首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There has been increasing evidence during the last years that glutamate (Glu), the major neuromediator of the nervous system, contributes to the local regulation of bone cell functions. Several classes of Glu receptors and transporters, as well as molecules involved in glutamate signal transduction in neuronal tissue, were identified in bone. While recent findings suggest that Glu may participate in mechanisms underlying bone formation, several studies indicate that Glu may also control bone resorption. Ionotropic NMDA and metabotropic Glu receptors are expressed by osteoclasts and electrophysiological studies have demonstrated that NMDA receptors (NMDAR) are functional on these cells. In vitro studies have shown that NMDAR are important for osteoclast function since several specific antagonists of NMDAR which block the current induced by Glu in these cells also inhibit bone resorption. Preliminary studies investigating the mechanisms of action of NMDAR antagonists on bone resorption are reviewed in this paper. There is also growing evidence that NMDAR are expressed throughout the osteoclastic differentiation sequence and that antagonists of NMDAR affect osteoclastogenesis. Very few in vivo studies have however investigated the role of Glu in skeletal metabolism and bone resorption and clearly further work is required to demonstrate the relevance of glutamate signaling in the physiology of bone resorption in vivo.  相似文献   

2.
By flow cytometry of individual cells, multiple cell properties can be analyzed. Such parameters may be important in relation to cytotoxic treatment of cancer. For example, DNA measurements will answer questions regarding cell kinetics. Myelosuppression is the major dose-limiting toxicity during cancer treatment. Therefore, the study of cell cycle parameters in bone marrow cells is highly relevant. However, inattention to the existence and potential importance of biological rhythms may introduce artifacts and misleading results. The literature of rhythms in hematology is reviewed. Time-dependent variations in hematological variables have been extensively studied and rhythms have been described for all kinds of blood cells. Also the numbers of hemopoietic stem cells in the bone marrow undergo circadian variations. Our group has shown how such variations change with aging in mice. The relevance of time sequence studies in aging research of hemopoiesis was clearly demonstrated. In animal studies using cytometry, our group has demonstrated extensive circadian variations in cell cycle distribution of bone marrow cells, especially the DNA synthesis (S-phase). In humans a few and rather small time sequence studies of the bone marrow have been performed, so far. In this overview the clinical implications of circadian rhythms of S-phase variations measured by flow cytometry of human bone marrow cells are discussed. Male volunteers were examined every 4 h around-the-clock. The data indicated a lower proliferative activity during night, suggesting the possibility of reducing the bone marrow toxicity to cancer treatment when taking these time-dependent variations into consideration.  相似文献   

3.
Proteomics has been applied to study intracellular bacteria and phagocytic vacuoles in different host cell lines, especially macrophages (Mφs). For mycobacterial phagosomes, few studies have identified over several hundred proteins for systems assessment of the phagosome maturation and antigen presentation pathways. More importantly, there has been a scarcity in publication on proteomic characterization of mycobacterial phagosomes in dendritic cells (DCs). In this work, we report a global proteomic analysis of Mφ and DC phagosomes infected with a virulent, an attenuated, and a vaccine strain of mycobacteria. We used label-free quantitative proteomics and bioinformatics tools to decipher the regulation of phagosome maturation and antigen presentation pathways in Mφs and DCs. We found that the phagosomal antigen presentation pathways are repressed more in DCs than in Mφs. The results suggest that virulent mycobacteria might co-opt the host immune system to stimulate granuloma formation for persistence while minimizing the antimicrobial immune response to enhance mycobacterial survival. The studies on phagosomal proteomes have also shown promise in discovering new antigen presentation mechanisms that a professional antigen presentation cell might use to overcome the mycobacterial blockade of conventional antigen presentation pathways.  相似文献   

