首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
方圆  李玭  武微  熊倩  律娜  朱宝利  张玉梅 《微生物学报》2021,61(11):3642-3652
[目的] 比较持续母乳喂养条件下不同分娩方式的34周龄婴儿肠道菌群差异,探讨分娩方式对较大婴儿肠道菌群发育的影响。[方法] 在北京地区招募健康足月分娩母乳喂养婴儿,在34周仍然参与随访的持续母乳喂养婴儿共21例,其中剖宫产婴儿16例、阴道分娩婴儿5例,进行肠道菌群的16S rRNA检测。[结果] 两组共21个粪便样本中,共注释到6个门,分别为:疣微菌门、变形菌门、梭杆菌门、厚壁菌门、放线菌门和拟杆菌门;两组共21个样本中共有57个OTU注释到属水平,其中,26个属水平OTU被注释到厚壁菌门,18个属水平OTU被注释到变形菌门,6个属水平OTU被注释到放线菌门,5个属水平OTU被注释到拟杆菌门,梭杆菌门、疣微菌门各有1个属水平OTU被注释。其中变形菌门在阴道分娩组(44.17%)肠道菌群中的含量高于剖宫产组(16.10%);而放线菌门在阴道分娩婴儿(0.00%)肠道菌群中的含量低于剖宫产婴儿(0.09%)。阴道分娩组与剖宫产组相比,共有7个菌属的丰度发生了显著降低(P<0.05),分别为副杆菌属、葡萄球菌属、嗜血杆菌属、乳杆菌属、肠球菌属、双歧杆菌属及一注释到科水平的毛螺旋菌科OTU。[结论] 分娩方式对持续母乳喂养的婴儿肠道菌群结构存在影响,且这种影响在出生后34周仍然存在。  相似文献   

2.

Objectives

Bifidobacterium species are one of the major components of the infant''s intestine microbiota. Colonization with bifidobacteria in early infancy is suggested to be important for health in later life. However, information remains limited regarding the source of these microbes. Here, we investigated whether specific strains of bifidobacteria in the maternal intestinal flora are transmitted to their infant''s intestine.

Materials and Methods

Fecal samples were collected from healthy 17 mother and infant pairs (Vaginal delivery: 12; Cesarean section delivery: 5). Mother''s feces were collected twice before delivery. Infant''s feces were collected at 0 (meconium), 3, 7, 30, 90 days after birth. Bifidobacteria isolated from feces were genotyped by multilocus sequencing typing, and the transitions of bifidobacteria counts in infant''s feces were analyzed by quantitative real-time PCR.

Results

Stains belonging to Bifidobacterium adolescentis, Bifidobacterium bifidum, Bifidobacterium catenulatum, Bifidobacterium longum subsp. longum, and Bifidobacterium pseudocatenulatum, were identified to be monophyletic between mother''s and infant''s intestine. Eleven out of 12 vaginal delivered infants carried at least one monophyletic strain. The bifidobacterial counts of the species to which the monophyletic strains belong, increased predominantly in the infant''s intestine within 3 days after birth. Among infants delivered by C-section, monophyletic strains were not observed. Moreover, the bifidobacterial counts were significantly lower than the vaginal delivered infants until 7 days of age.

Conclusions

Among infants born vaginally, several Bifidobacterium strains transmit from the mother and colonize the infant''s intestine shortly after birth. Our data suggest that the mother''s intestine is an important source for the vaginal delivered infant''s intestinal microbiota.  相似文献   

