首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sphingomonas (Flavobacterium) chlorophenolica ATCC 39723 degrades pentachlorophenol (PCP) through a catabolic pathway encoded by multiple genes. One gene required for PCP degradation is pcpA, which encodes information for a 30-kDa polypeptide, PcpA, found in the periplasm of the bacterium. The biological role of PcpA has remained unknown. We disrupted pcpA by replacing it with a defective copy through homologous recombination. The pcpA recombinant, mutant strains accumulated 2,6-dichlorohydroquinone (2,6-DiCH) as a metabolite of PCP. This work confirms that pcpA is essential for degradation of PCP by S. chlorophenolica ATCC 39723 and suggests that it encodes a protein involved in hydrolytic dehalogenation of 2,6-DiCH, an already established primary metabolite of the PCP catabolic pathway.  相似文献   

2.
L Xun  E Topp    C S Orser 《Journal of bacteriology》1992,174(17):5745-5747
Pentachlorophenol (PCP) hydroxylase purified from Flavobacterium sp. strain ATCC 39723 converted PCP or 2,3,5,6-tetrachlorophenol to tetrachloro-p-hydroquinone (TeCH) with the co-consumption of O2 and NADPH. The purified enzyme incorporated 18O from 18O2 but not from H218O into the reaction end product TeCH. The results clearly demonstrate that PCP is oxidatively converted to TeCH by a monooxygenase-type enzyme from Flavobacterium sp. strain ATCC 39723.  相似文献   

3.
The pentachlorophenol (PCP) mineralizing bacterium Sphingomonas chlorophenolica ATCC39723 degrades PCP via 2,6-dichlorohydroquinone (2,6-DCHQ). The pathway converting PCP to 2,6-DCHQ has been established previously; however, the pathway beyond 2,6-DCHQ is not clear, although it has been suggested that a PcpA plays a role in 2, 6-DCHQ conversion. In this study, PcpA expressed in Escherichia coli was purified to homogeneity and shown to have novel ring-cleavage dioxygenase activity in conjunction with hydroquinone derivatives, and converting 2,6-DCHQ to 2-chloromaleylacetate.  相似文献   

4.
L Xun  E Topp    C S Orser 《Journal of bacteriology》1992,174(24):8003-8007
Tetrachloro-p-hydroquinone (TeCH) is the first intermediate in pentachlorophenol (PCP) degradation by Flavobacterium sp. strain ATCC 39723. We previously purified a PCP hydroxylase that oxidized PCP to TeCH. Subsequently, we identified the reductive dehalogenation of TeCH to 2,3,6-trichloro-p-hydroquinone and then to 2,6-dichloro-p-hydroquinone in a cell extract with the reduced form of glutathione as the reducing agent under anaerobic conditions. Here we report the purification of a TeCH reductive dehalogenase that reductively dehalogenated TeCH to trichlorohydroquinone and then to dichlorohydroquinone. The enzyme was purified by protamine sulfate treatment, ammonium sulfate fractionation, and phenyl-agarose, anion-exchange, and gel filtration column chromatographies. As determined by gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analyses, the protein has a molecular weight of about 30,000; nondenaturing polyacrylamide gel electrophoresis analysis suggests that the native enzyme exists as a dimer. The enzyme used glutathione but not NADPH, NADH, dithiothreitol, or ascorbic acid as the reducing agent. The optimal pH was close to neutral.  相似文献   

5.
Molecular analysis of pentachlorophenol degradation   总被引:10,自引:0,他引:10  
A limited number of microorganisms have been described for their ability to partially degrade pentachlorophenol (PCP), or to completely mineralize it. Several years ago we chose one of these microorganisms,Flavobacterium sp. strain ATCC 39723, for use in a detailed molecular analysis of the catabolism of PCP. This strain was chosen because it had previously been studied in great detail for its growth characteristics in relation to degradation of PCP. In this paper we provide an overview of the degradation pathway of PCP to 2,6-dichloro-p-hydroquinone byFlavobacterium. The specific biochemical reactions and the genes encoding the enzymes are reviewed. The successful transformation and site specific mutagenesis ofFlavobacterium, as well as the discovery of two newpcp alleles is also presented.  相似文献   