4.
Fanconi anemia (FA) is a rare hereditary disorder characterized by skeletal abnormalities, bone marrow failure, and an increased incidence of cancer. The basic cellular abnormality in FA has been postulated to lie in the DNA repair mechanisms because cells from FA patients display chromosomal breakage, which is particularly remarkable following induction of DNA crosslinks. However, experimental evidence for this hypothesis has been lacking. To test whether DNA repair is really defective in FA cells, we disrupted several FA genes in chicken B cell line DT40. By measuring efficiency of gene conversion and hypermutation at the Immunoglobulin locus, we have shown that DT40 FA mutant cell lines exhibited defects in homologous DNA recombination, and possibly, translesion synthesis. However, levels of sister chromatid exchange, another important cellular event mediated by HR, were not reduced, possibly indicating the role of FA genes only in a subpathway of HR. Our results indicate that chicken DT40 cells could be highly useful in molecular dissection of basic biochemical processes, which are deficient in a human genetic disorder.  相似文献   

5.
A growing body of recent studies bring into light an important cross-talk between immune response and metabolism not only at the level of the organism as a whole, but also at the level of the individual cells. Cellular bioenergetics functions not only as a power plant to fuel up the cells, but the intermediate metabolites are shown to play an important role to modulate cellular responses. It is especially the pathways through which a cell metabolizes glucose that have been recently shown to influence both innate and adaptive immune responses, with oxidative phosphorylation used by resting or tolerant cells, while aerobic glycolysis (also termed ‘Warburg effect’) fueling activated cells. In this review we will address how the center metabolism shifts upon activation in the innate immune cells and how the intermediate metabolites modulate the function of immune cells.  相似文献   

6.
Stem cells have been shown to have the potential to provide a source of cells for applications to tissue engineering and organ repair. The mechanisms that regulate stem cell fate, however, mostly remain unclear. Mesenchymal stem cells (MSCs) are multipotent progenitor cells that are isolated from bone marrow and other adult tissues, and can be differentiated into multiple cell lineages, such as bone, cartilage, fat, muscles and neurons. Although previous studies have focused intensively on the effects of chemical signals that regulate MSC commitment, the effects of physical/mechanical cues of the microenvironment on MSC fate determination have long been neglected. However, several studies provided evidence that mechanical signals, both direct and indirect, played important roles in regulating a stem cell fate. In this review, we summarize a number of recent studies on how cell adhesion and mechanical cues influence the differentiation of MSCs into specific lineages. Understanding how chemical and mechanical cues in the microenvironment orchestrate stem cell differentiation may provide new insights into ways to improve our techniques in cell therapy and organ repair.  相似文献   

7.
Mesothelial progenitor cells and their potential in tissue engineering   总被引:2,自引:0,他引:2  
The mesothelium consists of a single layer of flattened mesothelial cells that lines serosal cavities and the majority of internal organs, playing important roles in maintaining normal serosal integrity and function. A mesothelial 'stem' cell has not been identified, but evidence from numerous studies suggests that a progenitor mesothelial cell exists. Although mesothelial cells are of a mesodermal origin, they express characteristics of both epithelial and mesenchymal phenotypes. In addition, following injury, new mesothelium regenerates via centripetal ingrowth of cells from the wound edge and from a free-floating population of cells present in the serosal fluid, the origin of which is currently unknown. Recent findings have shown that mesothelial cells can undergo an epithelial to mesenchymal transition, and transform into myofibroblasts and possibly smooth muscle cells, suggesting plasticity in nature. Further evidence for a mesothelial progenitor comes from tissue engineering applications where mesothelial cells seeded onto tubular constructs have been used to generate vascular replacements and grafts to bridge transected nerve fibres. These findings suggest that mesothelial cell progenitors are able to switch between different cell phenotypes depending on the local environment. However, only by performing detailed investigations involving selective cell isolation, clonal analysis together with cell labelling and tracking studies, will we begin to determine the true existence of a mesothelial stem cell.  相似文献   

8.
It has been shown in many clinical studies that the level of vascular endothelial growth factor-C (VEGF-C) positively correlates with lymph node metastasis. Nevertheless, beyond the canonical role of VEGF-C in stimulating lymphangiogenesis and thus promoting lymph node/distant metastasis, emerging evidence indicates that expression of VEGF-C contributes to various aspects of carcinogenicity via autocrine regulation. The newly identified functions of VEGF-C include but are not limited to proliferation, migration, invasion, and chemo-resistance. Besides tumor cell autocrine regulation, VEGF-C can also modulate the immune system such that tumor cells more easily escape immune surveillance. Therefore, understanding the functional roles and regulatory mechanisms related to the VEGF-C axis may lead to alternative strategies for cancer treatment. This mini-review will focus on summarizing recent discoveries regarding the unconventional functions of VEGF-C in cancer progression.  相似文献   

