首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ferroptosis, a new form of programmed cell death, not only promotes the pathological process of various human diseases, but also regulates cancer progression. Current perspectives on the underlying mechanisms remain largely unknown. Herein, we report a member of the NEET protein family, CISD3, exerts a regulatory role in cancer progression and ferroptosis both in vivo and in vitro. Pan-cancer analysis from TCGA reveals that expression of CISD3 is generally elevated in various human cancers which are consequently associated with a higher hazard ratio and poorer overall survival. Moreover, knockdown of CISD3 significantly accelerates lipid peroxidation and accentuates free iron accumulation triggered by Xc inhibition or cystine-deprivation, thus causing ferroptotic cell death. Conversely, ectopic expression of the shRNA-resistant form of CISD3 (CISD3res) efficiently ameliorates the ferroptotic cell death. Mechanistically, CISD3 depletion presents a metabolic reprogramming toward glutaminolysis, which is required for the fuel of mitochondrial oxidative phosphorylation. Both the inhibitors of glutaminolysis and the ETC process were capable of blocking the lipid peroxidation and ferroptotic cell death in the shCISD3 cells. Besides, genetic and pharmacological activation of mitophagy can rescue the CISD3 knockdown-induced ferroptosis by eliminating the damaged mitochondria. Noteworthily, GPX4 acts downstream of CISD3 mediated ferroptosis, which fails to reverse the homeostasis of mitochondria. Collectively, the present work provides novel insights into the regulatory role of CISD3 in ferroptotic cell death and presents a potential target for advanced antitumor activity through ferroptosis.Subject terms: Oncogenes, Preclinical research  相似文献   

2.
《Translational oncology》2020,13(8):100785
Ferroptosis, a newly discovered form of cell death mediated by reactive oxygen species (ROS) and lipid peroxidation, has recently been shown to have an impact on various cancer types; however, so far there are only few studies about its role in hepatocellular carcinoma (HCC). The delicate equilibrium of ROS in cancer cells has found to be crucial for cell survival, thus increased levels may trigger ferroptosis in HCC.In our study, we investigated the effect of different ROS modulators and ferroptosis inducers on a human HCC cell line and a human hepatoblastoma cell line. We identified a novel synergistic cell death induction by the combination of Auranofin and buthionine sulfoxime (BSO) or by Erastin and BSO at subtoxic concentrations. We found a caspase-independent, redox-regulated cell death, which could be rescued by different inhibitors of ferroptosis. Both cotreatments stimulated lipid peroxidation. All these findings indicated ferroptotic cell death. Both cotreatments affected the canonical ferroptosis pathway through GPX4 downregulation. We also found an accumulation of Nrf2 and HO-1, indicating an additional effect on the non-canonical pathway. Our results implicate that targeting these two main ferroptotic pathways simultaneously can overcome chemotherapy resistance in HCC.  相似文献   

3.
Ferroptosis, a newly defined mode of regulated cell death caused by unbalanced lipid redox metabolism, is implicated in various tissue injuries and tumorigenesis. However, the role of ferroptosis in stem cells has not yet been investigated. Glutathione peroxidase 4 (GPX4) is a critical suppressor of lipid peroxidation and ferroptosis. Here, we study the function of GPX4 and ferroptosis in hematopoietic stem and progenitor cells (HSPCs) in mice with Gpx4 deficiency in the hematopoietic system. We find that Gpx4 deletion solely in the hematopoietic system has no significant effect on the number and function of HSPCs in mice. Notably, hematopoietic stem cells (HSCs) and hematopoietic progenitor cells lacking Gpx4 accumulated lipid peroxidation and underwent ferroptosis in vitro. α-Tocopherol, the main component of vitamin E, was shown to rescue the Gpx4-deficient HSPCs from ferroptosis in vitro. When Gpx4 knockout mice were fed a vitamin E-depleted diet, a reduced number of HSPCs and impaired function of HSCs were found. Furthermore, increased levels of lipid peroxidation and cell death indicated that HSPCs undergo ferroptosis. Collectively, we demonstrate that GPX4 and vitamin E cooperatively maintain lipid redox balance and prevent ferroptosis in HSPCs.Subject terms: Cell biology, Physiology, Stem-cell research  相似文献   