3.
In this study fecal microflora of human infants born through vaginal delivery (VB) and through cesarean section (CB) were investigated using culture-independent 16S rDNA cloning and sequencing approach. The results obtained clearly revealed that fecal microbiota of VB infants distinctly differ from those in their counterpart CB infants. The intestinal microbiota of infants delivered by cesarean section appears to be more diverse, in terms of bacteria species, than the microbiota of vaginally delivered infants. The most abundant bacterial species present in VB infants were Acinetobacter sp., Bifidobacterium sp. and Staphylococcus sp. However, CB infant’s fecal microbiota was dominated with Citrobacter sp., Escherichia coli and Clostridium difficile. The intestinal microbiota of cesarean section delivered infants in this study was also characterized by an absence of Bifidobacteria species. An interesting finding of our study was recovery of large number of Acinetobacter sp. consisting of Acinetobacter pittii (former Acinetobacter genomic species 3), Acinetobacter junii and Acinetobacter baumannii in the VB infants clone library. Among these, Acinetobacter baumannii is a known nosocomial pathogen and Acinetobacter pittii (genomic species 3) is recently recognized as clinically important taxa within the Acinetobacter calcoaceticusAcinetobacter baumannii (ACB) complex. Although none of the infants had shown any sign of clinical symptoms of disease, this observation warrants a closer look.  相似文献   

4.
The development of the gut is controlled and modulated by different interacting mechanisms such as, genetic endowment, intrinsic biological regulatory functions, environment influences and last but no least, the diet influence. Considered together with other endogenous and exogenous factors the type of feeding may interfere greatly in the regulation of the intestinal microbiota. During the last years molecular methods offer a complementarity to the classic culture-based knowledge. FISH has been applied for molecular evaluation of the microbiota in newborns delivered by vaginal delivery. Eleven probes/probe combinations for specific groups of faecal bacteria were used to determine the bacterial composition in faecal samples of newborns infants under different types of feeding. Breast-fed infants harbor a fecal microbiota by more than two times increased in numbers of Bifidobacterium cells when compared to formula-fed infants. After formula-feeding, Atopobium was found in significant counts and the numbers of Bifidobacterium dropped followed by increasing numbers in Bacteroides population. Moreover, under formula feeding the infants microbiota was more diverse.  相似文献   

5.
A healthy intestinal microbiota is considered to be important for priming of the infants' mucosal and systemic immunity. Breast-fed infants typically have an intestinal microbiota dominated by different Bifidobacterium species. It has been described that allergic infants have different levels of specific Bifidobacterium species than healthy infants. For the accurate quantification of Bifidobacterium adolescentis, Bifidobacterium angulatum, Bifidobacterium bifidum, Bifidobacterium breve, Bifidobacterium catenulatum, Bifidobacterium dentium, Bifidobacterium infantis, and Bifidobacterium longum in fecal samples, duplex 5′ nuclease assays were developed. The assays, targeting rRNA gene intergenic spacer regions, were validated and compared with conventional PCR and fluorescent in situ hybridization methods. The 5′ nuclease assays were subsequently used to determine the relative amounts of different Bifidobacterium species in fecal samples from infants receiving a standard formula or a standard formula supplemented with galacto- and fructo-oligosaccharides (OSF). A breast-fed group was studied in parallel as a reference. The results showed a significant increase in the total amount of fecal bifidobacteria (54.8% ± 9.8% to 73.4% ± 4.0%) in infants receiving the prebiotic formula (OSF), with a diversity of Bifidobacterium species similar to breast-fed infants. The intestinal microbiota of infants who received a standard formula seems to resemble a more adult-like distribution of bifidobacteria and contains relatively more B. catenulatum and B. adolescentis (2.71% ± 1.92% and 8.11% ± 4.12%, respectively, versus 0.15% ± 0.11% and 1.38% ± 0.98% for the OSF group). In conclusion, the specific prebiotic infant formula used induces a fecal microbiota that closely resembles the microbiota of breast-fed infants also at the level of the different Bifidobacterium species.  相似文献   

