhance the attractiveness of Z -3-ol and have been identified as toluquinone (TQ) in M. melolontha , and 1,4-benzoquinone (BQ) in M. hippocastani . Additionally, phenol acts as a male attractant in both species. From the perspective of potential application, we investigated by field experiments with volatile-baited traps the ways of enhancing the number of captured males by the use of specific binary or ternary blends of Z -3-ol with phenol, and TQ or BQ respectively. The data show that in both species binary lures containing Z -3-ol combined with TQ or BQ at a ratio of 10 : 1 are the most potent male attractants.  相似文献   

8.
9.
Abstract:  The pine shoot beetle, Tomicus piniperda (L.) (Col., Scolytidae) is an exotic pest of pine, Pinus spp., in North America. It is attracted strongly to host volatiles (±)- α -pinene, (+)-3-carene, and α -terpinolene. Attraction to insect-produced compounds is less clear. Other potential attractants include trans -verbenol, myrtenol, myrtenal, nonanal and α -pinene oxide. We conducted a series of field experiments to determine if any of these compounds would increase attraction of T. piniperda to α -pinene, either individually or in various combinations. None of the individual compounds increased attraction. Although several combinations that included trans -verbenol, nonanal, myrtenol, or myrtenal increased attraction, results were variable between experiments.  相似文献   

10.
Green leaf volatiles (GLVs) are a diverse group of fatty acid-derived compounds emitted by all plants and are involved in a wide variety of developmental and stress-related biological functions. Recently, GLV emission bursts from leaves were reported following light–dark transitions and hypothesized to be related to the stress response while acetaldehyde bursts were hypothesized to be due to the ‘pyruvate overflow’ mechanism. In this study, branch emissions of GLVs and a group of oxygenated metabolites (acetaldehyde, ethanol, acetic acid, and acetone) derived from the pyruvate dehydrogenase (PDH) bypass pathway were quantified from mesquite plants following light–dark transitions using a coupled GC–MS, PTR-MS, and photosynthesis system. Within the first minute after darkening following a light period, large emission bursts of both C5 and C6 GLVs dominated by (Z)-3-hexen-1-yl acetate together with the PDH bypass metabolites are reported for the first time. We found that branches exposed to CO2-free air lacked significant GLV and PDH bypass bursts while O2-free atmospheres eliminated the GLV burst but stimulated the PDH bypass burst. A positive relationship was observed between photosynthetic activity prior to darkening and the magnitude of the GLV and PDH bursts. Photosynthesis under 13CO2 resulted in bursts with extensive labeling of acetaldehyde, ethanol, and the acetate but not the C6-alcohol moiety of (Z)-3-hexen-1-yl acetate. Our observations are consistent with (1) the “pyruvate overflow” mechanism with a fast turnover time (<1 h) as part of the PDH bypass pathway, which may contribute to the acetyl-CoA used for the acetate moiety of (Z)-3-hexen-1-yl acetate, and (2) a pool of fatty acids with a slow turnover time (>3 h) responsible for the C6 alcohol moiety of (Z)-3-hexen-1-yl acetate via the 13-lipoxygenase pathway. We conclude that our non-invasive method may provide a new valuable in vivo tool for studies of acetyl-CoA and fatty acid metabolism in plants at a variety of spatial scales.  相似文献   

11.
12.
Conifer feeding bark beetles (Coleoptera, Curculionidae, Scolytinae) pose a serious economic threat to forest production. Volatiles released by non-host angiosperm plants (so called non-host volatiles, NHV) have been shown to reduce the risk of attack by many bark beetle species, including the European spruce bark beetle, Ips typographus. However, the most active blend for I. typographus, containing three green leaf volatiles (GLVs) in addition to the key compounds trans-conophthorin (tC) and verbenone, has been considered too expensive for use in large-scale management. To lower the cost and improve the applicability of NHV, we aim to simplify the blend without compromising its anti-attractant potency. Since the key compound tC is expensive in pure form, we also tested a crude version: technical grade trans-conophthorin (T-tC). In another attempt to find a more cost effective substitute for tC, we evaluated a more readily synthesized analog: dehydro-conophthorin (DHC). Our results showed that 1-hexanol alone could replace the three-component GLV blend containing 1-hexanol, (3Z)-hexen-1-ol, and (2E)-hexen-1-ol. Furthermore, the release rate of tC could be reduced from 5 mg/day to 0.5 mg/day in a blend with 1-hexanol and (–)-verbenone without compromising the anti-attractant activity. We further show that T-tC was comparable with tC, whereas DHC was a less effective anti-attractant. DHC also elicited weaker physiological responses in the tC-responding olfactory receptor neuron class, providing a likely mechanistic explanation for its weaker anti-attractive effect. Our results suggest a blend consisting of (–)-verbenone, 1-hexanol and technical trans-conophthorin as a cost-efficient anti-attractant for forest protection against I. typographus.  相似文献   