6.
Dichlorohydroquinone dioxygenase (PcpA) is the ring-cleavage enzyme in the PCP biodegradation pathway in Sphingobium chlorophenolicum strain ATCC 39723. PcpA dehalogenates and oxidizes 2,6-dichlorohydroquinone to form 2-chloromaleylacetate, which is subsequently converted to succinyl coenzyme A and acetyl coenzyme A via 3-oxoadipate. Previous studies have shown that PcpA is highly substrate-specific and only uses 2,6-dichlorohydroquinone as its substrate. In the current study, we overexpressed and purified recombinant PcpA and showed that PcpA was highly alkaline resistant and thermally stable. PcpA exhibited two activity peaks at pH 7.0 and 10.0, respectively. The apparent k(cat) and K(m) were measured as 0.19 ± 0.01 s(-1) and 0.24 ± 0.08 mM, respectively at pH 7.0, and 0.17 ± 0.01 s(-1) and 0.77 ± 0.29 mM, respectively at pH 10.0. Electron paramagnetic resonance studies showed rapid oxidation of Fe(II) to Fe(III) in PcpA and the formation of a stable radical intermediate during the enzyme catalysis. The stable radical was predicted to be an epoxide type dichloro radical with the unpaired electron density localized on C3.  相似文献   

7.
The enzyme which cleaves the benzene ring of 6-chlorohydroxyquinol was purified to apparent homogeneity from an extract of 2,4,6-trichlorophenol-grown cells of Streptomyces rochei 303. Like the analogous enzyme from Azotobacter sp. strain GP1, it exhibited a highly restricted substrate specificity and was able to cleave only 6-chlorohydroxyquinol and hydroxyquinol and not catechol, chlorinated catechols, or pyrogallol. No extradiol-cleaving activity was observed. In contrast to 6-chlorohydroxyquinol 1,2-dioxygenase from Azotobacter sp. strain GP1, the S. rochei enzyme had a distinct preference for 6-chlorohydroxyquinol over hydroxyquinol (kcat/Km = 1.2 and 0.57 s-1.microM-1, respectively). The enzyme from S. rochei appears to be a dimer of two identical 31-kDa subunits. It is a colored protein and was found to contain 1 mol of iron per mol of enzyme. The NH2-terminal amino acid sequences of 6-chlorohydroxyquinol 1,2-dioxygenase from S. rochei 303 and from Azotobacter sp. strain GP1 showed a high degree of similarity.  相似文献   

8.
The final enzyme in the pentachlorophenol (PCP) biodegradation pathway in Sphingobium chlorophenolicum is maleylacetate reductase (PcpE), which catalyzes the reductive dehalogenation of 2-chloromaleylacetate to maleylacetate and the subsequent reduction of malyelacetate to 3-oxoadipate. In this study, the pcpE gene was cloned from S. chlorophenolicum strain ATCC 53874 and overexpressed in Escherichia coli BL21-AI cells. The recombinant PcpE, purified to higher than 95% purity using affinity chromatography, exhibited optimal activity at pH 7.0. The kinetic parameters k cat and K m were 1.2 ± 0.3 s−1 and 0.09 ± 0.04 mM, respectively, against maleylacetate under the optimal pH. In addition, the purified PcpE was able to restore PCP-degrading capability to S. chlorophenolicum strain ATCC 39723, implicating that there was no functional PcpE in the ATCC 39723 strain.  相似文献   

9.
Ralstonia eutropha JMP134 2,4,6-trichlorophenol (2,4,6-TCP) 4-monooxygenase catalyzes sequential dechlorinations of 2,4,6-TCP to 6-chlorohydroxyquinol. Although 2,6-dichlorohydroxyquinol is a logical metabolic intermediate, the enzyme hardly uses it as a substrate, implying it may not be a true intermediate. Evidence is provided to support the proposition that the monooxygenase oxidized 2,4,6-TCP to 2,6-dichloroquinone that remained with the enzyme and got hydrolyzed to 2-chlorohydroxyquinone, which was chemically reduced by ascorbate and NADH to 6-chlorohydroxyquinol. When the monooxygenase oxidized 2,6-dichlorophenol, the product was 2,6-dichloroquinol, which was not further converted to 6-chlorohydroxyquinol, implying that the enzyme only converts 2,6-dichloroquinone to 6-chlorohydroxyquinol. Stoichiometric analysis indicated the consumption of one O2 molecule per 2,4,6-TCP converted to 6-chlorohydroxyquinol, ruling out the possibility of two oxidative reactions. Experiments with 18O-labeling gave direct evidence for the incorporation of oxygen from both O2 and H2O into the produced 6-chlorohydroxyquinol. A monooxygenase that catalyzes hydroxylation by both oxidative and hydrolytic reactions has not been reported to date. The ability of the enzyme to perform two types of reactions is not due to the presence of a second functional domain but rather is due to catalytic promiscuity, as a homologous monooxygenase converts 2,4,6-TCP to only 2,6-dichloroquinol. Employing both conventional catalysis and catalytic promiscuity of a single enzyme in two consecutive steps of a metabolic pathway has been unknown previously.  相似文献   

