首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
IRGM, a human immunity-related GTPase, confers autophagic defence against intracellular pathogens by an unknown mechanism. Here, we report an unexpected mode of IRGM action. IRGM demonstrated differential affinity for the mitochondrial lipid cardiolipin, translocated to mitochondria, affected mitochondrial fission and induced autophagy. Mitochondrial fission was necessary for autophagic control of intracellular mycobacteria by IRGM. IRGM influenced mitochondrial membrane polarization and cell death. Overexpression of IRGMd, but not IRGMb splice isoforms, caused mitochondrial depolarization and autophagy-independent, but Bax/Bak-dependent, cell death. By acting on mitochondria, IRGM confers autophagic protection or cell death, explaining IRGM action both in defence against tuberculosis and in the damaging inflammation caused by Crohn's disease.  相似文献   

3.
Chin-Chih Liu 《Autophagy》2016,12(5):890-891
Autophagy is a dynamic and self-limiting process. The amplitude and duration of this process need to be properly controlled to maintain cell homeostasis, and excessive or insufficient autophagy activity could each lead to disease states. Compared to our understanding of the molecular mechanisms of autophagy induction, little is known about how the autophagy process is turned off after its activation. We recently identified KLHL20 as a key regulator of autophagy termination. By functioning as a substrate-binding subunit of CUL3 ubiquitin ligase, KLHL20 targets the activated ULK1 and phagophore-residing PIK3C3/VPS34 and BECN1 for ubiquitination and proteasomal degradation, which in turn triggers a destabilization of their complex components ATG13 and ATG14. These hierarchical degradation events cause the exhaustion of the autophagic pool of ULK1 and PIK3C3/VPS34 complexes, thereby preventing persistent and excessive autophagy activity. Impairment of KLHL20-dependent feedback regulation of autophagy enhances cell death under prolonged starvation and aggravates muscle atrophy in diabetic mice, which highlights the pathophysiological significance of this autophagy termination mechanism in cell survival and tissue homeostasis. Modulation of this autophagy termination pathway may be effective for treating diseases associated with deregulation of autophagy activity.  相似文献   

4.
Autophagy is a conserved degradative pathway used as a host defense mechanism against intracellular pathogens. However, several viruses can evade or subvert autophagy to insure their own replication. Nevertheless, the molecular details of viral interaction with autophagy remain largely unknown. We have determined the ability of 83 proteins of several families of RNA viruses (Paramyxoviridae, Flaviviridae, Orthomyxoviridae, Retroviridae and Togaviridae), to interact with 44 human autophagy-associated proteins using yeast two-hybrid and bioinformatic analysis. We found that the autophagy network is highly targeted by RNA viruses. Although central to autophagy, targeted proteins have also a high number of connections with proteins of other cellular functions. Interestingly, immunity-associated GTPase family M (IRGM), the most targeted protein, was found to interact with the autophagy-associated proteins ATG5, ATG10, MAP1CL3C and SH3GLB1. Strikingly, reduction of IRGM expression using small interfering RNA impairs both Measles virus (MeV), Hepatitis C virus (HCV) and human immunodeficiency virus-1 (HIV-1)-induced autophagy and viral particle production. Moreover we found that the expression of IRGM-interacting MeV-C, HCV-NS3 or HIV-NEF proteins per se is sufficient to induce autophagy, through an IRGM dependent pathway. Our work reveals an unexpected role of IRGM in virus-induced autophagy and suggests that several different families of RNA viruses may use common strategies to manipulate autophagy to improve viral infectivity.  相似文献   

5.
6.
Polymorphisms in the IRGM gene, associated with Crohn disease (CD) and tuberculosis, are among the earliest identified examples documenting the role of autophagy in human disease. Functional studies have shown that IRGM protects against these diseases by modulating autophagy, yet the exact molecular mechanism of IRGM's activity has remained unknown. We have recently elucidated IRGM's mechanism of action. IRGM functions as a platform for assembling, stabilizing, and activating the core autophagic machinery, while at the same time physically coupling it to conventional innate immunity receptors. Exposure to microbial products or bacterial invasion increases IRGM expression, which leads to stabilization of AMPK. Specific protein-protein interactions and post-translational modifications such as ubiquitination of IRGM, lead to a co-assembly with IRGM of the key autophagy regulators ULK1 and BECN1 in their activated forms. IRGM physically interacts with 2 other CD risk factors, ATG16L1 and NOD2, placing these 3 principal players in CD within the same molecular complex. This explains how polymorphisms altering expression or function of any of the 3 factors individually can affect the same process—autophagy. Furthermore, IRGM's interaction with NOD2, and additional pattern recognition receptors such as NOD1, RIG-I, and select TLRs, transduces microbial signals to the core autophagy apparatus. This work solves the long-standing enigma of how IRGM controls autophagy.  相似文献   

