首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Using absorption measurements the reassociation kinetics of three satellite DNA components isolated from calf thymus was studied under various conditions. A different method using CsC1 density gradient determinations particularly suited for kinetic analysis of mixtures was also used and shown to give similar results. Reassociation rate constants were corrected for mismatching during strand reassociation using data obtained by kinetic analysis of fractions of the 1.714 g/cm-3 satellite component. The values of corrected as well as uncorrected complexities were calculated and compared with results of other methods. They were shown to be compatible with the concept of sequence repetition at various levels.  相似文献   

2.
Renaturation of calf thymus satellite DNA   总被引:6,自引:0,他引:6  
  相似文献   

3.
4.
Summary The 1400 base pair repeat produced by digestion of calf satellite I DNA (=1.714 g/cm3) with EcoRI, was cloned in E. coli. The hybrid plasmid (pGM 214) which contains the ColE1-Ap vector (pSF 2124) and the 1400 base pair fragment replicates stably in E. coli and can be amplified by chloramphenicol treatment.No clone was found in which more than one repeat unit of the satellite I DNA was present in the chimaera plasmid.Digestion of the original satellite I and the plasmid pGM 214 with R · SmaI shows that the satellite DNA replicated in E. coli is cleaved by the restriction endonuclease SmaI whereas the original satellite I DNA from calf thymus is not, suggesting that the satellite I contains a large amount of modified cytosine or guanosine, probably 5-methyl-cytosine.R · EcoRI* produces a number of fragments with the satellite I in the range of 300 base pairs to 1400 base pairs.A physical map of pGM 214 (and pSF 2124) with R · EcoRI, R · HincII, HindIII, R · SmaI, R · BamI and R · EclI was constructed.The 1400 base pair repeat unit in the pGM 214 is efficiently transcribed in vitro by purified RNA polymerase, starting from a pSF 2124 promoter.The restriction enzyme EclI produces a 350 base pair repeat with calf satellite II (=1,722 g/cm3), whereas the satellite I is not cut by this enzyme.  相似文献   

5.
The interaction of transition metal complexes of cationic porphyrins bearing five membered rings, meso-tetrakis(1,2-dimethylpyrazolium-4-yl)porphyrin (MPzP, M=Mn(III), Ni(II), Cu(II) or Zn(II)), with calf thymus DNA (ctDNA) has been studied. Metalloporphyrins NiPzP and CuPzP are intercalated into the 5'GC3' step of ctDNA. MnPzP is bound edge-on at the 5'TA3' step of the minor groove of ctDNA, while ZnPzP is bound face-on at the 5'TA3' step of the major groove of ctDNA. The binding constants of the metalloporphyrins to ctDNA range from 1.05x10(5) to 2.66x10(6) M(-1) and are comparable to those of other reported cationic porphyrins. The binding process of the metallopyrazoliumylporphyrins to ctDNA is endothermic and entropically driven. These results have revealed that the kind of central metal ions of metalloporphyrins influences the binding characteristics of the porphyrin to DNA.  相似文献   

6.
Using a strand displacement assay we have followed DNA helicase activities during the simultaneous isolation of several enzymes from calf thymus such as DNA polymerases alpha, delta, and epsilon, proliferating cell nuclear antigen, and replication factor A. Thus we were able to discriminate and isolate four different DNA helicases called A, B, C, and D. DNA helicase A is identical with the enzyme described earlier (Th?mmes, P., and Hübscher, U. (1990) J. Biol. Chem. 265, 14347-14354). The four enzymes can be distinguished by (i) their putative molecular weights after sodium dodecyl sulfate-polyacrylamide gel electrophoresis, (ii) glycerol gradient sedimentation under low and high salt conditions, (iii) sensitivity to salt, (iv) binding to DNA, (v) nucleoside- and deoxynucleoside 5'-triphosphate requirements, and (vi) by their direction of movement. DNA helicase A unwinds in the 3'----5' direction on the DNA it was bound to, while DNA helicases B, C, and D do so in the 5'----3' direction. DNA helicase D, and to some extent DNA helicases B and C, are able to unwind long substrates of more than 400 nucleotides. Replication factor A, a single-stranded heterotrimeric DNA binding protein involved in cellular DNA replication and DNA repair stimulates the DNA helicases. The stimulatory effect is most pronounced on DNA helicase A, where replication factor A enables this helicase to unwind longer substrates. DNA helicases B, C, and D are also stimulated by replication factor A. The effect of replication factor A appears to be specific since corresponding single-stranded DNA binding proteins from Escherichia coli and bacteriophage T4 have no or even a negative effect on the four DNA helicases. Heterologous human replication factor A has no stimulatory effect on any of the four DNA helicases suggesting a species specificity of these interactions. Thus it appears that mammalian cells possess, as does E. coli, a variety of different enzymes that can transiently abolish the double helical DNA structure in the cell.  相似文献   