6.
《Journal of Asia》2022,25(3):101941
Predatory natural enemies are major insect species in cotton field ecosystems. Microbes that live inside these insects play essential roles in vital host activities, however, the microbiota of these insects have not been well characterized. In this study, we used Illumina 16S rRNA amplicon sequencing to investigate microbial diversity of the natural enemies Chrysoperla sinica, Harmonia axyridis, Propylaea japonica and Orius similis from a cotton field in northern China. The microbial diversity of C. sinica was low and its dominant bacterial community were Rickettsia (87.78%) and Wolbachia (6.29%). The microbial community of O. similis was more diverse than that of C. sinica. The microbial diversity of H. axyridis and P. japonica was higher, and they had similar dominant phyla, which included Firmicutes, Proteobacteria and Bacteroidetes. Their common dominant bacterial community were Romboutsia, Escherichia-Shigella, Bacteroides, Terrisporobacter, Enterobacter, Lactobacillus, Fusobacterium, Actinobacillus, Sphaerochaeta, Bacteroidales_S24-7_group and Cyanobacteria. This study also forms the basis for further study on the microbiota of natural enemies from different habitats.  相似文献   

7.
Gut microbial diversity and the core microbiota of the Jinhua pig, which is a traditional, slow-growing Chinese breed with a high body-fat content, were examined from a total of 105 fecal samples collected from 6 groups of pigs at 3 weaning ages that originated from 2 strains and were raised on 3 different pig farms. The bacterial community was analyzed following high-throughput pyrosequencing of 16S rRNA genes, and the fecal concentrations of short-chain fatty acids (SCFAs) were measured by gas chromatograph. Our results showed that Firmicutes and Bacteroidetes were the dominant phyla, and Lactobacillus, Streptococcus, Clostridium, SMB53, and Bifidobacterium were the most abundant genera. Fifteen predominant genera present in every Jinhua pig sample constituted a phylogenetic core microbiota and included the probiotics Lactobacillus and Bifidobacterium, and the SCFA-producing bacteria Clostridium, Prevotella, Bacteroides, Coprococcus, Roseburia, Ruminococcus, Blautia, and Butyricicoccus. Comparisons of the microbiota compositions and SCFA concentrations across the 6 groups of pigs demonstrated that genetic background and weaning age affected the structure of the gut microbiota more significantly than the farm. The relative abundance of the core genera in the pigs, including Lactobacillus, Clostridium, Prevotella, Bacteroides, Roseburia, Ruminococcus, Blautia, and Butyricicoccus varied dramatically in pigs among the 2 origins and 3 weaning ages, while Oscillospira, Megasphaera, Parabacteroides, and Corynebacterium differed among pigs from different farms. Interestingly, there was a more significant influence of strain and weaning age than of rearing farm on the SCFA concentrations. Therefore, strain and weaning age appear to be the more important factors shaping the intestinal microbiome of pigs.  相似文献   

8.
The developing intestinal microbiota of breast-fed infants is considered to play an important role in the priming of the infants' mucosal and systemic immunity. Generally, Bifidobacterium and Lactobacillus predominate the microbiota of breast-fed infants. In intervention trials it has been shown that lactobacilli can exert beneficial effects on, for example, diarrhea and atopy. However, the Lactobacillus species distribution in breast-fed or formula-fed infants has not yet been determined in great detail. For accurate enumeration of different lactobacilli, duplex 5′ nuclease assays, targeted on rRNA intergenic spacer regions, were developed for Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus delbrueckii, Lactobacillus fermentum, Lactobacillus paracasei, Lactobacillus plantarum, Lactobacillus reuteri, and Lactobacillus rhamnosus. The designed and validated assays were used to determine the amounts of different Lactobacillus species in fecal samples of infants receiving a standard formula (SF) or a standard formula supplemented with galacto- and fructo-oligosaccharides in a 9:1 ratio (OSF). A breast-fed group (BF) was studied in parallel as a reference. During the 6-week intervention period a significant increase was shown in total percentage of fecal lactobacilli in the BF group (0.8% ± 0.3% versus 4.1% ± 1.5%) and the OSF group (0.8% ± 0.3% versus 4.4% ± 1.4%). The Lactobacillus species distribution in the OSF group was comparable to breast-fed infants, with relatively high levels of L. acidophilus, L. paracasei, and L. casei. The SF-fed infants, on the other hand, contained more L. delbrueckii and less L. paracasei compared to breast-fed infants and OSF-fed infants. An infant milk formula containing a specific mixture of prebiotics is able to induce a microbiota that closely resembles the microbiota of BF infants.  相似文献   

