首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intracellular membrane fusion is mediated by membrane-bridging complexes of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). SNARE proteins are one of the key players in vesicular transport. Several reports shed light on intracellular bacteria modulating host SNARE machinery to establish infection successfully. The critical SNAREs in macrophages responsible for phagosome maturation are Syntaxin 3 (STX3) and Syntaxin 4 (STX4). Reports also suggest that Salmonella actively modulates its vacuole membrane composition to escape lysosomal fusion. Salmonella containing vacuole (SCV) harbours recycling endosomal SNARE Syntaxin 12 (STX12). However, the role of host SNAREs in SCV biogenesis and pathogenesis remains unclear. Upon knockdown of STX3, we observed a reduction in bacterial proliferation, which is concomitantly restored upon the overexpression of STX3. Live-cell imaging of Salmonella-infected cells showed that STX3 localises to the SCV membranes and thus might help in the fusion of SCV with intracellular vesicles to acquire membrane for its division. We also found the interaction STX3-SCV was abrogated when we infected with SPI-2 encoded Type 3 secretion system (T3SS) apparatus mutant (STM ∆ssaV) but not with SPI-1 encoded T3SS apparatus mutant (STM ∆invC). These observations were also consistent in the mice model of Salmonella infection. Together, these results shed light on the effector molecules secreted through T3SS encoded by SPI-2, possibly involved in interaction with host SNARE STX3, which is essential to maintain the division of Salmonella in SCV and help to maintain a single bacterium per vacuole.  相似文献   

2.
Salmonella enterica serovar Typhimurium (STM) is an invasive, facultative intracellular pathogen that has evolved sophisticated molecular mechanisms to establish an intracellular niche within a specialised vesicular compartment, the Salmonella‐containing vacuole (SCV). The loss of the SCV and release of STM into the cytosol of infected host cells was observed, and a bimodal intracellular lifestyle of STM in the SCV versus life in the cytosol is currently discussed. We set out to investigate the parameters affecting SCV integrity and cytosolic release. A fluorescent protein‐based cytosolic reporter approach was established to quantify, time‐resolved, and on a single cell level, the release of STM into the cytosol of host cells. We observed that the extent of SCV damage and cytosolic release is highly dependent on experimental conditions such as multiplicity of infection, type of host cell line, and STM strain background. Trigger invasion mediated by the Salmonella Pathogenicity Island 1‐encoded type III secretion system (SPI1‐T3SS) and its effector proteins promoted cytosolic release, whereas cytosolic bacteria were rarely observed if entry was mediated by zipper invasion. Presence of SPI1‐T3SS effector SopE was identified as major factor for damage of the SCV in the early phase after STM invasion and sopE‐expressing strains showed higher levels of cytosolic release.  相似文献   

3.
The ability of Salmonella to survive and replicate within mammalian host cells involves the generation of a membranous compartment known as the Salmonella‐containing vacuole (SCV). Salmonella employs a number of effector proteins that are injected into host cells for SCV formation using its type‐3 secretion systems encoded in SPI‐1 and SPI‐2 (T3SS‐1 and T3SS‐2, respectively). Recently, we reported that S. Typhimurium requires T3SS‐1 and T3SS‐2 to survive in the model amoeba Dictyostelium discoideum. Despite these findings, the involved effector proteins have not been identified yet. Therefore, we evaluated the role of two major S. Typhimurium effectors SopB and SifA during D. discoideum intracellular niche formation. First, we established that S. Typhimurium resides in a vacuolar compartment within D. discoideum. Next, we isolated SCVs from amoebae infected with wild type or the ΔsopB and ΔsifA mutant strains of S. Typhimurium, and we characterised the composition of this compartment by quantitative proteomics. This comparative analysis suggests that S. Typhimurium requires SopB and SifA to modify the SCV proteome in order to generate a suitable intracellular niche in D. discoideum. Accordingly, we observed that SopB and SifA are needed for intracellular survival of S. Typhimurium in this organism. Thus, our results provide insight into the mechanisms employed by Salmonella to survive intracellularly in phagocytic amoebae.  相似文献   