7.
We report the purification and characterization of a novel DNA helicase from calf thymus tissue. This enzyme partially copurifies with DNA polymerase epsilon* through many of the chromatographic procedures used to isolate it. The enzyme contains an intrinsic DNA-dependent ATPase activity. It can displace short oligonucleotides annealed to long single stranded substrates, in an ATP-dependent reaction. Use of this assay indicates that the DNA helicase translocates in a 3' to 5' direction with respect to the substrate strand to which it is bound. Maximal efficiency of displacement is accomplished by hydrolysis of (d)ATP as cofactor, however, (d)CTP can also be utilized resulting in a 5-fold decrease in the level of displacement. Displacement activity is enhanced by the presence of saturating amounts of Escherichia coli single stranded DNA-binding protein, not affected by the presence of phage T4 gene 32 protein, and inhibited by human replication factor A. The DNA helicase has a molecular mass of approximately 104 kDa as measured by denaturing gel electrophoresis, and an S value of 5.4 obtained from glycerol gradient sedimentation. Direct [alpha-32P]ATP cross-linking labels a protein of molecular mass approximately 105 kDa, providing further evidence that this polypeptide contains the helicase active site. In view of the differences in the properties of this helicase from four others recently identified in calf and designated A through D, we propose the name helicase E.  相似文献   

8.
9.
DNA helicase E from calf thymus has been characterized with respect to DNA substrate specificity. The helicase was capable of displacing DNA fragments up to 140 nucleotides in length, but was unable to displace a DNA fragment 322 nucleotides in length. DNA competition experiments revealed that helicase E was moderately processive for translocation on single strand M13mp18 DNA, and that the helicase would dissociate and rebind during a 15 minute reaction. Comparison of the rate of ATPase activity catalyzed by helicase E on single strand DNA substrates of different lengths, suggested a processivity consistent with the competition experiments. The helicase displayed a preference for displacing primers whose 5' terminus was fully annealed as opposed to primers with a 12 nucleotide 5' unannealed tail. The presence of a 12 nucleotide 3' tail had no effect on the rate of displacement. DNA helicase E was capable of displacing a primer downstream of either a four nucleotide gap, a one nucleotide gap or a nick in the DNA substrate. Helicase E was inactive on a fully duplex DNA 30 base pairs in length. Calf thymus RP-A stimulated the DNA displacement activity of helicase E. These properties are consistent with a role for DNA helicase E in chromosomal DNA repair.  相似文献   

10.
Calf thymus DNA containing satellite components of various densities was used as a model to study the effect of netropsin on the density of DNA in a CsCl gradient. The binding of netropsin resulted in a decrease in density which depended upon the quantity of netropsin added and on the average composition of the DNA. Differences in density of DNA components were higher in CsCl - netropsin gradients than in simple CsCl gradients. By use of netropsin a main band and four satellite bands could be differentiated in calf thymus DNA. Satellite DNA's were isolated using preparative CsCl - netropsin gradient centrifugation and were characterised by density and homogeneity in native and in reassociated state. Two of the satellite components, with densities of 1.722 and 1.714 g/cm3, are probably of homogenous sequence, the other two components of densities 1.709 and 1.705 g/cm3 appear to be heterogeneous.  相似文献   