9.
10.
T cell receptor stimulation, reactive oxygen species, and cell signaling   总被引:1,自引:0,他引:1  
In the immune system, much of the focus on reactive oxygen species (ROS) has been regarding their role in antimicrobial defense as part of the innate immune system. In addition to this role, it is now becoming clear that ROS are used by cells of the adaptive immune system as regulators of signal transduction by cell surface receptors. The activation of T lymphocytes through their specific antigen receptor [T cell receptor (TCR)] is vital in regulating the immune response. Much experimental evidence has suggested that activation of T cells is redox dependent and recent studies have shown that engagement of the TCR induces rapid production of ROS. This review examines the evidence for TCR-stimulated generation of ROS and discusses the role(s) of receptor-stimulated ROS production in T cell signal transduction and gene expression.  相似文献   

11.
Modern cancer therapies often involve the combination of tumor-directed cytotoxic strategies and generation of a host antitumor immune response. The latter is unleashed by immunotherapies that activate the immune system generating a more immunostimulatory tumor microenvironment and a stronger tumor antigen-specific immune response. Studying the interaction between antitumor cytotoxic therapies, dying cancer cells, and the innate and adaptive immune system requires appropriate experimental tumor models in mice. In this review, we discuss the immunostimulatory and immunosuppressive properties of cancer cell lines commonly used in immunogenic cell death (ICD) studies being apoptosis or necroptosis. We will especially focus on the antigenic component of immunogenicity. While in several cancer cell lines the epitopes of endogenously expressed tumor antigens are known, these intrinsic epitopes are rarely determined in experimental apoptotic or necroptotic ICD settings. Instead by far the most ICD research studies investigate the antigenic response against exogenously expressed model antigens such as ovalbumin or retroviral epitopes (e.g., AH1). In this review, we will argue that the immune response against endogenous tumor antigens and the immunopeptidome profile of cancer cell lines affect the eventual biological readouts in the typical prophylactic tumor vaccination type of experiments used in ICD research, and we will propose additional methods involving immunopeptidome profiling, major histocompatibility complex molecule expression, and identification of tumor-infiltrating immune cells to document intrinsic immunogenicity following different cell death modalities.Subject terms: Cancer models, Antigen-presenting cells, Immune cell death  相似文献   

12.
The probiotic approach represents a potentially effective and mild alternative strategy for the prevention and treatment of either inflammatory or allergic diseases. Several studies have shown that different bacterial strains can exert their probiotic abilities by influencing the host's immune system, thereby modulating immune responses. However, the emerging concern regarding safety problems arising from the extensive use of live microbial cells is enhancing the interest in non-viable microorganisms or microbial cell extracts, as they could eliminate shelf-life problems and reduce the risks of microbial translocation and infection. The purpose of this review is to provide an overview of the scientific literature concerning studies in which dead microbial cells or crude microbial cell fractions have been used as health-promoting agents. Particular attention will be given to the modulation of host immune responses. Possible mechanisms determining the effect on the immune system will also be discussed. Finally, in the light of the FAO/WHO definition of probiotics, indicating that the word 'probiotic' should be restricted to products that contain live microorganisms, and considering the scientific evidence indicating that inactivated microbes can positively affect human health, we propose the new term 'paraprobiotic' to indicate the use of inactivated microbial cells or cell fractions to confer a health benefit to the consumer.  相似文献   

13.
The AR4-2J cell line is derived from a transplantable tumour of the exocrine rat pancreas. Acinar in origin, this cell line contains significant amounts of amylase and can be grown in continuous culture. Manyin vitro studies have been done using these cells; these studies were often complemented within vivo experiments on animals. Particularly, many polypeptide hormones interacting with specific receptors located on the cell membrane have been analysed. The accurate knowledge of the hormone-receptor interactions has allowed to design interesting analogs of these hormones. In several cases, these compounds are powerful antagonists and are able to control cell proliferation induced by the corresponding polypeptide hormones. Other cell lines are useful to understand human pancreatic cancer. These human cell lines (Capan-1, Panc-1 for example) are of ductal origin and differ from AR4-2J cells, especially regarding the distribution of several polypeptide hormone and growth factor receptors. Both models are important for basic studies of neuropeptides, gastrointestinal peptides and their receptors, as well as for a better understanding of the underlying mechanisms of human pancreatic cancer.  相似文献   