4.
In eukaryotic cells, macromolecular homeostasis requires selective degradation of damaged units by the ubiquitin-proteasome system (UPS) and autophagy. Thus, dysfunctional degradation systems contribute to multiple pathological processes. Ferroptosis is a type of iron-dependent oxidative cell death driven by lipid peroxidation. Various antioxidant systems, especially the system xc-glutathione-GPX4 axis, play a significant role in preventing lipid peroxidation-mediated ferroptosis. The endosomal sorting complex required for transport-III (ESCRT-III)–dependent membrane fission machinery counteracts ferroptosis by repairing membrane damage. Moreover, cellular degradation systems play a dual role in regulating the ferroptotic response, depending on the cargo they degrade. The key ferroptosis repressors, such as SLC7A11 and GPX4, are degraded by the UPS. In contrast, the overactivation of selective autophagy, including ferritinophagy, lipophagy, clockophagy and chaperone-mediated autophagy, promotes ferroptotic death by degrading ferritin, lipid droplets, circadian proteins, and GPX4, respectively. Autophagy modulators (e.g., BECN1, STING1/TMEM173, CTSB, HMGB1, PEBP1, MTOR, AMPK, and DUSP1) also determine the ferroptotic response in a context-dependent manner. In this review, we provide an updated overview of the signals and mechanisms of the degradation system regulating ferroptosis, opening new horizons for disease treatment strategies.Subject terms: Cell biology, Molecular biology  相似文献   

5.
Recognized as a novel and important gasotransmitter, hydrogen sulfide (H2S) is widely present in various tissues and organs. Cystathionine gamma-lyase (CSE)-derived H2S has been shown to regulate oxidative stress and lipid metabolism. The aim of the present study is to examine the role of H2S in ferroptosis and lipid peroxidation in mouse myoblasts and skeletal muscles. Ferroptosis agonist RSL3 inhibited the expressions of Gpx4 and reduced CSE/H2S signaling, which lead to increased oxidative stress, lipid peroxidation, and ferroptotic cell death. In addition, ferroptosis antagonist ferrostatin-1 (Fer-1) up-regulated the expression of CSE, scavenged the generation of reactive oxygen species (ROS) and lipid peroxidation, and improved cell viability. Exogenously applied NaHS was also able to block RSL3-induced ferroptotic cell death. Neither RSL3 nor H2S affected cell apoptosis. Furthermore, H2S reversed RSL3-induced Drp1 expression and mitochondrial damage, which lead to abnormal lipid metabolism as evidenced by altered expressions of ACSL4, FAS, ACC and CPT1 as well as higher acetyl-CoA contents in both cytoplasm and mitochondria. RSL3 promoted the protein expression and acetylation of ALOX12, a key protein in initiating membrane phospholipid oxidation, while the addition of NaHS attenuated ALOX12 acetylation and protected from membrane lipid peroxidation. Moreover, we observed that CSE deficiency alters the expressions of ferroptosis and lipid peroxidation-related proteins and enhances global protein acetylation in mouse skeletal muscles under aging or injury conditions. These results indicate that downregulation of CSE/H2S signaling would contribute to mitochondrial damage, abnormal lipid metabolism, membrane lipid peroxidation, and ferroptotic cell death. CSE/H2S system can be a target for preventing ferroptosis in skeletal muscle.  相似文献   