11.
DNA kinase has been purified to homogeneity from calf thymus. The purified enzyme, with a specific activity of 16.7 units/mg protein at 25 degrees C, exhibited a sharp pH/activity curve with a pH optimum at 5.5 and low activity at alkaline pH. The molecular weight of the enzyme was estimated by dodecylsulfate/polyacrylamide gel electrophoresis to be 5.4 X 10(4). The enzyme has a sedimentation coefficient of 4.0 S. An apparent molecular weight of 5.6 X 10(4) and a Stokes' radius of 3.3 nm were estimated by gel-filtration on Sephadex G-100. The enzyme phosphorylates neither yeast RNA nor poly(A) instead of DNA. Compared with rat liver DNA kinase, calf thymus DNA kinase is relatively resistant to the inhibition by sulfate (Ki = 7 mM) and pyrophosphate (Ki = 5 mM). The enzyme activity is markedly stimulated by polyamines at the sub-optimal concentration of Mg2+ but not by monovalent cations.  相似文献   

12.
13.
The DNA synthesizing subunit (alpha-subunit) of DNA polymerase-alpha from calf thymus was separated from the other three subunits by immunoaffinity chromatography. The enzymatic properties of the alpha-subunit were characterized and compared with those of the four-subunit complex. Free alpha-subunit behaved in many respects like the four-subunit polymerase-primase. It was inhibited by aphidicolin and butylanilino-deoxyATP and catalyzed DNA synthesis on both gapped duplex DNA as well as primed single-stranded DNA with a preference of gapped DNA. The alpha-subunit is a quasi-processive enzyme with a processivity for about 9 nucleotides incorporated per single primer binding event. This is 2-fold lower than the processivity of the four-subunit complex. Despite this moderate processivity, free alpha-subunit was able to synthesize long stretches of DNA on singly primed natural psi X174am16 DNA. The accuracy of DNA synthesis of the free alpha-subunit was determined by using the psi X174am16 reversion assay to be 1 error per 50,000 nucleotides incorporated. An in vitro accuracy of 1 error in 54,000 nucleotides incorporated was measured in parallel for the four-subunit complex. Thus, the smaller subunits do not contribute to the overall accuracy of DNA polymerase-alpha. Consistent with this result is the observation that the polymerase to 3'----5'-exonuclease ratio was less than 1 to 2,500,000. Therefore, there is no evidence for the action of a cryptic proofreading activity with the alpha-subunit of DNA polymerase-alpha of mammalian origin.  相似文献   

14.
DNA ligase II has been purified about 4,000-fold to apparent homogeneity from a calf thymus extract. The ligase consists of a single polypeptide with a molecular weight of 68,000 as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. On fluorography after electrophoresis, a DNA ligase-[3H]AMP complex gave a single band corresponding to a molecular weight of 68,000. The Km values of the ligase for ATP and nicked DNA (5'-phosphoryl ends) were obtained to be 40 and 0.04 microM, respectively. Antibody against calf thymus DNA ligase II was prepared by injecting the purified enzyme into a rabbit. The antibody cross-reacted with DNA ligase II but not with calf thymus DNA ligase I. DNA ligase II was not affected by antibody against calf thymus DNA ligase I with a molecular weight of 130,000 (Teraoka, H. and Tsukada, K. (1982) J. Biol. Chem. 257, 4758-4763). These results indicate that DNA ligase II (Mr = 68,000) is immunologically distinct from DNA ligase I (Mr = 130,000).  相似文献   

15.
Highly purified DNA obtained from calf thymus nuclei was found to cleave after reaction with a chelating agent and subsequent dialysis against 0.01 M phosphate. During the cleavage release of proteineous material into the dialysate was observed. By means of anion exchange resin column chromatography, this material was separated into 9 main fractions. Two of these fractions P1 and P5) were found to contain the amino acids phosphoserine, asp, thr, ser, glu, gly, ala, val, ile, leu, and arg, as well as metal ion complexes of phosphoserine. The complexes were dissociated by Chelex 100 treatment. The proportion of phosphoserine was much greater in P5 than in P1. P1 and P5 contained essentially no nucleotide material. All other fractions (P2, P3, P3a, P4, P5a, P6, P7, P8, P6a, P9) were found to contain ribonucleotides and deoxynucleotides. The deoxynucleotide content was about 10% of total nucleotide content. After a deionizing treatment with Chelex, the amounts of nucleotides were extensively reduced to a level corresponding to about 1 nucleotide of 10 amino acids. In separate experiments, commercial DNA (S-DNA) was ultrasonicated, and digested with pancreatic DNAase, exonuclease III, and S1 nuclease. From DEAE Sephacel chromatography of this material the fraction obtained having the highest proportion of protein aceous material was hydrolyzed with Pronase and again chromatographed on DEAE Sephacel. From this fractionation a single fraction containing deoxynucleotides and amino acids was found. The mixture obtained by hydrolysis of this fraction with snake venom diesterase and was again rechromatographed, which revealed two peaks, one corresponding to deoxynucleotide material and a second one to a mixture of 4 amino acids, phosphoserine, asp, glu, and gly. From this it was concluded that the fraction used for diesterase digestion consisted of deoxynucleotide-amino acids, with covalent diester bonds between their deoxynucleotide and amino acid portions. The results indicate that in purified S-DNA phosphopeptides are linked through covalent bonds to the terminal deoxynucleotide residues.  相似文献   

