首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Growth hormone (GH)-transgenic mice provide a model for studying hormonal regulation of gene products responsible for efficient lean growth. Insulin-like growth factor-I (IGF-I) and IGF binding protein-3 (BP-3) are two products involved in mediating the growth promoting actions of GH. Mice carrying the ovine metallothionein la-ovine growth hormone (oMtla-oGH) transgene were used to study GH regulation of IGF-I and PB-3 expression because these mice do not exhibit elevated basal oGH levels without transgene stimulation by exogenous zinc. C57B1/6XCBA mice with (transgenic=TG) and without (control=C) the oMtla-oGH transgene were activated (+Zn) or inactivated (-Zn) by the addition or removal of 25 mM zinc sulfate in the drinking water. Plasma IGF-I and BP-3 levels were determined by radioimmunoassay and western ligand blotting, respectively. Hepatic IGF-I and BP-3 mRNA levels were determined by slot-blot analysis. TG+Zn mice had higher plasma IGF-I (p<0.05) and hepatic IGF-I mRNA (p<0.05) levels as compared to TG-Zn, C+Zn and C-Zn mice. Plasma IGF-I and hepatic IGF-I mRNA levels in TG-Zn mice were not different from C+Zn and C-Zn mice. Removal of Zn decreased hepatic IGF-I mRNA levels to C levels in TG mice. Plasma BP-3 and hepatic BP-3 mRNA levels in TG+Zn mice were increased (p<0.05) as compared to TG-Zn, C-Zn and C+Zn. Plasma BP-3 and hepatic BP-3 mRNA levels did not differ between TG-Zn, C-Zn and C+Zn mice. Expression of the transgene also increased the level of plasma BP-3 during pregnancy as compared to that observed for pregnant C mice. We conclude that oGH regulates IGF-I and BP-3 expression in the oMtla-oGH transgenic mouse model system.  相似文献   

2.
3.
Mice with a temporally regulatable ovine metallothionein 1a—ovine growth hormone transgene (oMT1a-oGH) were utilized to study the effects of withdrawal of elevated circulating levels of growth hormone (GH) on growth and body composition. The transgene was activated from 21–42 days of age by provision of zinc sulfate in the drinking water. At 42 days, mice were allocated to either activated transgenic (remain on zinc sulfate) or inactivated transgenic (removal of zinc sulfate) groups, and to receive eitherad libitum or restricted (80–90% ofad libitum) access to feed. Non-transgenic control mice were treated similarly. Body weights and intakes were recorded weekly. Mice were killed at 70 d and epididymal and subcutaneous fat pads, trimmed hind carcass and various organs were weighed. The main findings of this study are: (1) food-restricted mice possessing an activated oMT1a-oGH transgene fail to demonstrate increased growth, but exhibit significantly reduced levels of fat (P<0.05) relative to all other genotype x feed level combinations; and (2) inactivation of the oMT1a-oGH transgene, following a period of elevated GH levels, leads to development of obesity as evidenced by two to three fold increases in epididymal and subcutaneous fat pad weights (P<0.01) relative to both activated transgenic and non-transgenic control mice. These large increases in fat deposition also occurred when intake was restricted to 80–90% ofad libitum levels, indicating that metabolic changes independent of intake occur in these inactivated transgenic mice. It is possible that highly elevated production of GH in activated oMT1a-oGH transgenic mice leads to (1) enhanced promotion of preadipocyte differentiation, leading to increased numbers of adipocytes that, upon cessation of oGH production, are available for lipid deposition resulting in obesity, or (2) alterations in production of or responsiveness to insulin, leading to increased fat deposition upon removal of the chronic anti-lipogenic actions of GH. The oMT1a-oGH transgenic mouse line should provide a new genetic model with which to investigate the mechanisms by which growth hormone affects obesity.  相似文献   

4.
Lipoprotein lipase (LPL) is a key enzyme in lipoprotein and adipocyte metabolism. Defects in LPL can lead to hypertriglyceridemia and the subsequent development of atherosclerosis. The mechanisms of regulation of this enzyme are complex and may occur at multiple levels of gene expression. Because the 3'-untranslated region (UTR) is involved in LPL translational regulation, transgenic mice were generated with adipose tissue expression of an LPL construct either with or without the proximal 3'-UTR and driven by the aP2 promoter. Both transgenic mouse colonies were viable and expressed the transgene, resulting in a 2-fold increase in LPL activity in white adipose tissue. Neither mouse colony exhibited any obvious phenotype in terms of body weight, plasma lipids, glucose, and non-esterified fatty acid levels. In the mice expressing hLPL with an intact 3'-UTR, hLPL mRNA expression approximately paralleled hLPL activity. However in the mice without the proximal 3'-UTR, hLPL mRNA was low in the setting of large amounts of hLPL protein and LPL activity. In previous studies, the 3'-UTR of LPL was critical for the inhibitory effects of constitutively expressed hormones, such as thyroid hormone and catecholamines. Therefore, these data suggest that the absence of the 3'-UTR results in a translationally unrepressed LPL, resulting in a moderate overexpression of adipose LPL activity.  相似文献   