6.
7.
Oxidative stress and lipid peroxidation are major causes of skin injury induced by ultraviolet (UV) irradiation. Ferroptosis is a form of regulated necrosis driven by iron-dependent peroxidation of phospholipids and contributes to kinds of tissue injuries. However, it remains unclear whether the accumulation of lipid peroxides in UV irradiation-induced skin injury could lead to ferroptosis. We generated UV irradiation-induced skin injury mice model to examine the accumulation of the lipid peroxides and iron. Lipid peroxides 4-HNE, the oxidative enzyme COX2, the oxidative DNA damage biomarker 8-OHdG, and the iron level were increased in UV irradiation-induced skin. The accumulation of iron and lipid peroxidation was also observed in UVB-irradiated epidermal keratinocytes without actual ongoing ferroptotic cell death. Ferroptosis was triggered in UV-irradiated keratinocytes stimulated with ferric ammonium citrate (FAC) to mimic the iron overload. Although GPX4 protected UVB-injured keratinocytes against ferroptotic cell death resulted from dysregulation of iron metabolism and the subsequent increase of lipid ROS, keratinocytes enduring constant UVB treatment were markedly sensitized to ferroptosis. Nicotinamide mononucleotide (NMN) which is a direct and potent NAD+ precursor supplement, rescued the imbalanced NAD+/NADH ratio, recruited the production of GSH and promoted resistance to lipid peroxidation in a GPX4-dependent manner. Taken together, our data suggest that NMN recruits GSH to enhance GPX4-mediated ferroptosis defense in UV irradiation-induced skin injury and inhibits oxidative skin damage. NMN or ferroptosis inhibitor might become promising therapeutic approaches for treating oxidative stress-induced skin diseases or disorders.  相似文献   

8.
ObjectivesEvidences demonstrate that sorafenib alleviates liver fibrosis via inhibiting HSC activation and ECM accumulation. The underlying mechanism remains unclear. Ferroptosis, a novel programmed cell death, regulates diverse physiological/pathological processes. In this study, we aim to investigate the functional role of HSC ferroptosis in the anti‐fibrotic effect of sorafenib.Materials and MethodsThe effects of sorafenib on HSC ferroptosis and ECM expression were assessed in mouse model of liver fibrosis induced by CCl4. In vitro, Fer‐1 and DFO were used to block ferroptosis and then explored the anti‐fibrotic effect of sorafenib by detecting α‐SMA, COL1α1 and fibronectin proteins. Finally, HIF‐1α siRNA, plasmid and stabilizers were applied to assess related signalling pathway.ResultsSorafenib attenuated liver injury and ECM accumulation in CCl4‐induced fibrotic livers, accompanied by reduction of SLC7A11 and GPX4 proteins. In sorafenib‐treated HSC‐T6 cells, ferroptotic events (depletion of SLC7A11, GPX4 and GSH; accumulation iron, ROS and MDA) were discovered. Intriguingly, these ferroptotic events were not appeared in hepatocytes or macrophages. Sorafenib‐elicited HSC ferroptosis and ECM reduction were abrogated by Fer‐1 and DFO. Additionally, both HIF‐1α and SLC7A11 proteins were reduced in sorafenib‐treated HSC‐T6 cells. SLC7A11 was positively regulated by HIF‐1α, inactivation of HIF‐1α/SLC7A11 pathway was required for sorafenib‐induced HSC ferroptosis, and elevation of HIF‐1α could inhibit ferroptosis, ultimately limited the anti‐fibrotic effect.ConclusionsSorafenib triggers HSC ferroptosis via HIF‐1α/SLC7A11 signalling, which in turn attenuates liver injury and fibrosis.  相似文献   

9.
Ferroptosis is a regulated form of cell death characterized by the iron-dependent accumulation of lipid hydroperoxides. Ceruloplasmin (CP) is a glycoprotein that plays an essential role in iron homeostasis. However, whether CP regulates ferroptosis has not been reported. Here, we show that CP suppresses ferroptosis by regulating iron homeostasis in hepatocellular carcinoma (HCC) cells. Depletion of CP promoted erastin- and RSL3-induced ferroptotic cell death and resulted in the accumulation of intracellular ferrous iron (Fe2+) and lipid reactive oxygen species (ROS). Moreover, overexpression of CP suppressed erastin- and RSL3-induced ferroptosis in HCC cells. In addition, a novel frameshift mutation (c.1192-1196del, p.leu398serfs) of CP gene newly identified in patients with iron accumulation and neurodegenerative diseases lost its ability to regulate iron homeostasis and thus failed to participate in the regulation of ferroptosis. Collectively, these data suggest that CP plays an indispensable role in ferroptosis by regulating iron metabolism and indicate a potential therapeutic approach for hepatocellular carcinoma.  相似文献   