16.
A RNA dependent-DNA polymerase was purified about 450-fold from the soluble fraction of calf thymus. This enzyme was able to copy the polyribonucleic acid strand of synthetic ribonucleic acid primed with complementary oligodeoxynucleotides, i.e., poly(rA)·(dT)10. This enzyme activity was separated from the DNA-dependent DNA polymerases by both DEAE-cellulose columm chromatography and glycerol gradient centrifugation. Some properties of this enzyme were described.  相似文献   

17.
A possible structure for calf satellite DNA I.   总被引:1,自引:6,他引:1       下载免费PDF全文
Calf satellite DNA I (p = 1.715) has been hydrolysed by a number or restriction endonucleases. It consists of a repeating unit of 1460 nucleotide pairs within which the sites of Eco R II Mbo I, Sac I, Alu I, Ava II and Hha I were localised in comparison with those of Eco R I and Hind II. The distribution of the Hpa II, Sac I, Hha I, Hinf I and Mbo II sites within calf satellite DNA I, as well as that of several restriction endonuclease sites within calf satellite DNA III (p = 1.705) allowed me to define subsatellite fractions. Furthermore, some of the sites of the CpG containing restriction enzymes Hpa II and Hha I are lacking. The possible implications of these results are discussed.  相似文献   

18.
Two DNA ligase activities from calf thymus   总被引:8,自引:0,他引:8  
Cell extracts from calf thymus contain two DNA ligase activities, separable by hydroxyapatite chromatography and by gel filtration. Their molecular weights, as estimated from sedimentation coefficients and Stokes radii, are M = 175,000 and M = 85,000, respectively. The two activities both require Mg++ and ATP as cofactors, and convert nicked circular DNA molecules to a covalently closed form. The larger of the two ligase activities is more heat-stable than the smaller one, and is also active over a broader pH range.  相似文献   

19.
K S Schmitz  R Pecora 《Biopolymers》1975,14(3):521-542
The quasi-elastic light-scattering (homodyne) time-correlation functions of calf thymus and λDNA are shown to contain contributions from at least two relaxation processes. A method of asymptotic analysis is described and used to obtain an estimate of the longest relaxation time as well as the “average” relaxation time and the mean-squared dispersion in this average. Most theories of scattering from macromolecules in the limit of inifinite dilution predict that the longest relaxation time is due to translational self-diffusion. The data obtained, however, indicate that the longest time is not simply related to the translational self-diffusion coefficient of unaggregated macromolecules. It is also shown that the longest relaxation time of λDNA decreases in the later stages of the denaturation transition region. Some possible mechanisms for the origin of this long time are discussed, including a model of restricted motion of a molecule by its neighbors.  相似文献   

20.
Purified calf thymus DNA polymerase alpha is inactive with native DNA as template and shows little activity with denatured DNA. DNA synthesis with denatured DNA as template is greatly stimulated by the addition of a nuclease which initially copurifies with DNA polymerase but is separated from the polymerase on DEAE-cellulose chromatography. A limit digest of nuclease treated native DNA which is then denatured is replicated 80-95%; extensive replication is also obtained with native DNA partially degraded by pancreatic DNase and then denatured. The product of the reaction with calf thymus nuclease-treated DNA as template is double-stranded DNA with a hairpin (looped back) structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号