首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Size of murine RNA tumor virus-specific nuclear RNA molecules.   总被引:8,自引:8,他引:0       下载免费PDF全文
About 1% of the total RNA of cell lines producing murine leukemia virus is virus-specific RNA. About one-third of the virus-specific RNA is located within the nucleus. The size distribution of virus-specific RNA was determined before and after denaturation. Before denaturation, virus-specific RNA sequences sedimented as a heterogeneous population of RNA molecules, some of which sedimented very rapidly. After denaturation, most of the virus-specific RNA had a sedimentation coefficient of 35S or lower, but a small fraction of the nuclear virus-specific RNA sedimented more rapidly than 35S RNA even after denaturation.  相似文献   

4.
Nuclei of KB cells harvested at late stages of productive infection with adenovirus type 2 (Ad2) harbor RNA molecules which measure up to 13 μm in length, as determined by electron microscopy of denatured RNA. While some of the molecules display features of secondary structure that are characteristic for precursor rRNA, our interest was in those showing almost no intramolecular folding. When hybridized to double-stranded viral DNA under conditions which favor RNA:DNA duplex formation, nuclear AD2 RNA displaces the homologous DNA region and generates R loop structures whose size is proportional to the length of the hybridizing RNA. Slowly sedimenting RNA forms small R loops, whereas RNA of high sedimentation velocity generates loops that span a large proportion of the DNA length. Using SV40 sequences within Ad2+ND4 hybrid DNA as a position marker, we oriented many of the R loops on the conventional Ad2 map. Our analysis was restricted to the most abundant sequences of late Ad2 nuclear RNA participating in R loop formation. A small but significant proportion of large RNA generates loops between map positions 0.3 and 0.9. The much more frequent RNA of intermediate size (although larger than mRNA) hybridizes with midpoints near map positions 0.55 and 0.88 — that is, near the gene locations for hexon and fiber. Our findings are compatible with the idea that the nuclear RNAs visualized in this study are intermediates in a processing pathway leading to mature forms of late Ad2 mRNA.  相似文献   

5.
6.
By pretreating simian virus 40-infected BSC-1 cells with glucosamine, [(3)H]uridine labeling of both cellular and viral RNA can be halted instantaneously by addition of cold uridine. We have studied the fate of pulse-labeled viral RNA from cells at 45 h postinfection under these conditions. During a 5-min period of labeling, both the messenger and nonmessenger regions of the late strand were transcribed. After various chase periods, nuclear viral species which sediment at 19, 17.5, and 16S were observed. Nuclear viral RNA decays in a multiphasic manner. Of the material present at the beginning of the chase period, 50% was degraded rapidly with a half-life of 8 min (initial processing). This rapidly degraded material was that fraction of the late strand which did not give rise to stable late mRNA species. Forty percent was transported to the cytoplasm, and 10% remained in the nucleus as material which sedimented in the 2 to 4S region. These 2 to 4S viral RNAs had a half-life of 3 h, and hybridization studies suggest that they are in part coded for by the late-strand nonmessenger region and are derived from the initial nuclear processing step. Another part is coded for by the late-strand messenger region and may be generated by some subsequent nuclear cleavages of 19S RNA into 17.5 and 16S RNAs. Transport of nuclear viral RNA into the cytoplasm was detected after a 5-min pulse and a 7-min chase. The maximum amount of labeled viral RNA was accumulated in the cytoplasm after a 30-min to 1-h chase. At least two viral cytoplasmic species were observed. Kinetic data suggest that 19S RNA is transported directly from the nucleus. Whether cytoplasmic 16S is formed by cleavage of 19S RNA in the cytoplasm is not clear. The half-lives of cytoplasmic 19 and 16S RNAs can be approximated as 2 and 5 h, respectively.  相似文献   