14.
Cells of the innate and adaptive immune systems are the progeny of a variety of haematopoietic precursors, the most primitive of which is the haematopoietic stem cell. Haematopoietic stem cells have been thought of generally as dormant cells that are only called upon to divide under extreme conditions, such as bone marrow ablation through radiation or chemotherapy. However, recent studies suggest that haematopoietic stem cells respond directly and immediately to infections and inflammatory signals. In this Review, we summarize the current literature regarding the effects of infection on haematopoietic stem cell function and how these effects may have a pivotal role in directing the immune response from the bone marrow.  相似文献   

15.
Development of murine plasmacytoid dendritic cell subsets   总被引:3,自引:0,他引:3  
  相似文献   

16.
Mesenchymal stem cells (MSCs) have been isolated from a variety of tissues, such as bone marrow, skeletal muscle, dental pulp, bone, umbilical cord and adipose tissue. MSCs are used in regenerative medicine mainly based on their capacity to differentiate into specific cell types and also as bioreactors of soluble factors that will promote tissue regeneration from the damaged tissue cellular progenitors. In addition to these regenerative properties, MSCs hold an immunoregulatory capacity, and elicit immunosuppressive effects in a number of situations. Not only are they immunoprivileged cells, due to the low expression of class II Major Histocompatibilty Complex (MHC-II) and costimulatory molecules in their cell surface, but they also interfere with different pathways of the immune response by means of direct cell-to-cell interactions and soluble factor secretion. In vitro, MSCs inhibit cell proliferation of T cells, B-cells, natural killer cells (NK) and dendritic cells (DC), producing what is known as division arrest anergy. Moreover, MSCs can stop a variety of immune cell functions: cytokine secretion and cytotoxicity of T and NK cells; B cell maturation and antibody secretion; DC maturation and activation; as well as antigen presentation. It is thought that MSCs need to be activated to exert their immunomodulation skills. In this scenario, an inflammatory environment seems to be necessary to promote their effect and some inflammation-related molecules such as tumor necrosis factor-α and interferon-γ might be implicated. It has been observed that MSCs recruit T-regulatory lymphocytes (Tregs) to both lymphoid organs and graft. There is great controversy concerning the mechanisms and molecules involved in the immunosuppressive effect of MSCs. Prostaglandin E2, transforming growth factor-β, interleukins- 6 and 10, human leukocyte antigen-G5, matrix metalloproteinases, indoleamine-2,3-dioxygenase and nitric oxide are all candidates under investigation. In vivo studies have shown many discrepancies regarding the immunomodulatory properties of MSCs. These studies have been designed to test the efficacy of MSC therapy in two different immune settings: the prevention or treatment of allograft rejection episodes, and the ability to suppress abnormal immune response in autoimmune and inflammatory diseases. Preclinical studies have been conducted in rodents, rabbits and baboon monkeys among others for bone marrow, skin, heart, and corneal transplantation, graft versus host disease, hepatic and renal failure, lung injury, multiple sclerosis, rheumatoid arthritis, diabetes and lupus diseases. Preliminary results from some of these studies have led to human clinical trials that are currently being carried out. These include treatment of autoimmune diseases such as Crohn's disease, ulcerative colitis, multiple sclerosis and type 1 diabetes mellitus; prevention of allograft rejection and enhancement of the survival of bone marrow and kidney grafts; and treatment of resistant graft versus host disease. We will try to shed light on all these studies, and analyze why the results are so contradictory.  相似文献   