4.
Salmonella enterica is a facultative intracellular pathogen residing in a unique host cell‐derived membrane compartment, termed Salmonella‐containing vacuole or SCV. By the activity of effector proteins translocated by the SPI2‐endoced type III secretion system (T3SS), the biogenesis of the SCV is manipulated to generate a habitat permissive for intracellular proliferation. By taking control of the host cell vesicle fusion machinery, intracellular Salmonella creates an extensive interconnected system of tubular membranes arising from vesicles of various origins, collectively termed Salmonella‐induced tubules (SIT). Recent work investigated the dynamic properties of these manipulations. New host cell targets of SPI2‐T3SS effector proteins were identified. By applying combinations of live cell imaging and ultrastructural analyses, the detailed organization of membrane compartments inhabited and modified by intracellular Salmonella is now available. These studies provided unexpected new details on the intracellular environments of Salmonella. For example, one kind of SIT, the LAMP1‐positive Salmonella‐induced filaments (SIF), are composed of double‐membrane tubules, with an inner lumen containing host cell cytosol and cytoskeletal filaments, and an outer lumen containing endocytosed cargo. The novel findings call for new models for the biogenesis of SCV and SIT and give raise to many open questions we discuss in this review.  相似文献   

5.
Intracellular replication of Salmonella enterica requires the formation of a unique organelle termed Salmonella-containing vacuole (SCV). The type III secretion system (T3SS) encoded by Salmonella Pathogenicity Island 2 (SPI2-T3SS) has a crucial role in the formation and maintenance of the SCV. The SPI2-T3SS translocates a large number of effector proteins that interfere with host cell functions such as microtubule-dependent transport. We investigated the function of the effector SseF and observed that this protein is required to maintain the SCV in a juxtanuclear position in infected epithelial cells. The formation of juxtanuclear clusters of replicating Salmonella required the recruitment of dynein to the SCV but SseF-deficient strains were highly reduced in dynein recruitment to the SCV. We performed a functional dissection of SseF and defined domains that were important for translocation and the specific effector functions of this protein. Of particular importance was a hydrophobic domain in the C-terminal half that contains three putative transmembrane (TM) helices. Deletion of one of these TM helices ablated the effector functions of SseF. We observed that this domain was essential for the proper intracellular positioning of the SCV to a juxtanuclear, Golgi-associated localization. These data show that SseF, in concert with the effector proteins SifA and SseG mediate the precise positioning of the SCV by differentially modulating the recruitment of microtubule motor proteins to the SCV.  相似文献   

6.
7.
Taking possession: biogenesis of the Salmonella-containing vacuole   总被引:7,自引:1,他引:6  
The Gram-negative pathogen Salmonella enterica can survive and replicate within a variety of mammalian cells. Regardless of the cell type, internalized bacteria survive and replicate within the Salmonella -containing vacuole, the biogenesis of which is dependent on bacterially encoded virulence factors. In particular, Type III secretion systems translocate bacterial effector proteins into the eukaryotic cell where they can specifically interact with a variety of targets. Salmonella has two distinct Type III secretion systems that are believed to have completely different functions. The SPI2 system is induced intracellularly and is required for intracellular survival in macrophages; it plays no role in invasion but is categorized as being required for Salmonella -containing vacuole biogenesis. In contrast, the SPI1 Type III secretion system is induced extracellularly and is essential for invasion of nonphagocytic cells. Its role in post-invasion processes has not been well studied. Recent studies indicate that Salmonella -containing vacuole biogenesis may be more dependent on SPI1 than previously believed. Other non-SPI2 virulence factors and the host cell itself may play critical roles in determining the intracellular environment of this facultative intracellular pathogen. In this review we discuss the recent advances in determining the mechanisms by which Salmonella regulate Salmonella -containing vacuole biogenesis and the implications of these findings.  相似文献   

8.