9.
Preterm birth is a leading cause of perinatal morbidity and mortality. Studies using a cultivation method or molecular identification have shown that bacterial vaginosis is one of the risk factors for preterm birth. However, an association between preterm birth and intestinal microbiota has not been reported using molecular techniques, although the vaginal microbiota changes during pregnancy. Our aim here was to clarify the difference in intestinal and vaginal microbiota between women with preterm birth and women without preterm labor. 16S ribosomal ribonucleic acid genes were amplified from fecal and vaginal DNA by polymerase chain reaction. Using terminal restriction fragment length polymorphism (T-RFLP), we compared the levels of operational taxonomic units of both intestinal and vaginal flora among three groups: pregnant women who delivered term babies without preterm labor (non-PTL group) (n = 20), those who had preterm labor but delivered term babies (PTL group) (n = 11), and those who had preterm birth (PTB group) (n = 10). Significantly low levels of Clostridium subcluster XVIII, Clostridium cluster IV, Clostridium subcluster XIVa, and Bacteroides, and a significantly high level of Lactobacillales were observed in the intestinal microbiota in the PTB group compared with those in the non-PTL group. The levels of Clostridium subcluster XVIII and Clostridium subcluster XIVa in the PTB group were significantly lower than those in the PTL group, and these levels in the PTL group were significantly lower than those in non-PTL group. However, there were no significant differences in vaginal microbiota among the three groups. Intestinal microbiota in the PTB group was found to differ from that in the non-PTL group using the T-RFLP method.  相似文献   

10.
目的 探讨不同分娩方式对晚期早产儿肠道菌群定植的影响。方法 以胎龄(周)为34~(0/7)~36~(6/7)的15例晚期早产儿为研究对象,根据分娩方式分为自然分娩组(n=8)和剖宫产组(n=7)。收集早产儿出生后3 d、7 d、14 d的粪便标本,应用高通量测序技术对细菌16S rRNA可变区中的V4区进行测序,分析肠道菌群多样性及组成结构。结果 (1)自然分娩组晚期早产儿粪便标本菌群多样性指数逐渐上升,剖宫产组的多样性指数较平稳,两组相比差异无统计学意义;(2)45份粪便标本中共检测出10个菌门,均以变形菌门、厚壁菌门、放线菌门和拟杆菌门为优势菌门,两组晚期早产儿生后变形菌门、拟杆菌门所占比例逐渐降低,厚壁菌门、放线菌门呈增多趋势。两组相比,剖宫产组7 d、14 d时拟杆菌门的相对丰度显著低于自然分娩组(Z=-2.896,P=0.004;Z=-2.120,P=0.040),变形菌门相对丰度仅在7 d时显著高于自然分娩组(Z=-2.190,P=0.030);(3)两组研究对象中,除自然分娩组14 d时以双歧杆菌属为优势菌属外,余下均以肠杆菌属为优势菌属。相比于自然分娩组,在7 d时剖宫产组拟杆菌属所占比例显著降低(Z=-2.806,P=0.005),肠杆菌属所占比例显著升高(Z=-2.199,P=0.030)。结论 剖宫产能显著影响婴儿早期肠道菌群的定植,降低肠道中早期拟杆菌的水平。  相似文献   