7.
Autophagy is a highly regulated degradative process crucial for maintaining cell homeostasis. This important catabolic mechanism can be nonspecific, but usually occurs with fine spatial selectivity (compartmentalization), engaging only specific subcellular sites. While the molecular machines driving autophagy are well understood, the involvement of localized signaling events in this process is not well defined. Among the pathways that regulate autophagy, the cyclic AMP (cAMP)/protein kinase A (PKA) cascade can be compartmentalized in distinct functional units called microdomains. However, while it is well established that, depending on the cell type, cAMP can inhibit or promote autophagy, the role of cAMP/PKA microdomains has not been tested. Here we show not only that the effects on autophagy of the same cAMP elevation differ in different cell types, but that they depend on a highly complex sub-compartmentalization of the signaling cascade. We show in addition that, in HT-29 cells, in which autophagy is modulated by cAMP rising treatments, PKA activity is strictly regulated in space and time by phosphatases, which largely prevent the phosphorylation of soluble substrates, while membrane-bound targets are less sensitive to the action of these enzymes. Interestingly, we also found that the subcellular distribution of PKA type-II regulatory PKA subunits hinders the effect of PKA on autophagy, while displacement of type-I regulatory PKA subunits has no effect. Our data demonstrate that local PKA activity can occur independently of local cAMP concentrations and provide strong evidence for a link between localized PKA signaling events and autophagy.Subject terms: Kinases, Autophagy  相似文献   

8.
9.
《Autophagy》2013,9(7):1048-1049
Δ9-tetrahydrocannabinol (THC), the main active component of marijuana, is being investigated as a potential anti-tumoral agent. We find that THC stimulates an endoplasmic reticulum (ER) stress-related signaling pathway, which activates autophagy via inhibition of the Akt/mTORC1 axis. We also show that autophagy is upstream of apoptosis in cannabinoid-induced cancer cell death and that activation of this pathway is necessary for the anti-tumoral action of cannabinoids in vivo.  相似文献   

10.
Reactivation and expansion of myelin-reactive CD4+ T cells within the central nervous system (CNS) are considered to play a key role in the pathogenesis of multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). We demonstrated that accumulation of myelin-specific CD4+ T cells within the CNS and subsequent clinical disease development require autophagy related (ATG) protein-dependent phagocytosis in dendritic cells (DCs). Genetic ablation of this pathway impairs presentation of myelin-associated antigen following phagocytosis of injured, phosphatidylserine-exposing oligodendroglial cells. Thus, DCs use ATG-dependent phagocytosis for enhanced presentation of myelin antigen, thereby linking oligodendrocyte injury with antigen processing and T cell-pathogenicity during autoimmune CNS inflammation.  相似文献   

11.
12.
The target of rapamycin (TOR) kinase is a conserved regulator of cell growth and functions within 2 different protein complexes, TORC1 and TORC2, where TORC2 positively controls macroautophagy/autophagy during amino acid starvation. Under these conditions, TORC2 signaling inhibits the activity of the calcium-regulated phosphatase calcineurin and promotes the general amino acid control (GAAC) response and autophagy. Here we demonstrate that TORC2 regulates calcineurin by controlling the respiratory activity of mitochondria. In particular, we find that mitochondrial oxidative stress affects the calcium channel regulatory protein Mid1, which we show is an essential upstream activator of calcineurin. Thus, these findings describe a novel regulation for autophagy that involves TORC2 signaling, mitochondrial respiration, and calcium homeostasis.  相似文献   

13.
Autophagy is an important cellular recycling mechanism through self-digestion in responses to cellular stress such as starvation. Studies have shown that autophagy is involved in maintaining the homeostasis of the neural system during stroke. However, molecular mechanisms underlying neuronal autophagy in ischemic stroke remain poorly understood. Previously, we and others have shown that immune-related GTPase M (IRGM; termed IRGM1 in the mouse nomenclature) can regulate the survival of immune cells through autophagy in response to infections and autoimmune conditions. Here, using a permanent middle cerebral artery occlusion (pMCAO) mouse model, we found that IRGM1 was upregulated in the ischemic side of the brain, which was accompanied by a significant autophagic response. In contrast, neuronal autophagy was almost complete lost in Irgm1 knockout (KO) mice after pMCAO induction. In addition, the infarct volume in the Irgm1-KO pMCAO mice was significantly increased as compared to wild-type mice. Histological studies suggested that, at the early stage (within 24 h) of ischemia, the IRGM1-dependent autophagic response is associated with a protection of neurons from necrosis in the ischemic core but a promotion of neuronal apoptosis in the penumbra area. These data demonstrate a novel role of IRGM1 in regulating neuronal autophagy and survival during ischemic stroke.  相似文献   

14.
《Autophagy》2013,9(11):1621-1627
Autophagy is an important cellular recycling mechanism through self-digestion in responses to cellular stress such as starvation. Studies have shown that autophagy is involved in maintaining the homeostasis of the neural system during stroke. However, molecular mechanisms underlying neuronal autophagy in ischemic stroke remain poorly understood. Previously, we and others have shown that immune-related GTPase M (IRGM; termed IRGM1 in the mouse nomenclature) can regulate the survival of immune cells through autophagy in response to infections and autoimmune conditions. Here, using a permanent middle cerebral artery occlusion (pMCAO) mouse model, we found that IRGM1 was upregulated in the ischemic side of the brain, which was accompanied by a significant autophagic response. In contrast, neuronal autophagy was almost complete lost in Irgm1 knockout (KO) mice after pMCAO induction. In addition, the infarct volume in the Irgm1-KO pMCAO mice was significantly increased as compared to wild-type mice. Histological studies suggested that, at the early stage (within 24 h) of ischemia, the IRGM1-dependent autophagic response is associated with a protection of neurons from necrosis in the ischemic core but a promotion of neuronal apoptosis in the penumbra area. These data demonstrate a novel role of IRGM1 in regulating neuronal autophagy and survival during ischemic stroke.  相似文献   