10.
Ferroptosis is an iron-dependent mode of non-apoptotic cell death characterized by accumulation of lipid reactive oxygen species (ROS). As a regulator of ROS, cytoglobin (CYGB) plays an important role in oxygen homeostasis and acts as a tumour suppressor. However, the mechanism by which CYGB regulates cell death is largely unknown. Here, we show that CYGB overexpression increased ROS accumulation and disrupted mitochondrial function as determined by the oxygen consumption rate and membrane potential. Importantly, ferroptotic features with accumulated lipid ROS and malondialdehyde were observed in CYGB-overexpressing colorectal cancer cells. Moreover, CYGB significantly increased the sensitivity of cancer cells to RSL3- and erastin-induced ferroptotic cell death. Mechanically, both YAP1 and p53 were significantly increased based on the RNA sequencing. The knock-down of YAP1 alleviated production of lipid ROS and sensitivity to ferroptosis in CYGB overexpressed cells. Furthermore, YAP1 was identified to be inhibited by p53 knock-down. Finally, high expression level of CYGB had the close correlation with key genes YAP1 and ACSL4 in ferroptosis pathway in colon cancer based on analysis from TCGA data. Collectively, our results demonstrated a novel tumour suppressor role of CYGB through p53-YAP1 axis in regulating ferroptosis and suggested a potential therapeutic approach for colon cancer.  相似文献   

11.
12.
Ferroptosis is recognized as a new form of regulated cell death which is initiated by severe lipid peroxidation relying on reactive oxygen species (ROS) generation and iron overload. This iron-dependent cell death manifests evident morphological, biochemical and genetic differences from other forms of regulated cell death, such as apoptosis, autophagy, necrosis and pyroptosis. Ferroptosis was primarily characterized by condensed mitochondrial membrane densities and smaller volume than normal mitochondria, as well as the diminished or vanished of mitochondria crista and outer membrane ruptured. Mitochondria take the center role in iron metabolism, as well as substance and energy metabolism as it’s the major organelle in iron utilization, catabolic and anabolic pathways. Interference of key regulators of mitochondrial lipid metabolism (e.g., ASCF2 and CS), iron homeostasis (e.g., ferritin, mitoferrin1/2 and NEET proteins), glutamine metabolism and other signaling pathways make a difference to ferroptotic sensitivity. Targeted induction of ferroptosis was also considered as a potential therapeutic strategy to some oxidative stress diseases, including neurodegenerative disorders, ischemia-reperfusion injury, traumatic spinal cord injury. However, the pertinence between mitochondria and ferroptosis is still in dispute. Here we systematic elucidate the morphological characteristics and metabolic regulation of mitochondria in the regulation of ferroptosis.  相似文献   

13.
Ferroptosis is a type of regulated cell death characterized by ROS accumulation and devastating lipid peroxidation (LPO). The role of acid sphingomyelinase (ASM), a key enzyme in sphingolipid metabolism, in the induction of apoptosis has been studied; however, to date its role in ferroptosis is unclear. In this study, we report that ASM plays a hitherto unanticipated role in promoting ferroptosis. Mechanistically, Erastin (Era) treatment results in the activation of ASM and generation of ceramide, which are required for the Era-induced reactive oxygen species (ROS) generation and LPO. Inhibition of nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase) or removal of intracellular ROS, significantly reduced Era-induced ASM activation, suggesting that NADPH oxidase-derived ROS regulated ASM-initiated redox signaling in a positive feedback manner. Moreover, ASM-mediated activation of autophagy plays a critical role in ferroptosis inducers (FINs)-induced glutathione peroxidase 4 (GPX4) degradation and ferroptosis activation. Genetic or pharmacological inhibition of ASM diminishes Era-induced features of autophagy, GPX4 degradation, LPO, and subsequent ferroptosis. Importantly, genetic activation of ASM increases ferroptosis in cancer cells induced by various FINs. Collectively, these findings reveal that ASM plays a novel role in ferroptosis that could be exploited to improve pathological conditions that link to ferroptosis.Subject terms: Lipid peroxides, Cancer models, Macroautophagy, Lipid signalling  相似文献   