11.
Tart cherries have been reported to exert potential health benefits attributed to their specific and abundant polyphenol content. However, there is a need to study the impact and fate of tart cherries polyphenols in the gut microbiota. Here, tart cherries, pure polyphenols (and apricots) were submitted to in vitro bacterial fermentation assays and assessed through 16S rRNA gene sequence sequencing and metabolomics. A short-term (5 days, 8 oz. daily) human dietary intervention study was also conducted for microbiota analyses.Tart cherry concentrate juices were found to contain expected abundances of anthocyanins (cyanidin-glycosylrutinoside) and flavonoids (quercetin-rutinoside) and high amounts of chlorogenic and neochlorogenic acids. Targeted metabolomics confirmed that gut microbes were able to degrade those polyphenols mainly to 4-hydroxyphenylpropionic acids and to lower amounts of epicatechin and 4-hydroxybenzoic acids. Tart cherries were found to induce a large increase of Bacteroides in vitro, likely due to the input of polysaccharides, but prebiotic effect was also suggested by Bifidobacterium increase from chlorogenic acid. In the human study, two distinct and inverse responses to tart cherry consumption were associated with initial levels of Bacteroides. High-Bacteroides individuals responded with a decrease in Bacteroides and Bifidobacterium, and an increase of Lachnospiraceae, Ruminococcus and Collinsella. Low-Bacteroides individuals responded with an increase in Bacteroides or Prevotella and Bifidobacterium, and a decrease of Lachnospiraceae, Ruminococcus and Collinsella. These data confirm that gut microbiota metabolism, in particular the potential existence of different metabotypes, needs to be considered in studies attempting to link tart cherries consumption and health.  相似文献   

12.
Vulvovaginal candidiasis (VVC) is one of the most prevalent vaginal infectious diseases, and there are controversial reports regarding the diversity of the associated vaginal microbiota. We determined the vaginal microbial community in patients with VVC, bacterial vaginosis (BV), and mixed infection of VVC and BV using Illumina sequencing of 16S rRNA tags. Our results revealed for the first time the highly variable patterns of the vaginal microbiome from VVC patients. In general, the alpha-diversity results of species richness and evenness showed the following order: normal control < VVC only < mixed BV and VVC infection < BV only. The beta-diversity comparison of community structures also showed an intermediate composition of VVC between the control and BV samples. A detailed comparison showed that, although the control and BV communities had typical patterns, the vaginal microbiota of VVC is complex. The mixed BV and VVC infection group showed a unique pattern, with a relatively higher abundance of Lactobacillus than the BV group and higher abundance of Prevotella, Gardnerella, and Atopobium than the normal control. In contrast, the VVC-only group could not be described by any single profile, ranging from a community structure similar to the normal control (predominated with Lactobacillus) to BV-like community structures (abundant with Gardnerella and Atopobium). Treatment of VVC resulted in inconsistent changes of the vaginal microbiota, with four BV/VVC samples recovering to a higher Lactobacillus level, whereas many VVC-only patients did not. These results will be useful for future studies on the role of vaginal microbiota in VVC and related infectious diseases.  相似文献   

13.
Recently, prebiotic supplementation of infant formula has become common practice; however the impact on the intestinal microbiota has not been completely elucidated. In this study, neonatal piglets were randomized to: formula (FORM, n = 8), formula supplemented with 2 g/L each galactooligosaccharides (GOS) and polydextrose (PDX, F+GP, n = 9) or a sow-reared (SOW, n = 12) reference group for 19 days. The ileal (IL) and ascending colon (AC) microbiota were characterized using culture-dependent and -independent methods. 16S amplicon sequencing identified no differences at the genera level in the IL. Interestingly, six genera in the AC were significantly different between FORM and F+GP (P<0.05): Lactobacillus, Ruminococcus, Parabacteroides, Oscillospira, Hydrogenoanaerobacterium and Catabacter. In particular, the relative abundance of AC Lactobacillus was higher (P = 0.04) in F+GP as compared to FORM. Culture-dependent analysis of the IL and AC lactobacilli communities of FORM and F+GP revealed a Lactobacillus spp. composition similar to 16S amplicon sequencing. Additional analysis demonstrated individual Lactobacillus isolates were unable to ferment PDX. Conversely, a majority of lactobacilli isolates could ferment GOS, regardless of piglet diet. In addition, the ability of lactobacilli isolates to ferment the longer chain GOS fragments (DP 3 or greater), which are expected to be present in the distal intestine, was not different between FORM and F+GP. In conclusion, prebiotic supplementation of formula impacted the AC microbiota; however, direct utilization of GOS or PDX does not lead to an increase in Lactobacillus spp.  相似文献   

14.