15.
Macroautophagy (hereafter autophagy) is the process by which cytosolic material destined for degradation is enclosed inside a double-membrane cisterna known as the autophagosome and processed for secretion and/or recycling. This process requires a large collection of proteins that converge on certain sites of the ER membrane to generate the autophagosome membrane. Recently, it was shown that actin accumulates around autophagosome precursors and could play a role in this process, but the mechanism and role of actin polymerization in autophagy were unknown. Here, we discuss our recent finding that the nucleation-promoting factor (NPF) WHAMM recruits and activates the Arp2/3 complex for actin assembly at sites of autophagosome formation on the ER. Using high-resolution, live-cell imaging, we showed that WHAMM forms dynamic puncta on the ER that comigrate with several autophagy markers, and propels the spiral movement of these puncta by an Arp2/3 complex-dependent actin comet tail mechanism. In starved cells, WHAMM accumulates at the interface between neighboring autophagosomes, whose number and size increases with WHAMM expression. Conversely, knocking down WHAMM, inhibiting the Arp2/3 complex or interfering with actin polymerization reduces the size and number of autophagosomes. These findings establish a link between Arp2/3 complex-mediated actin assembly and autophagy.  相似文献   

16.
17.
Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease, defined by loss of B cell self-tolerance that results in production of antinuclear antibodies (ANA) and chronic inflammation. While the initiating events in lupus development are not well defined, overexpression of the RNA-recognizing toll-like receptor (TLR)7 has been linked to SLE in humans and mice. We postulated that autophagy plays an essential role in TLR7 activation of B cells for the induction of SLE by delivering RNA ligands to the endosomes, where this innate immune receptor resides. To test this hypothesis, we compared SLE development in Tlr7 transgenic (Tg) mice with or without B cell-specific ablation of autophagy (Cd19-Cre Atg5f/f). We observed that in the absence of B cell autophagy the 2 hallmarks of SLE, ANA and inflammation, were eliminated, thus curing these mice of lupus. This was also evident in the significantly extended survival of the autophagy-deficient mice compared to Tlr7.1 Tg mice. Furthermore, glomerulonephritis was ameliorated, and the serum levels of inflammatory cytokines in the knockout (KO) mice were indistinguishable from those of control mice. These data provide direct evidence that B cells require TLR7-dependent priming through an autophagy-dependent mechanism before autoimmunity is induced, thereafter involving many cell types. Surprisingly, hyper-IgM production persisted in Tlr7.1 Tg mice in the absence of autophagy, likely involving a different activation pathway than the production of autoantibodies. Furthermore, these mice still presented with anemia, but responded with a striking increase in extramedullary hematopoiesis (EMH), possibly due to the absence of pro-inflammatory cytokines.  相似文献   

18.
Translation initiation factors have complex functions in cells that are not yet understood. We show that depletion of initiation factor eIF4GI only modestly reduces overall protein synthesis in cells, but phenocopies nutrient starvation or inhibition of protein kinase mTOR, a key nutrient sensor. eIF4GI depletion impairs cell proliferation, bioenergetics, and mitochondrial activity, thereby promoting autophagy. Translation of mRNAs involved in cell growth, proliferation, and bioenergetics were selectively inhibited by reduction of eIF4GI, as was the mRNA encoding Skp2 that inhibits p27, whereas catabolic pathway factors were increased. Depletion or overexpression of other eIF4G family members did not recapitulate these results. The majority of mRNAs that were translationally impaired with eIF4GI depletion were excluded from polyribosomes due to the presence of multiple upstream open reading frames and low mRNA abundance. These results suggest that the high levels of eIF4GI observed in many breast cancers might act to specifically increase proliferation, prevent autophagy, and release tumor cells from control by nutrient sensing.  相似文献   

19.
20.
Alcohol abuse is the leading etiologic factor of pancreatitis, although many heavy drinkers do not develop pancreatic damage. Alcohol promotes pancreatitis through a combination of remote (e.g., increased gut permeability to bacterial products such as lipopolysaccharide) and more proximal effects (e.g., altered pancreatic cholinergic inputs), including oxidative damage at the level of the pancreatic acinar cell. Recent evidence indicates that alcohol exposure to rodents disturbs proteostasis in the exocrine pancreas, an effect counterbalanced by homeostatic processes that include both the unfolded protein response (UPR) and autophagy. A corollary to this notion is that pancreatitis results when adaptive responses are insufficiently robust to alleviate the cellular stress caused by alcohol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号