7.
The RNA sequences and RNA size classes transcribed early in productive infection with adenovirus 2 were analyzed by RNA-DNA hybridization. Two independent procedures demonstrated that early cytoplasmic viral RNA is composed of two sequence classes, class I which is absent or present in greatly reduced quantities at 18 h, and class II which persists throughout the infection. When the sequences in early viral RNA were analyzed by hybridization-inhibition studies, the hybridization of early [(3)H]RNA was inhibited only 50% by RNA from cultures harvested late (18 h) in infection. Liquid hybridizations with radioactive viral DNA confirmed that early RNA includes two classes. Duplex formation of RNA with (32)P-labeled viral DNA was assayed by hydroxylapatite chromatography and resistance to S(1) nuclease digestion. Both methods showed that the cytoplasmic RNA present early in infection annealed 12 to 15% of the viral DNA; late cytoplasmic RNA hybridized 21 to 25% of the DNA. Mixtures of early plus late cytoplasmic RNAs hybridized 30 to 34% of the viral DNA, demonstrating the reduced concentration of early class I RNA in the late RNA preparations. Experiments were performed to correlate class I and class II early RNA with size-fractionated cytoplasmic RNA synthesized early in infection. Fractionation of RNA by gel electrophoresis or sucrose gradient centrifugation confirmed three major size classes, 12 to 15S, 19 to 20S, and 26S. Total cytoplasmic RNA and RNA selected on the basis of poly(A) content contained the same size classes of viral RNA. In standard electrophoresis conditions, the 19 to 20S viral RNA could be resolved into two size classes, and the distribution of 12 to 15S RNA also indicated the presence of more than one size component. Hybridization-inhibition studies under nonsaturating conditions were performed with 26S, 19 to 20S, and 12 to 15S viral RNAs fractionated by gel electrophoresis. Late RNA inhibited the hybridization of 26S RNA only 20%, 19 to 20S RNA was inhibited 45%, and 12 to 15S RNA was inhibited 50%. When 18 to 19S and 12 to 15S viral RNAs purified by sucrose gradient centrifugation were similarly analyzed, late RNA inhibited hybridization of 18 to 19S RNA 50%, and the annealing of 12 to 15S RNA was inhibited 70%.  相似文献   

8.
Yang H  Zhao H  Acker JP  Liu JZ  Akabutu J  McGann LE 《Cryobiology》2005,51(2):165-175
BACKGROUND: The effect of dimethyl sulfoxide (Me2SO) on enumeration of post-thaw CD45+ and CD34+ cells of umbilical cord blood (HPC-C) and mobilized peripheral blood (HPC-A) has not been systematically studied. METHODS: Cells from leukapheresis products from multiple myeloma patients and umbilical cord blood cells were suspended in 1, 2, 5, or 10% Me2SO for 20 min at 22 degrees C. Cells suspended in Me2SO were then immediately assessed or assessed following removal of Me2SO. In other samples, cells were suspended in 10% Me2SO, cooled slowly to -60 degrees C, stored at -150 degrees C for 48 h, then thawed. The thawed cells in 10% Me2SO were diluted to 1, 2, 5, or 10% Me2SO, held for 20 min at 22 degrees C and then immediately assessed or assessed after the removal of Me2SO. CD34+ cell viability was determined using a single platform flow cytometric absolute CD34+ cell count technique incorporating 7-AAD. RESULTS: The results indicate that after cryopreservation neither recovery of CD34+ cells nor viability of CD45+ and CD34+ cells from both post-thaw HPC-A and HPC-C were a function of the concentration of Me2SO. Without cryopreservation, when Me2SO is present recovery and viability of HPC-C CD34+ cells exposed to 10% Me2SO but not CD45+ cells were significantly decreased. Removing Me2SO by centrifugation significantly decreased the viability and recovery of CD34+ cells in both HPC-A and HPC-C before and after cryopreservation. DISCUSSION: To reflect the actual number of CD45+ cells and CD34+ cells infused into a patient, these results indicate that removal of Me2SO for assessment of CD34+ cell viability should only be performed if the HPC are infused after washing to remove Me2SO.  相似文献   