14.
Human embryonic stem cells (hESCs) are vulnerable to cell death upon dissociation. Thus, dissociation is an obstacle in culturing, maintaining, and differentiating of hESCs. To date, apoptosis has become the focus of research into the nature of cell death triggered by cellular detachment; it remains baffling whether another form of cell death can occur upon dissociation in hESCs. Here, we demonstrate that iron accumulation and subsequently lipid peroxidation are responsible for dissociation-mediated hESC death. Moreover, we found that a decrease of glutathione peroxidase 4 because of iron accumulation promotes ferroptosis. Inhibition of lipid peroxidation (ferrostatin-1) or chelating iron (deferoxamine) largely suppresses iron accumulation–induced ferroptosis in dissociated hESCs. The results show that P53 mediates the dissociation-induced ferroptosis in hESCs, which is suppressed by pifithrin α. Multiple genes involved in ferroptosis are regulated by the nuclear factor erythroid 2–related factor 2 (Nrf2). In this study, solute carrier family 7 member 11 and glutathione peroxidase 4 are involved in GSH synthesis decreased upon dissociation as a target of Nrf2. In conclusion, our study demonstrates that iron accumulation as a consequence of cytoskeleton disruption appears as a pivotal factor in the initiation of ferroptosis in dissociated hESCs. Nrf2 inhibits ferroptosis via its downstream targets. Our study suggests that the antiferroptotic target might be a good candidate for the maintenance of hESCs.  相似文献   

15.
Ferroptosis is an iron-dependent, nonapoptotic form of regulated cell death triggered by impaired redox and antioxidant machinery and propagated by the accumulation of toxic lipid peroxides. A compendium of experimental studies suggests that ferroptosis is tumor-suppressive. Sensitivity or resistance to ferroptosis can be regulated by cell-autonomous and non-cell-autonomous metabolic mechanisms. This includes a role for ferroptosis that extends beyond the tumor cells themselves, mediated by components of the tumor microenvironment, including T cells and other immune cells. Herein, we review the intrinsic and extrinsic factors that promote the sensitivity of cancer cells to ferroptosis and conclude by describing approaches to harness the full utility of ferroptotic agents as therapeutic options for cancer therapy.  相似文献   

16.
Renal fibrosis is a common pathological process that occurs with diverse etiologies in chronic kidney disease. However, its regulatory mechanisms have not yet been fully elucidated. Ferroptosis is a form of non-apoptotic regulated cell death driven by iron-dependent lipid peroxidation. It is currently unknown whether ferroptosis is initiated during unilateral ureteral obstruction (UUO)-induced renal fibrosis and its role has not been determined. In this study, we demonstrated that ureteral obstruction induced ferroptosis in renal tubular epithelial cells (TECs) in vivo. The ferroptosis inhibitor liproxstatin-1 (Lip-1) reduced iron deposition, cell death, lipid peroxidation, and inhibited the downregulation of GPX4 expression induced by UUO, ultimately inhibiting ferroptosis in TECs. We found that Lip-1 significantly attenuated UUO-induced morphological and pathological changes and collagen deposition of renal fibrosis in mice. In addition, Lip-1 attenuated the expression of profibrotic factors in the UUO model. In vitro, we used RSL3 treatment and knocked down of GPX4 level by RNAi in HK2 cells to induce ferroptosis. Our results indicated HK2 cells secreted various profibrotic factors during ferroptosis. Lip-1 was able to inhibit ferroptosis and thereby inhibit the secretion of the profibrotic factors during the process. Incubation of kidney fibroblasts with culture medium from RSL3-induced HK2 cells promoted fibroblast proliferation and activation, whereas Lip-1 impeded the profibrotic effects. Our study found that Lip-1 may relieve renal fibrosis by inhibiting ferroptosis in TECs. Mechanistically, Lip-1 could reduce the activation of surrounding fibroblasts by inhibiting the paracrine of profibrotic factors in HK2 cells. Lip-1 may potentially be used as a therapeutic approach for the treatment of UUO-induced renal fibrosis.Subject terms: Cell death, RNAi, Urinary tract obstruction  相似文献   