Background  

Salmonella enterica is a facultative intracellular pathogen that replicates within a membrane-bound compartment termed Salmonella containing vacuole (SCV). The biogenesis of SCV requires Salmonella type III protein secretion/translocation system and their effector proteins which are translocated into host cells to exploit the vesicle trafficking pathways. SseF is one of these effectors required for SCV formation and Intracellular Salmonella replication through unknown mechanisms.  相似文献   

9.
Many bacterial pathogens require a type 3 secretion system (T3SS) to establish a niche. Host contact activates bacterial T3SS assembly of a translocon pore in the host plasma membrane. Following pore formation, the T3SS docks onto the translocon pore. Docking establishes a continuous passage that enables the translocation of virulence proteins, effectors, into the host cytosol. Here we investigate the contribution of actin polymerization to T3SS-mediated translocation. Using the T3SS model organism Shigella flexneri, we show that actin polymerization is required for assembling the translocon pore in an open conformation, thereby enabling effector translocation. Opening of the pore channel is associated with a conformational change to the pore, which is dependent upon actin polymerization and a coiled-coil domain in the pore protein IpaC. Analysis of an IpaC mutant that is defective in ruffle formation shows that actin polymerization-dependent pore opening is distinct from the previously described actin polymerization-dependent ruffles that are required for bacterial internalization. Moreover, actin polymerization is not required for other pore functions, including docking or pore protein insertion into the plasma membrane. Thus, activation of the T3SS is a multilayered process in which host signals are sensed by the translocon pore leading to the activation of effector translocation.  相似文献   

10.
Salmonella enterica serovar Typhimurium is a common facultative intracellular pathogen that causes food-borne gastroenteritis in millions of people worldwide. Intracellular survival and replication are important virulence determinants and the bacteria can be found in a variety of phagocytic and non-phagocytic cells in vivo . Invasion of host cells and intracellular survival are dependent on two type III secretion systems, T3SS1 and T3SS2, each of which translocates a distinct set of effector proteins. However, other virulence factors including ion transporters, superoxide dismutase, flagella and fimbriae are also involved in accessing and utilizing the intracellular niche.  相似文献   

11.
Intracellular pathogens need to establish specialised niches for survival and proliferation in host cells. The enteropathogen Salmonella enterica accomplishes this by extensive reorganisation of the host endosomal system deploying the SPI2‐encoded type III secretion system (SPI2‐T3SS). Fusion events of endosomal compartments with the Salmonella‐containing vacuole (SCV) form elaborate membrane networks within host cells enabling intracellular nutrition. However, which host compartments exactly are involved in this process and how the integrity of Salmonella‐modified membranes is accomplished are not fully resolved. An RNA interference knockdown screen of host factors involved in cellular logistics identified the ESCRT (endosomal sorting complex required for transport) system as important for proper formation and integrity of the SCV in infected epithelial cells. We demonstrate that subunits of the ESCRT‐III complex are specifically recruited to the SCV and membrane network. To investigate the role of ESCRT‐III for the intracellular lifestyle of Salmonella, a CHMP3 knockout cell line was generated. Infected CHMP3 knockout cells formed amorphous, bulky SCV. Salmonella within these amorphous SCV were in contact with host cell cytosol, and the attenuation of an SPI2‐T3SS‐deficient mutant strain was partially abrogated. ESCRT‐dependent endolysosomal repair mechanisms have recently been described for other intracellular pathogens, and we hypothesise that minor damages of the SCV during bacterial proliferation are repaired by the action of ESCRT‐III recruitment in Salmonella‐infected host cells.  相似文献   