9.
The interaction of cis-[PtCl2(Me2SO)2] with human serum albumin (HSA) and the sensitivity of the complex towards the thermal denaturation depending on the duration of incubation have been studied by absorption and fluorescence spectroscopy methods. Optimum conditions for cis-[PtCl2(Me2SO)2] binding to HSA have been determined. The results have been compared with the data obtained for HAS-cisplatin complex. It has been found that binding of HSA to cis-[PtCl2(Me2SO)2] does not result in significant structural changes of the protein.  相似文献   

10.
Dimethyl sulfoxide affects the selection of splice sites   总被引:4,自引:0,他引:4  
Depending on the cell lines and cell types, dimethyl sulfoxide (Me2SO) can induce or block cell differentiation and apoptosis. Although Me2SO treatment alters many levels of gene expression, the molecular processes that are directly affected by Me2SO have not been clearly identified. Here, we report that Me2SO affects splice site selection on model pre-mRNAs incubated in a nuclear extract prepared from HeLa cells. A shift toward the proximal pair of splice sites was observed on pre-mRNAs carrying competing 5'-splice sites or competing 3'-splice sites. Because the activity of recombinant hnRNP A1 protein was similar when added to extracts containing or lacking Me2SO, the activity of endogenous A1 proteins is probably not affected by Me2SO. Notably, in a manner reminiscent of SR proteins, Me2SO activated splicing in a HeLa S100 extract. Moreover, the activity of recombinant SR proteins in splice site selection in vitro was improved by Me2SO. Polar solvents like DMF and formamide similarly modulated splice site selection in vitro but formamide did not activate a HeLa S100 extract. We propose that Me2SO improves ionic interactions between splicing factors that contain RS-domains. The direct impact of Me2SO on alternative splicing may explain, at least in part, the different and sometimes opposite effects of Me2SO on cell differentiation and apoptosis.  相似文献   

11.
The approximate sizes of heterogeneous nuclear (HnRNA) and cytoplasmic RNA of sea urchin embryos were determined by DMSO density gradient centrifugation and acrylamide-formamide gel electrophoresis. The data suggest that the sizes of these molecules are smaller than those estimated under nondenaturing conditions. The size of most of the nuclear RNA ranges from 0.5 to 3 × 106 daltons, while that of the cytoplasmic RNA ranges from 0.1 to 2 × 106 daltons. Both nuclear and cytoplasmic RNA of sea urchin embryos may have a minor fraction (5–10%) of very large species with molecular weights up to 4 to 5 × 106 daltons.The idea that the size of HnRNA may be larger in organisms higher on the evolutionary scale is discussed.  相似文献   

12.
13.
L E Grosso  H C Pitot 《Biochemistry》1984,23(12):2651-2656
The effects of 5-fluorocytidine on ribosomal RNA maturation and structure in Novikoff hepatoma cells were investigated. Like other nucleic acid base analogues that are incorporated into RNA, this compound inhibits maturation of the 45S ribosomal RNA precursor. The 45S RNA precursor produced in the presence of 5-fluorocytidine has an abnormal electrophoretic mobility compared with that of the control precursor under nondenaturing conditions, but the two have identical mobilities under denaturing conditions. Under the conditions of these experiments, 5-fluorocytidine inhibited cellular protein synthesis only slightly, whereas equimolar concentrations of 5-azacytidine resulted in nearly 75% inhibition of this process. Despite this difference in the effects of the two analogues as well as the greater chemical lability of the 5-azacytidine, their effects on ribosomal RNA maturation are identical.  相似文献   

14.
Studies were performed to determine whether vitellogenin mRNA from avian liver has a precursor molecule or not. Total cellular RNA was prepared from estradiol-treated chicken liver in the presence of 8 M guanidine HCl, 2-mercaptoethanol and aurintricarboxylic acid. After denaturation, RNA was fractionated on sodium dodecylsulfate-sucrose gradients and large size RNA was analyzed under stringent conditions on 85% formamide-sucrose gradients at 25 degrees C. RNA fractions collected from the gradients were hybridized with vitellogenin (3H)-cDNA. Besides mature vitellogenin mRNA (32S, 7,000 nucleotides) vitellogenin sequences were also found in RNA fractions ranging from 38-50S with a peak at 45-50S (12-15,000 nucleotides). Only 5-10% of the putative 38-50S pmRNA is polyadenylated. We calculated that the half-life of vitellogenin pmRNA is about 3-4 minutes. We conclude that vitellogenin mRNA has a precursor which is twice the size of the mature mRNA.  相似文献   