17.
Ferroptosis is a nonapoptotic form of programmed cell death triggered by the accumulation of reactive oxygen species (ROS) depended on iron overload. Although most investigations focus on the relationship between ferroptosis and cancer, neurodegenerative diseases, and ischemia/reperfusion injury, research on ferroptosis induced by immune-related inflammatory diseases, especially sepsis, is scarce. Sestrin2 (Sesn2), a highly evolutionary and stress-responsive protein, is critically involved in defense against oxidative stress challenges. Upregulated expression of Sesn2 has been observed in preliminary experiments to have an antioxidative function in the context of an inflammatory response. Nevertheless, the underlying function of Sesn2 in inflammation-mediated ferroptosis in the immune system remains uncertain. The current study aimed to demonstrate the protective effect of Sesn2 on ferroptosis and even correlations with ferroptosis and the functions of ferroptotic-dendritic cells (DCs) stimulated with lipopolysaccharide (LPS). The mechanism underlying DCs protection from LPS-induced ferroptosis by Sesn2 was further explored in this study. We found that the immune response of DCs assessed by co-stimulatory phenotypes was gradually enhanced at the peak time of 12 h upon 1 μg/ml LPS stimulation while ferroptosis in DCs treated with LPS at 24 h was significantly detected. LPS-induced ferroptosis showed a suppressive impact on DCs in phenotypic maturation, which was conversely relieved by the ferroptotic inhibitor. Compared with wild-type (WT) mice, DCs in genetic defective mice of Sesn2 (Sesn2−/−) exhibited exacerbated ferroptosis. Furthermore, the protective effect of Sesn2 on ferroptosis was noticed to be associated with the ATF4-CHOP-CHAC1 pathway, eventually exacerbating ferroptosis by degrading of glutathione. These results indicate that Sesn2 can suppress the ferroptosis of DCs in sepsis by downregulating the ATF4-CHOP-CHAC1 signaling pathway, and it might play an antioxidative role.Subject terms: Cell death, Immunology  相似文献   

18.
Ferroptosis, an autophagy-dependent cell death, is characterized by lipid peroxidation and iron accumulation, closely associated with pathogenesis of gestational diabetes mellitus (GDM). Sirtuin 3 (SIRT3) has positive regulation on phosphorylation of activated protein kinase (AMPK), related to maintenance of cellular redox homeostasis. However, whether SIRT3 can confer autophagy by activating the AMPK-mTOR pathway and consequently promote induction of ferroptosis is unknown. We used human trophoblastic cell line HTR8/SVneo and porcine trophoblastic cell line pTr2 to deterimine the mechanism of SIRT3 on autophagy and ferroptosis. The expression of SIRT3 protein was significantly elevated in trophoblastic cells exposed to high concentrations of glucose and ferroptosis-inducing compounds. Increased SIRT3 expression contributed to classical ferroptotic events and autophagy activation, whereas SIRT3 silencing led to resistance against both ferroptosis and autophagy. In addition, autophagy inhibition impaired SIRT3-enhanced ferroptosis. On the contrary, autophagy induction had a synergistic effect with SIRT3. Based on mechanistic investigations, SIRT3 depletion inhibited activation of the AMPK-mTOR pathway and enhanced glutathione peroxidase 4 (GPX4) level, thereby suppressing autophagy and ferroptosis. Furthermore, depletion of AMPK blocked induction of ferroptosis in trophoblasts. We concluded that upregulated SIRT3-enhanced autophagy activation by promoting AMPK-mTOR pathway and decreasing GPX4 level to induce ferroptosis in trophoblastic cells. SIRT3 deficiency was resistant to high glucose- and erastin-induced autophagy-dependent ferroptosis and is, therefore, a potential therapeutic approach for treating GDM.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号