12.
13.
The intracellular pathogenic bacterium Brucella generates a replicative vacuole (rBCV) derived from the endoplasmic reticulum via subversion of the host cell secretory pathway. rBCV biogenesis requires the expression of the Type IV secretion system (T4SS) VirB, which is thought to translocate effector proteins that modulate membrane trafficking along the endocytic and secretory pathways. To date, only a few T4SS substrates have been identified, whose molecular functions remain unknown. Here, we used an in silico screen to identify putative T4SS effector candidate proteins using criteria such as limited homology in other bacterial genera, the presence of features similar to known VirB T4SS effectors, GC content and presence of eukaryotic-like motifs. Using β-lactamase and CyaA adenylate cyclase reporter assays, we identified eleven proteins translocated into host cells by Brucella, five in a VirB T4SS-dependent manner, namely BAB1_0678 (BspA), BAB1_0712 (BspB), BAB1_0847 (BspC), BAB1_1671 (BspE) and BAB1_1948 (BspF). A subset of the translocated proteins targeted secretory pathway compartments when ectopically expressed in HeLa cells, and the VirB effectors BspA, BspB and BspF inhibited protein secretion. Brucella infection also impaired host protein secretion in a process requiring BspA, BspB and BspF. Single or combined deletions of bspA, bspB and bspF affected Brucella ability to replicate in macrophages and persist in the liver of infected mice. Taken together, these findings demonstrate that Brucella modulates secretory trafficking via multiple T4SS effector proteins that likely act coordinately to promote Brucella pathogenesis.  相似文献   

14.
Cell stress and infection promote the formation of ubiquitinated aggregates in both non-immune and immune cells. These structures are recognised by the autophagy receptor p62/sequestosome 1 and are substrates for selective autophagy. The intracellular growth of Salmonella enterica occurs in a membranous compartment, the Salmonella-containing vacuole (SCV), and is dependent on effectors translocated to the host cytoplasm by the Salmonella pathogenicity island-2 (SPI-2) encoded type III secretion system (T3SS). Here, we show that bacterial replication is accompanied by the formation of ubiquitinated structures in infected cells. Analysis of bacterial strains carrying mutations in genes encoding SPI-2 T3SS effectors revealed that in epithelial cells, formation of these ubiquitinated structures is dependent on SPI-2 T3SS effector translocation, but is counteracted by the SPI-2 T3SS deubiquitinase SseL. In macrophages, both SPI-2 T3SS-dependent aggregates and aggresome-like induced structures (ALIS) are deubiquitinated by SseL. In the absence of SseL activity, ubiquitinated structures are recognized by the autophagy receptor p62, which recruits LC3 and targets them for autophagic degradation. We found that SseL activity lowers autophagic flux and favours intracellular Salmonella replication. Our data therefore show that there is a host selective autophagy response to intracellular Salmonella infection, which is counteracted by the deubiquitinase SseL.  相似文献   

15.

Background  

Type III secretion systems (T3SS) are essential virulence factors of most Gram-negative bacterial pathogens. T3SS deliver effector proteins directly into the cytoplasm of eukaryotic target cells and for this function, the insertion of a subset of T3SS proteins into the target cell membrane is important. These proteins form hetero-oligomeric pores acting as translocon for the delivery of effector proteins. Salmonella enterica is a facultative intracellular pathogen that uses the Salmonella Pathogenicity Island 2 (SPI2)-encoded T3SS to manipulate host cells in order to survive and proliferate within the Salmonella-containing vacuole of host cells. Previous work showed that SPI2-encoded SseB, SseC and SseD act to form the translocon of the SPI2-T3SS.  相似文献   

16.
The type VI secretion toolkit   总被引:2,自引:0,他引:2  
Cascales E 《EMBO reports》2008,9(8):735-741
Bacterial secretion systems are macromolecular complexes that release virulence factors into the medium or translocate them into the target host cell. These systems are widespread in bacteria allowing them to infect eukaryotic cells and survive or replicate within them. A new secretion system, the type VI secretion system (T6SS), was recently described and characterized in several pathogens. Genomic data suggest that T6SS exist in most bacteria that come into close contact with eukaryotic cells, including plant and animal pathogens. Many research groups are now investigating the underlying mechanisms and the way in which the effector proteins translocated through this machine subvert host defences. This review provides an overview of our current knowledge about type VI secretion, focusing on gene regulation, components of the secretion machine, substrate secretion and the cellular consequences for the host cell.  相似文献   