17.
18.
Human T cell lymphotropic/leukemia virus type I (HTLV-I) has been identified as the causative agent of both adult T cell leukemia (ATL) and HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Although the exact sequence of events that occur during the early stages of infection are not known in detail, the initial route of infection may predetermine, along with host, environmental, and viral factors, the subset of target cells and/or the primary immune response encountered by HTLV-I, and whether an HTLV-I-infected individual will remain asymptomatic, develop ATL, or progress to the neuroinflammatory disease, HAM/TSP. Although a large number of studies have indicated that CD4(+) T cells represent an important target for HTLV-I infection in the peripheral blood (PB), additional evidence has accumulated over the past several years demonstrating that HTLV-I can infect several additional cellular compartments in vivo, including CD8(+) T lymphocytes, PB monocytes, dendritic cells, B lymphocytes, and resident central nervous system (CNS) astrocytes. More importantly, extensive latent viral infection of the bone marrow, including cells likely to be hematopoietic progenitor cells, has been observed in individuals with HAM/TSP as well as some asymptomatic carriers, but to a much lesser extent in individuals with ATL. Furthermore, HTLV-I(+) CD34(+) hematopoietic progenitor cells can maintain the intact proviral genome and initiate viral gene expression during the differentiation process. Introduction of HTLV-I-infected bone marrow progenitor cells into the PB, followed by genomic activation and low level viral gene expression may lead to an increase in proviral DNA load in the PB, resulting in a progressive state of immune dysregulation including the generation of a detrimental cytotoxic Tax-specific CD8(+) T cell population, anti-HTLV-I antibodies, and neurotoxic cytokines involved in disruption of myelin-producing cells and neuronal degradation characteristic of HAM/TSP.  相似文献   

19.
The bone marrow, the primary site of hematopoiesis, is a self-renewing system consisting of a unique micro-environment that promotes the differentiation and proliferation of the various hematopoietic cell lines. While many critical factors necessary for red cell production have been identified, the regulation of erythropoiesis has not been completely elucidated. In addition to multi-lineage growth factors (e.g. interleukin 3 or 4) and lineage-specific hematopoietic growth factors (e.g. erythropoietin), several lines of evidence suggest a key role for insulin-like growth factor I (IGF-I). First, growth hormone stimulates erythropoiesis and IGF-I is known to mediate many of growth hormone's actions (somatomedin hypothesis). Second, factors in bovine serum and in serum from an anephric human with erythropoietic activity distinct from erythropoietin have been identified as IGFs. Third, IGF receptors are found on both erythrocyte precursors as well as mature erythrocytes. Fourth, in vitro IGF-I stimulates erythropoiesis in bone marrow cultures. Fifth, IGF-I administration to neonatal or hypophysectomized animals results in increased erythropoiesis in vivo. Recent studies indicate that IGF-I at physiologic concentrations stimulates erythropoiesis and that growth hormone's action is indirect, occurring via IGF-I. The physiologic source of IGF-I for the bone marrow may be delivery from the serum (an endocrine mechanism) or synthesis within the bone marrow by stromal or other cells (a paracrine mechanism). Our recent studies have shown that mouse bone marrow stromal cells secrete both IGF-I and IGF binding proteins (IGFBPs). The role of IGFBPs in erythropoiesis is not known, but they might modulate the local concentration of IGF-I.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
A mutagenicity assessment of acetaldehyde   总被引:6,自引:0,他引:6  
Acetaldehyde has been shown in studies by several different laboratories to be a clastogen (chromosome-breaking) and inducer of sister-chromatid exchanges in cultured mammalian cells (Chinese hamster cells and human lymphocytes). Although there have been very few studies in intact mammals, the available evidence suggests that acetaldehyde produces similar cytogenetic effects in vivo. The production of cytogenetic abnormalities may be related to the ability of acetaldehyde to form DNA-DNA and/or DNA-protein cross-links. Acetaldehyde apparently has not been evaluated for its ability to cause gene mutations in cultured mammalian cells, but it has been shown to produce sex-linked recessive lethals in Drosophila. In general, bacteria tests have been negative. Although acetaldehyde is a genotoxic cross-linking agent, it does not appear to cause DNA strand breaks. There were no studies available regarding the potential of acetaldehyde to produce genetic damage in mammalian germ cells in vivo. Most mutagenicity testing on acetaldehyde has been motivated by attempts to define the proximate mutagen in ethanol metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号