5.
Most studies utilizing transgenic technology focus on the impact to traits of interest, rather than propagation of the transgene to offspring. In animals containing growth hormone constructs, transgene transmission to progeny follows a Mendelian pattern of inheritance in the first few generations following generation of a founder animal, but decreases in subsequent generations. In the present study, the ovine metallothionein 1a-ovine growth hormone (oMt1a-oGH) transgenic mouse was used to determine whether transgene transmission rate to progeny was affected by overexpression of ovine growth hormone in the transgenic parent. The oMt1a-oGH mouse is a useful model for assessing transgene transmission, as the construct is easily regulatable and transgene inactivation results in a return of plasma GH to basal levels. Male and female hemizygous oMt1a-oGH mice were assigned to 1 of 3 treatment groups: (1) mice never actively expressing the transgene, (2) mice actively expressing the transgene from 3 weeks of age, and (3) mice actively expressing the transgene from 3 to 11 (males) or 3 to 8 (females) weeks of age. Transgenic mice were mated to wild type animals and the resulting progeny were genotyped. Males never actively expressing the transgene passed on the transgene to progeny in a Mendelian fashion, while males actively expressing the transgene transmitted the transgene to a smaller than expected number of progeny. However, following inactivation of the oMt1a-oGH construct in transgenic males, subsequent offspring demonstrated Mendelian inheritance of the transgene. In contrast, females expressing the transgene from 3 to 8 weeks of age were able to pass on the oMt1a-oGH construct in a Mendelian fashion, but females from other treatment groups were not. In oMt1a-oGH males, reduced transgene transmission appears to be due to selection against transgenic gametes. In females, however, selection against the transgenic genotype likely occurs at the embryonic level.  相似文献   

6.
DNA regions of 10 and 7 kb that flank the mouse metallothionein II (MT-II) and MT-I genes, respectively, were combined with a minimally marked MT-I (MT-I*) gene and tested in transgenic mice. This construct resulted in (i) position-independent expression of MT-I* mRNA and copy number-dependent expression, (ii) levels of hepatic MT-I mRNA per cell per transgene that were about half that derived from endogenous MT-I genes, (iii) appropriate regulation by metals and hormones, and (iv) tissue distribution of transgene mRNA that resembled that of endogenous MT-I mRNA. These features were not observed when MT-I* was tested without the flanking regions. These MT-I flanking sequences also improved the expression of rat growth hormone reporter genes, with or without introns, that were under the control of the MT-I promoter. Moreover, they enhanced expression from two of four heterologous promoters/enhancers that were tested. Deletion analysis indicated that regions known to have DNase I-hypersensitive sites were necessary but not sufficient for high-level expression. These data suggest that the DNA regions flanking the mouse MT-I and MT-II genes have functions like the locus control regions described for other genes.  相似文献   

7.
8.
9.
10.
Activation of glucagon-like peptide (GLP)-1 receptor signaling promotes glucose lowering via multiple mechanisms, including regulation of food intake, glucose-dependent insulin secretion, and stimulation of beta-cell mass. As GLP-1 exhibits a short t(12) in vivo, the biological consequences of prolonged GLP-1 receptor signaling remains unclear. To address this question, we have now generated metallothionein promoter-preproexendin (MT-Ex) transgenic mice. MT-Ex mice process preproexendin correctly, as is made evident by detection of circulating plasma exendin-4 immunoreactivity using high pressure liquid chromatography and an exendin-4-specific radioimmunoassay. Despite elevated levels of exendin-4, fasting plasma glucose and glucose clearance following oral and intraperitoneal glucose tolerance tests are normal in MT-Ex mice. Induction of transgene expression significantly reduced glycemic excursion during both oral and intraperitoneal glucose tolerance tests (p < 0.05) and increased levels of glucose-stimulated insulin following oral glucose administration (p < 0.05). Despite evidence that exendin-4 may induce beta-cell proliferation, beta-cell mass and islet histology were normal in MT-Ex mice. MT-Ex mice exhibited no differences in basal food intake or body weight; however, induction of exendin-4 expression was associated with reduced short term food ingestion (p < 0.05). In contrast, short term water intake was significantly reduced in the absence of zinc in fluid-restricted MT-Ex mice (p < 0.05). These findings illustrate that sustained elevation of circulating exendin-4 is not invariably associated with changes in glucose homeostasis, increased beta-cell mass, or reduction in food intake in mice in vivo.  相似文献   

11.
Transgenic mice were produced which secreted high levels of bGH into milk. The 6.3-kb upstream region of the rabbit whey acidic protein (rWAP) gene was linked to the structural part of the bovine growth hormone (bGH) gene, and the chimeric gene was introduced into mouse oocytes. bGH was detected by radioimmunoassay in the milk of all resulting transgenic mice. bGH concentrations in milk varied from line to line, from 1.0–16 mg/ml. This expression was not correlated to the number of transgene copies. In all lines studied, the mammary gland was the major organ expressing bGH mRNA during lactation. bGH mRNA concentrations were barely detectable in the mammary gland of cyclic females; they increased during pregnancy. These results show that the upstream region of the rWAP gene harbors powerful regulatory elements which target high levels of bGH transgene expression to the mammary gland of lactating transgenic mice. © 1995 wiley-Liss, Inc.  相似文献   