17.
During intracellular life, Salmonella enterica proliferate within a specialized membrane compartment, the Salmonella-containing vacuole (SCV), and interfere with the microtubule cytoskeleton and cellular transport. To characterize the interaction of intracellular Salmonella with host cell transport processes, we utilized various model systems to follow microtubule-dependent transport. The vesicular stomatitis virus glycoprotein (VSVG) is a commonly used marker to follow protein transport from the Golgi to the plasma membrane. Using a VSVG-GFP fusion protein, we observed that virulent intracellular Salmonella alter exocytotic transport and recruit exocytotic transport vesicles to the SCV. This virulence function was dependent on the function of the type III secretion system encoded by Salmonella Pathogenicity Island 2 (SPI2) and more specifically on a subset of SPI2 effector proteins. Furthermore, the Golgi to plasma membrane traffic of the shingolipid C(5)-ceramide was redirected to the SCV by virulent Salmonella. We propose that Salmonella modulates the biogenesis of the SCV by deviating this compartment from the default endocytic pathway to an organelle that interacts with the exocytic pathway. This observation might reveal a novel element of the intracellular survival and replication strategy of Salmonella.  相似文献   

18.
Salmonellae employ two type III secretion systems (T3SSs), SPI1 and SPI2, to deliver virulence effectors into mammalian cells. SPI1 effectors, including actin-binding SipA, trigger initial bacterial uptake, whereas SPI2 effectors promote subsequent replication within customized Salmonella-containing vacuoles (SCVs). SCVs sequester actin filaments and subvert microtubule-dependent motors to migrate to the perinuclear region. We demonstrate that SipA delivery continues after Salmonella internalization, with dosage being restricted by host-mediated degradation. SipA is exposed on the cytoplasmic face of the SCV, from where it stimulates bacterial replication in both nonphagocytic cells and macrophages. Although SipA is sufficient to target and redistribute late endosomes, during infection it cooperates with the SPI2 effector SifA to modulate SCV morphology and ensure perinuclear positioning. Our findings define an unexpected additional function for SipA postentry and reveal precise intracellular communication between effectors deployed by distinct T3SSs underlying SCV biogenesis.  相似文献   

19.
Salmonella enterica uses two functionally distinct type III secretion systems encoded on the pathogenicity islands SPI-1 and SPI-2 to transfer effector proteins into host cells. A major function of the SPI-1 secretion system is to enable bacterial invasion of epithelial cells and the principal role of SPI-2 is to facilitate the replication of intracellular bacteria within membrane-bound Salmonella-containing vacuoles (SCVs). Studies of mutant bacteria defective for SPI-2-dependent secretion have revealed a variety of functions that can be attributed to this secretion system. These include an inhibition of various aspects of endocytic trafficking, an avoidance of NADPH oxidase-dependent killing, the induction of a delayed apoptosis-like host cell death, the control of SCV membrane dynamics, the assembly of a meshwork of F-actin around the SCV, an accumulation of cholesterol around the SCV and interference with the localization of inducible nitric oxide synthase to the SCV. Several effector proteins that are translocated across the vacuolar membrane in a SPI-2-dependent manner have now been identified. These are encoded both within and outside SPI-2. The characteristics of these effectors, and their relationship to the physiological functions listed above, are the subject of this review. The emerging picture is of a multifunctional system, whose activities are explained in part by effectors that control interactions between the SCV and intracellular membrane compartments.  相似文献   

20.
The type III secretion system (T3SS) is a specialized apparatus evolved by Gram-negative bacteria to deliver effector proteins into host cells, thus facilitating the establishment of an infection. Effector translocation across the target cell plasma membrane is believed to occur via pores formed by at least two secreted translocator proteins, the functions of which are dependent upon customized class II T3SS chaperones. Recently, three internal tetratricopeptide repeats (TPRs) were identified in this class of chaperones. Here, defined mutagenesis of the class II chaperone PcrH of Pseudomonas aeruginosa revealed these TPRs to be essential for chaperone activity towards the translocator proteins PopB and PopD and subsequently for the translocation of exoenzymes into host cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号