10.
Free and agarose-encapsulated pentachlorophenol (PCP)-degrading Sphingomonas sp. isolates UG25 and UG30 were compared to Sphingomonas chlorophenolica ATCC 39723 with respect to the ability to degrade PCP. Pretreatment of the UG25 and UG30 strains with 50 μg of PCP per ml enabled the cells to subsequently degrade higher levels of this environmental pollutant. Similar treatment of ATCC 39723 cells had no effect on the level of PCP degraded by this strain. Phosphorus-31 nuclear magnetic resonance spectra of agarose-immobilized strains UG25 and UG30 grown in the absence of PCP showed that there was marked deenergization of the cells upon exposure to a nonlethal concentration of PCP (120 μg/ml). For example, no transmembrane pH gradient was observed, and the ATP levels were lower than the levels obtained in the absence of PCP. The transmembrane pH gradient and ATP levels were restored once the immobilized cells had almost completely degraded the PCP in the perfusion medium. PCP-pretreated cells, on the other hand, maintained their transmembrane pH gradient and ATP levels even in the presence of high levels of PCP. The ability of PCP-pretreated strain UG25 and UG30 cells to remain energized in the presence of PCP was shown to correlate with an altered membrane phospholipid profile; these cells had a higher concentration of cardiolipin than cells cultured in the absence of PCP. Strain ATCC 39723, which did not degrade higher levels of PCP after PCP pretreatment, did not show this response.  相似文献   

11.
Free and agarose-encapsulated pentachlorophenol (PCP)-degrading Sphingomonas sp. isolates UG25 and UG30 were compared to Sphingomonas chlorophenolica ATCC 39723 with respect to the ability to degrade PCP. Pretreatment of the UG25 and UG30 strains with 50 microg of PCP per ml enabled the cells to subsequently degrade higher levels of this environmental pollutant. Similar treatment of ATCC 39723 cells had no effect on the level of PCP degraded by this strain. Phosphorus-31 nuclear magnetic resonance spectra of agarose-immobilized strains UG25 and UG30 grown in the absence of PCP showed that there was marked deenergization of the cells upon exposure to a nonlethal concentration of PCP (120 microg/ml). For example, no transmembrane pH gradient was observed, and the ATP levels were lower than the levels obtained in the absence of PCP. The transmembrane pH gradient and ATP levels were restored once the immobilized cells had almost completely degraded the PCP in the perfusion medium. PCP-pretreated cells, on the other hand, maintained their transmembrane pH gradient and ATP levels even in the presence of high levels of PCP. The ability of PCP-pretreated strain UG25 and UG30 cells to remain energized in the presence of PCP was shown to correlate with an altered membrane phospholipid profile; these cells had a higher concentration of cardiolipin than cells cultured in the absence of PCP. Strain ATCC 39723, which did not degrade higher levels of PCP after PCP pretreatment, did not show this response.  相似文献   

12.
A pentachlorophenol (PCP)-degrading Flavobacterium sp. (strain ATCC 39723) degraded bromoxynil with the production of bromide and cyanide. No aromatic intermediates were detected in the spent culture fluid. The cyanide produced upon bromoxynil metabolism was inhibitory to the Flavobacterium sp. Whole cells degraded PCP more rapidly than they did bromoxynil. Bromoxynil metabolism and PCP metabolism were coinduced, either substrate serving as the inducer. Purified PCP hydroxylase degraded bromoxynil with stoichiometric accumulation of cyanide and without bromide production. A product accumulated which was more hydrophilic than bromoxynil upon high-pressure liquid chromatographic analysis and which, when analyzed by gas chromatography-mass spectrometry, had a mass spectrum consistent with that expected for dibromohydroquinone. PCP hydroxylase consumed NADPH, oxygen, and bromoxynil in a 2:1:1 molar ratio, producing 1 mol of cyanide per mol of bromoxynil degraded. We propose a pathway by which bromoxynil is metabolized by the same enzymes which degrade PCP. The initial step in the pathway is the conversion of bromoxynil to 2,6-dibromohydroquinone by PCP hydroxylase. In addition to its utility for decontaminating PCP-polluted sites, the Flavobacterium sp. may be useful for decontaminating bromoxynil spills. This is the first report of cyanide production accompanying the metabolism of a benzonitrile derivative.  相似文献   