12.
将猪生长激素基因(PGH)克隆到质粒pUC19上,经酶切分析,确定其酶切图谱.把PGH转录起始位点以前的序列切掉,换上羊MT-1a基因的启动子,构建成可以调控的表达载体pSMTPGH,用于转基因动物的研究.采用微注射法将线状pSMTPGH导入猪、鼠和金鱼的受精卵中,得到了相应的转基因动物.对这些动物鉴定分析表明,外源基因整合率因动物不同而异,但该基因在这3种动物中的整合率均在9%以上,其生长速度都高于对照组.  相似文献   

13.
14.
Female transgenic mice carrying the mouse metallothionein-I/human growth hormone (hGH) fusion gene are sterile. Transmission of the transgene has been limited to the male germ line, resulting in the production of hemizygous (He) progeny containing only a single (paternal) copy of the gene. Using ovary transfer, we have developed procedures for producing homozygous (Ho) TG mice, viz., male TG mice were mated with control (non-TG) females carrying ovaries donated by female TG mice. In both He and Ho TG animals, serum levels of hGH were higher (1.5-fold) in males than in females, tended to decrease with age of the animal, and were increased (about 5-fold) by zinc induction. However, in comparison to He animals of the same sex, the Ho TG mice attained a greater body weight and had more than 2-fold higher levels of liver hGH-mRNA and serum hGH, both under basal conditions and in response to zinc induction. That is, the expression of the transgene was qualitatively similar in He and Ho TG mice, but the level of transgene activity was greater in the Ho animals. We interpret this to indicate that both copies (maternal and paternal) of the transgene were active and expressed additively (or cooperatively) in the Ho TG animal.  相似文献   

15.
We compared the levels of growth hormone (GH) mRNA in the pituitary, plasma GH concentration, and altered phenotype in rats heterozygous and homozygous for an antisense RNA transgene targeted to the rat GH gene, with those in nontransgenic rats. We initially investigated whether the transgene promoter, which is connected to four copies of a thyroid hormone response element (TRE) that increases promoter activity, affected in vivo transgene expression in the pituitary of the transgenic rats. Plasma GH concentration correlated negatively with T, injection in surgically thyroidectomized heterozygous transgenic rats. There was a reduction of about ?35–40% in GH mRNA levels in the pituitary of homozygous animals compared with those in non-transgenic rats. Plasma GH concentration was significantly ?25–32 and ?29–41% lower in heterozygous and homozygous transgenic rats, respectively, compared with that in nontransgenic animals. Furthermore, the growth rates in homozygous transgenic rats were reduced by ?72–81 and ?51–70% compared with those of their heterozygous and nontransgenic littermates, respectively. The results of these studies suggested that the biological effect of GH in vivo is modulated dose-dependently by the antisense RNA transgene. The rat GH gene can therefore be targeted by antisense RNA produced from a transgene, as reflected in the protein and RNA levels. © 1995 Wiley-Liss, Inc.  相似文献   

16.
17.
One of the primary goals of traditional livestock breeding is to improve growth rate and optimise body size. Growth rate can be significantly increased by integrating a growth hormone (GH) transgene under the control of a ubiquitous promoter, but while such animals do demonstrate increased growth there are also serious deleterious side-effects to the animals health. Here we report the generation and initial characterization of transgenic mice that carried a porcine BAC encoding the porcine GH gene. We show that GH expression is restricted specifically to the pituitary, is associated with elevated IGF-1 levels, and results in growth enhancement. No negative effects to the health of the transgenic animals were detected. This initial characterisation supports the use of BAC pGH transgene in livestock studies.  相似文献   

18.
Neuronal expression of chimeric genes in transgenic mice   总被引:9,自引:0,他引:9  
  相似文献   

19.
Structure and regulation of the sheep metallothionein-Ia gene   总被引:6,自引:0,他引:6  
Screening of a sheep genomic lambda library with a sheep metallothionein-I cDNA clone resulted in the isolation of a 13,200-base-pair fragment containing a metallothionein gene which DNA sequence analysis identified as the gene encoding the cloned cDNA. The two introns occur at identical positions to those in other mammalian metallothioneins but are considerably larger. The first intron contains a DNA element that is present in a related but not identical form in many places in the sheep genome. Comparison of the promoter sequences of this gene (sMT-Ia) with the promoters of metallothionein genes from other species identified a number of conserved regions which may be important in the regulation of this gene by heavy metals, glucocorticoids and alpha-interferon. In sheep fibroblasts, the levels of sMT-Ia mRNA was found to be maximally elevated (95-fold) in the presence of zinc or cadmium and elevated 30-fold in the presence of copper. Dexamethasone had no effect upon mRNA levels. Thus this gene shows a pattern of regulation similar to the human MT-If gene, but distinct from the other human and mouse metallothionein genes so far reported.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号