13.
Yan ZG  Wang CZ 《Phytochemistry》2006,67(1):34-42
Green leaf volatiles (GLVs), generally occurring C6 alcohols, aldehydes and acetates from plants, play an important role in plant-plant communication. These compounds induce intact plants to produce jasmonic acid, and induce defense-related gene expression and the release of volatile compounds. Here, we address wound-induced GLVs cause the release of acetylated derivatives and a terpenoid, (E)-4,8-dimethylnona-1,3,7-triene (DMNT) in intact maize, which may be a type of plant-plant interaction mediated by airborne GLVs. Upon exposure of intact maize seedlings to wound-induced GLVs, (Z)-3-hexenyl acetate was consistently the most abundant compound released. Exogenous application of individual alcohols and aldehydes mostly resulted in the release of corresponding acetate esters. C6-alcohols with a double bond between the second and third, or the third and fourth carbon atoms, C5- or C6-aldehydes, and (Z)-3-hexenyl acetate triggered the release of DMNT. When (Z)-3-hexenyl acetate and hexyl acetate were used to treat maize seedlings, they were recovered from the plants. These data demonstrated that: (1) apart from direct adsorption and re-release of acetate esters, absorption and conversion of exogenous alcohols and aldehydes into acetate esters occurred, and (2) DMNT was induced by a range of aldehydes and unsaturated alcohols.  相似文献   

14.
The response of the two most abundant cockchafer species in central Europe, Melolontha hippocastani and M. melolontha, towards phenol, mixtures of phenol with the leaf alcohol (Z)-3-hexen-1-ol and the known cockchafer pheromones, 1,4-benzoquinone (M. hippocastani) and toluquinone (M. melolontha), was investigated in the field. During the swarming period at dusk, phenol attracted males of both species, and enhanced the known attraction of cockchafer males towards (Z)-3-hexen-1-ol. A mixture of phenol plus (Z)-3-hexen-1-ol was less attractive for M. hippocastani males than a mixture of (Z)-3-hexen-1-ol plus 1,4-benzoquinone, whereas phenol plus (Z)-3-hexen-1-ol attracted as many M. melolontha males as a mixture of (Z)-3-hexen-1-ol plus toluquinone. In both species three component mixtures containing phenol, (Z)-3-hexen-1-ol, and the respective benzoquinone did not capture more males than two component mixtures consisting of only (Z)-3-hexen-1-ol and the benzoquinone. A possible role of phenol as another cockchafer sex pheromone component is discussed.  相似文献   

15.
Almost all terrestrial plants produce green leaf volatiles (GLVs), consisting of six-carbon (C6) aldehydes, alcohols and their esters, after mechanical wounding. C6 aldehydes deter enemies, but C6 alcohols and esters are rather inert. In this study, we address why the ability to produce various GLVs in wounded plant tissues has been conserved in the plant kingdom. The major product in completely disrupted Arabidopsis leaf tissues was (Z)-3-hexenal, while (Z)-3-hexenol and (Z)-3-hexenyl acetate were the main products formed in the intact parts of partially wounded leaves. (13)C-labeled C6 aldehydes placed on the disrupted part of a wounded leaf diffused into neighboring intact tissues and were reduced to C6 alcohols. The reduction of the aldehydes to alcohols was catalyzed by an NADPH-dependent reductase. When NADPH was supplemented to disrupted tissues, C6 aldehydes were reduced to C6 alcohols, indicating that C6 aldehydes accumulated because of insufficient NADPH. When the leaves were exposed to higher doses of C6 aldehydes, however, a substantial fraction of C6 aldehydes persisted in the leaves and damaged them, indicating potential toxicity of C6 aldehydes to the leaf cells. Thus, the production of C6 aldehydes and their differential metabolisms in wounded leaves has dual benefits. In disrupted tissues, C6 aldehydes and their α,β-unsaturated aldehyde derivatives accumulate to deter invaders. In intact cells, the aldehydes are reduced to minimize self-toxicity and allow healthy cells to survive. The metabolism of GLVs is thus efficiently designed to meet ecophysiological requirements of the microenvironments within a wounded leaf.  相似文献   

16.
无翅茶蚜对茶树挥发物的触角电生理和行为反应   总被引:1,自引:0,他引:1  
韩宝瑜  韩宝红 《生态学报》2007,27(11):4485-4490
分别使用昆虫触角电位仪(EAG)和四臂嗅觉仪,测定了无翅茶蚜Toxopteraaurantii Boyer对14种茶树挥发性化合物、14种挥发物中"绿叶气味"组成的混合物(GLV)、14种挥发物的混合物(ACB)、以及新鲜嫩叶、芽、嫩茎、成叶和茶蚜为害嫩叶(ADYL)的EAG反应和行为反应。ACB引出最大的EAG反应值,茶树挥发物主要组分Z-3-己烯-1-醇、E-2-己烯醛、n-己醇、水杨酸甲酯和苯甲醇也引起较大的EAG反应值。4种正常茶梢的器官也引出较大的EAG反应,以嫩叶最强、依次为芽、嫩茎和成叶。有趣的是ADYL引出弱的负的EAG值。用嗅觉仪进行的生物测定表明,嫩叶以及主要的茶梢挥发性成分乙酸-Z-3-己烯酯、水杨酸甲酯、E-2-己烯-1-醇和Z-3-己烯-1-醇等也具有较强引诱活性。研究显示无翅茶蚜可能利用茶梢挥发物作为利它素而寻觅适宜的取食场所,如茶树嫩梢。  相似文献   