13.
E Topp  L Y Xun    C S Orser 《Applied microbiology》1992,58(2):502-506
A pentachlorophenol (PCP)-degrading Flavobacterium sp. (strain ATCC 39723) degraded bromoxynil with the production of bromide and cyanide. No aromatic intermediates were detected in the spent culture fluid. The cyanide produced upon bromoxynil metabolism was inhibitory to the Flavobacterium sp. Whole cells degraded PCP more rapidly than they did bromoxynil. Bromoxynil metabolism and PCP metabolism were coinduced, either substrate serving as the inducer. Purified PCP hydroxylase degraded bromoxynil with stoichiometric accumulation of cyanide and without bromide production. A product accumulated which was more hydrophilic than bromoxynil upon high-pressure liquid chromatographic analysis and which, when analyzed by gas chromatography-mass spectrometry, had a mass spectrum consistent with that expected for dibromohydroquinone. PCP hydroxylase consumed NADPH, oxygen, and bromoxynil in a 2:1:1 molar ratio, producing 1 mol of cyanide per mol of bromoxynil degraded. We propose a pathway by which bromoxynil is metabolized by the same enzymes which degrade PCP. The initial step in the pathway is the conversion of bromoxynil to 2,6-dibromohydroquinone by PCP hydroxylase. In addition to its utility for decontaminating PCP-polluted sites, the Flavobacterium sp. may be useful for decontaminating bromoxynil spills. This is the first report of cyanide production accompanying the metabolism of a benzonitrile derivative.  相似文献   

14.
There have been numerous reports in the literature of diverse bacteria capable of degrading pentachlorophenol (PCP). In order to gain further insight into the phylogenetic relationships of PCP-degrading bacteria, we examined four strains: Arthrobacter sp. strain ATCC 33790, Flavobacterium sp. strain ATCC 39723, Pseudomonas sp. strain SR3, and Sphingomonas sp. strain RA2. These organisms were isolated from different geographical locations and all of them degrade high concentrations (100–200 mg/L) of PCP. Southern blot analyses determined that these bacteria all harbour DNA that encodes similar, if not identical, genes involved in PCP degradation. Comparison of the 16S rRNA nucleotide sequences revealed that these organisms were very closely related and, in fact, represent a monophyletic group. The 16S rRNA analyses together with fatty acid and sphingolipid analyses strongly suggest that the four strains are members of the genus Sphingomonas . The close relationship of the four organisms is supported by nucleotide sequence analysis data of the pcpB locus encoding PCP-4-monooxygenase, the first enzyme in the PCP degradative pathway.  相似文献   

15.
The gene pcpC, encoding tetrachloro-p-hydroquinone (TeCH) reductive dehalogenase, was cloned from Flavobacterium sp. strain ATCC 39723 and sequenced. The gene was identified by hybridization with a degenerate oligonucleotide designed from the N-terminal sequence of the purified protein. An open reading frame of 747 nucleotides was found, which predicts a translational product of 248 amino acids having a molecular weight of 28,263, which agrees favorably with the sodium dodecyl sulfate-polyacrylamide gel electrophoresis-determined molecular weight of 30,000 reported for the purified protein. The predicted translational product of pcpC matched the N-terminal sequence of the purified protein exactly. From the nucleotide sequence, the protein appears to have a processed formylmethionyl. An Escherichia coli pcpC overexpression clone was shown to produce dichlorohydroquinone and trichlorohydroquinone from TeCH. Protein data base searches grouped the predicted translational sequence of pcpC with two previously reported plant glutathione S-transferases but less significantly with any of the mammalian glutathione S-transferases or the glutathione-utilizing, hydrolytic dechlorinating enzyme from Methylobacterium sp. strain DM4.  相似文献   