15.
Small nuclear (sn) ribonucleoprotein (RNP) U2 functions in the splicing of mRNA by recognizing the branch site of the unspliced pre-mRNA. When HeLa nuclear splicing extracts are centrifuged on glycerol gradients, U2 snRNPs sediment at either 12S (under high salt concentration conditions) or 17S (under low salt concentration conditions). We isolated the 17S U2 snRNPs from splicing extracts under nondenaturing conditions by using centrifugation and immunoaffinity chromatography and examined their structure by electron microscope. In addition to common proteins B', B, D1, D2, D3, E, F, and G and U2-specific proteins A' and B", which are present in the 12S U2 snRNP, at least nine previously unidentified proteins with apparent molecular masses of 35, 53, 60, 66, 92, 110, 120, 150, and 160 kDa bound to the 17S U2 snRNP. The latter proteins dissociate from the U2 snRNP at salt concentrations above 200 mM, yielding the 12S U2 snRNP particle. Under the electron microscope, the 17S U2 snRNPs exhibited a bipartite appearance, with two main globular domains connected by a short filamentous structure that is sensitive to RNase. These findings suggest that the additional globular domain, which is absent from 12S U2 snRNPs, contains some of the 17S U2-specific proteins. The 5' end of the RNA in the U2 snRNP is more exposed for reaction with RNase H and with chemical probes when the U2 snRNP is in the 17S form than when it is in the 12S form. Removal of the 5' end of this RNA reduces the snRNP's Svedberg value from 17S to 12S. Along with the peculiar morphology of the 17S snRNP, these data indicate that most of the 17S U2-specific proteins are bound to the 5' half of the U2 snRNA.  相似文献   

16.
17.
18.
Purified replicative form (RF) and replicative intermediate (RI) prepared from Escherichia coli cells infected with the ribonucleic acid (RNA) bacteriophage R17 were denatured with dimethyl sulfoxide at 37 C or in aqueous solvents of low ionic strength at 97 C. Denaturation was demonstrated for RF and RI by an increase in specific infectivity and a striking change in the hyperchromicity curves after treatment. RI denaturation was also demonstrated by a shift in the buoyant density in Cs(2)SO(4) from 1.619 to the buoyant density of single-stranded R17 RNA (1.627). Analysis of the denatured RI hyperchromicity curves and the equilibrium distributions of denatured RI in Cs(2)SO(4) gradients revealed, however, a residual double-stranded component. Velocity sedimentation of denatured RI was performed, and the weight distribution of S values was calculated. From the known relation between molecular weight and S values, it was possible to transform the weight distribution into a number distribution of chain lengths. This distribution was compared with that predicted from the steady-state hypothesis for RI. Deviations from the predicted distribution may be due to the residual double-stranded component.  相似文献   

19.
R F Boone  R P Parr    B Moss 《Journal of virology》1979,30(1):365-374
  相似文献   

20.
Molecular Weight Determination of Sendai and Newcastle Disease Virus RNA   总被引:33,自引:21,他引:12  
The molecular weights of Sendai and Newcastle disease virus RNA were estimated by sedimentation in sucrose gradients and by length measurements in the electron microscope under both denaturing and nondenaturing conditions. Sedimentation analyses under denaturing conditions yielded molecular weight estimates of 2.3 x 10(6) to 2.6 x 10(6), whereas length measurements yielded estimates of 5.2 x 10(6) to 5.6 x 10(6) for both denatured and nondenatured viral RNA. It would appear that the conditions of denaturation used (99% dimethyl sulfoxide at 26 C, and reaction with 1.1 M formaldehyde for 10 min at 60 C) do not equally denature parainfluenza virus RNA and other RNAs, such as cellular rRNA, 45S rRNA precursor, and R17 RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号