17.
Hydroperoxide lyases (HPLs) play important roles in modulating plant defense by regulating the release of green leaf volatiles (GLVs) and the jasmonic acid (JA) pathway. CsiHPL1—a chloroplast-localized tea gene that encodes HPL—was previously cloned and predicted to be a regulator of plant defense responses. CsiHPL1 was expressed constitutively in transgenic tomato (Solanum lycopersicum) plants to define its function in plant defense. CsiHPL1 overexpression caused tomato to release more constitutive and wound-induced GLVs [including (Z)-hexenal and (Z)-3-hexen-1-ol]. CsiHPL1 transgenic lines also exhibited lower levels of resistance to the larva of the tomato-chewing herbivore Prodenia litura (Fabricius) but enhanced resistance to the necrotrophic fungus Alternaria alternata f. sp. lycopersici (AAL). Furthermore, transgenic lines exhibited decreased expression levels of JA-related genes (SlAOS and SlPI-II) induced by P. litura and AAL infection. We thus concluded that constitutive expression of CsiHPL1 can regulate tomato resistance to P. litura and AAL by modulating GLV release and JA gene expression. Application of these results will be helpful in controlling plant defenses against herbivore attack and fungal disease.  相似文献   

18.
Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism   总被引:5,自引:0,他引:5  
Green leaf volatiles (GLVs) are C(6) aldehydes, alcohols, and their esters formed through the hydroperoxide lyase pathway of oxylipin metabolism. Plants start to form GLVs after disruption of their tissues and after suffering biotic or abiotic stresses. GLV formation is thought to be regulated at the step of lipid-hydrolysis, which provides free fatty acids to the pathway. Recently, studies dissecting the physiological significance of GLVs in plants have emerged, and it has been postulated that GLVs are important molecules both for signaling within and between plants and for allowing plants and other organisms surrounding them to recognize or compete with each other.  相似文献   

19.
Peach shoot volatiles were attractive to mated female oriental fruit moth, Cydia molesta (Busck), in a dual choice arena. No preference was observed between leaf odours from the principle host plant, peach, and the secondary host plant, apple. Twenty-two compounds were identified in headspace volatiles of peach shoots using gas chromatography-mass spectrometry. Green leaf volatiles accounted for more than 50% of the total emitted volatiles. A bioassay-assisted fractionation using different sorbent polymers indicated an attractant effect of compounds with a chain length of 6-8 carbon atoms. The major compounds of this fraction were tested either singly or in combinations for behavioural response of females. Significant bioactivity was found for a three-component mixture of (Z)-3-hexen-1-yl acetate, (Z)-3-hexen-1-ol and benzaldehyde in a 4:1:1 ratio. This synthetic mixture elicited a similar attractant effect as the full natural blend from peach shoots as well as the bioactive fraction.  相似文献   

20.
Fusarium infection of maize leaves and/or roots through the soil can stimulate the emission of volatile organic compounds (VOCs). It is also well known that VOC emission from maize plants can repel or attract pests. In our experiments, we studied VOC induction responses of Zea mays L. ssp. mays cv. ‘Prosna’ having Fusarium infection (mix of four species) in leaves or roots, then tested for VOC induction of uninfected neighboring plants, and finally examined wind-tunnel behavioral responses of the adult cereal leaf beetle, Oulema melanopus L. (Chrysomelidae: Coleoptera) behavior to four induced VOCs. In the first part of our experiment, we confirmed that several green leaf volatiles (GLVs; (Z)-3-hexenal, (E)-2-hexenal, (Z)-3-hexen-1-ol, (E)-2-hexen-1-ol, (Z)-3-hexen-1-yl acetate, 1-hexyl acetate), terpenes (β-pinene, β-myrcene, Z-ocimene, linalool, β-caryophyllene), and shikimic acid pathway derivatives (benzyl acetate, methyl salicylate, indole) were positively induced from maize plants infected by Fusarium spp. The quantities of induced VOCs were higher at 7 d than 3 d post-infection and greater when plants were infected with Fusarium on leaves rather than through soil. In the second part of our experiment, uninfected maize plants also showed significantly positive induction of several VOCs when neighboring an infected plant where the degree of induction was negatively related to the distance from the infected plant. In the third part of our experiment, a Y-tube bioassay was used to evaluate upwind orientation of adult cereal leaf beetles to four individual VOCs. Female and male O. melanopus were significantly attracted to the GLVs (Z)-3-hexenal and (Z)-3-hexenyl acetate, and the terpenes linalool and β-caryophyllene. Our results indicate that a pathogen can induce several VOCs in maize plants that also induce VOCs in neighboring uninfected plants, though VOC induction could increase the range at which an insect pest species is attracted to VOC inducing plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号