16.
Polyurethane-immobilized Flavobacterium cells (ATCC 39723) degraded pentachlorophenol (PCP) at initial concentrations as high as 300 mg liter-1. The reversible binding of PCP to the polyurethane was shown to be important in the protection of the cells from inhibition of PCP degradation. The degradation activity of the bacteria was monitored for 150 days in semicontinuous batch reactors. The degradation rate dropped by about 0.6% per day. PCP was degraded in a continuous-culture bioreactor at a rate of 3.5 to 4 mg g of foam-1 day-1 for 25 days. Electron micrographs of the polyurethane suggested that the cells were entrapped within 50- to 500-microns-diameter pockets in the foam.  相似文献   

17.
Hydroxyquinol 1,2-dioxygenase was purified from cells of the soil bacterium Azotobacter sp. strain GP1 grown with 2,4,6-trichlorophenol as the sole source of carbon. The presumable function of this dioxygenase enzyme in the degradative pathway of 2,4,6-trichlorophenol is discussed. The enzyme was highly specific for 6-chlorohydroxyquinol (6-chloro-1,2,4-trihydroxybenzene) and hydroxyquinol (1,2,4-trihydroxybenzene) and was found to perform ortho cleavage of the hydroxyquinol compounds, yielding chloromaleylacetate and maleylacetate, respectively. With the conversion of 1 mol of 6-chlorohydroxyquinol, the consumption of 1 mol of O(inf2) and the formation of 1 mol of chloromaleylacetate were observed. Catechol was not accepted as a substrate. The enzyme has to be induced, and no activity was found in cells grown on succinate. The molecular weight of native hydroxyquinol 1,2-dioxygenase was estimated to 58,000, with a sedimentation coefficient of 4.32. The subunit molecular weight of 34,250 indicates a dimeric structure of the dioxygenase enzyme. The addition of Fe(sup2+) ions significantly activated enzyme activity, and metal-chelating agents inhibited it. Electron paramagnetic resonance data are consistent with high-spin iron(III) in a rhombic environment. The NH(inf2)-terminal amino acid sequence was determined for up to 40 amino acid residues and compared with sequences from literature data for other catechol and chlorocatechol dioxygenases.  相似文献   

18.
We have studied the subcellular localization of pentachlorophenol 4-monooxygenase (PCP4MO) in Sphingobium chlorophenolicum ATCC 39723 during induction by pentachlorophenol (PCP). Using a monoclonal antibody CL6 specific to the native and recombinant PCP4MO, the enzyme was primarily found soluble as determined by immunoblot and ELISA analyses of cellular fractions. However, the enzyme was observed both in the soluble and membrane-bound forms during induction for 2-4 h, suggesting its translocation out from the cytoplasm. Electron microscopy confirmed that PCP4MO was predominantly present in the cytoplasm at 1 h, whereas at 4 h significant amount was detected also in the membrane and periplasm. After 6 h, the majority of PCP4MO was in the periplasm and only small amount was bound to the inner membrane or present in the cytoplasm. The results indicate that after biosynthesis PCP4MO in S. chlorophenolicum is exported via the inner membrane to the final location in the periplasm.  相似文献   

19.
Tetrachloro-p-hydroquinone is the first intermediate during pentachlorophenol degradation by Flavobacterium sp. strain ATCC 39723, a strict aerobe. We report here that tetrachlorohydroquinone was reductively dehalogenated to 2,3,6-trichloro-p-hydroquinone and subsequently to 2,6-dichloro-p-hydroquinone under anaerobic conditions by the cell extract from Flavobacterium. The reducing agent was identified to be the reduced form of glutathione. This is the first time glutathione has been identified as the reducing agent for reductive dehalogenation.  相似文献   

20.
The kinetics of pentachlorophenol (PCP) degradation by a Flavobacterium sp. ATCC 39723 has been investigated. Sodium glutamate was supplied as an additional carbon source to increase the rate of cell growth and PCP degradation. A kinetic model including PCP toxicity for cell growth and PCP inhibition of its own degradation was developed. This model was also applied to 2,4-dichlorophenol (DCP) degradation by the same organism. Although PCP and DCP are degraded by different pathways, the model describes these two degradation processes very well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号