Background

Bacterial vaginosis (BV) is one of the most common urogenital infections among women of reproductive age that represents shifts in microbiota from Lactobacillus spp. to diverse anaerobes. The aim of our study was to evalute the diagnostic values of Gardnerella, Atopobium, Eggerthella, Megasphaera typeI, Leptotrichia/Sneathia and Prevotella, defined as a vaginal pathogenic community for BV and their associations with vaginal pH and Nugent scores.

Methods and Findings

We investigated the vaginal pathogenic bacteria and Lactobacillus spp. with species-specific real-time quantitative PCR (qPCR) in 50 BV-positive and 50 BV-negative Chinese women of reproductive age. Relative to BV-negative subjects, a siginificant decline in Lactobacillus and an obvious increase in bacteria in the vaginal pathogenic community were observed in BV-postive subjects (P<0.05). With the exception of Megasphaera typeI, other vaginal pathogenic bacteria were highly predictable for BV with a better sensitivity and specificity. The vaginal pathogenic community was positively associated with vaginal pH and Nugent scores, while Lactobacillus spp., such as L. iners and L. crispatus was negatively associated with them (P<0.05).

Conclusions

Our data implied that the prevalance of vaginal pathogenic bacteria as well as the depletion of Lactobacillus was highly accurate for BV diagnosis. Vaginal microbiota shifts, especially the overgrowth of the vaginal pathogenic community, showed well diagnostic values in predicting BV. Postive correlations between those vaginal pathogenic bacteria and vaginal pH, Nugent score indicated the vaginal pathogenic community rather than a single vaginal microorganism, was participated in the onset of BV directly.  相似文献   

15.
Increasing evidence suggests that perturbations in the intestinal microbiota composition of infants are implicated in the pathogenesis of food allergy (FA), while the actual structure and composition of the intestinal microbiota in human beings with FA remain unclear. Microbial diversity and composition were analyzed with parallel barcoded 454 pyrosequencing targeting the 16S rRNA gene hypervariable V1-V3 regions in the feces of 34 infants with FA (17 IgE mediated and 17 non-IgE mediated) and 45 healthy controls. Here, we showed that several key FA-associated bacterial phylotypes, but not the overall microbiota diversity, significantly changed in infancy fecal microbiota with FA and were associated with the development of FA. The proportion of abundant Bacteroidetes, Proteobacteria, and Actinobacteria phyla were significantly reduced, while the Firmicutes phylum was highly enriched in the FA group (P < 0.05). Abundant Clostridiaceae 1 organisms were prevalent in infants with FA at the family level (P = 0.016). FA-enriched phylotypes negatively correlated with interleukin-10, for example, the genera Enterococcus and Staphylococcus. Despite profound interindividual variability, levels of 20 predominant genera were significantly different between the FA and healthy control groups (P < 0.05). Infants with IgE-mediated FA had increased levels of Clostridium sensu stricto and Anaerobacter and decreased levels of Bacteroides and Clostridium XVIII (P < 0.05). A positive correlation was observed between Clostridium sensu stricto and serum-specific IgE (R = 0.655, P < 0.001). The specific microbiota signature could distinguish infants with IgE-mediated FA from non-IgE-mediated ones. Detailed microbiota analysis of a well-characterized cohort of infants with FA showed that dysbiosis of fecal microbiota with several FA-associated key phylotypes may play a pathogenic role in FA.  相似文献   

16.
Whether or not treatment with antibiotics or probiotics for bacterial vaginosis (BV) is associated with a change in the diversity of vaginal microbiota in women was investigated. One hundred fifteen women, consisting of 30 healthy subjects, 30 BV-positive control subjects, 30 subjects with BV treated with a 7-day metronidazole regimen, and 25 subjects with BV treated with a 10-day probiotics regimen, were analyzed to determine the efficacy and disparity of diversity and richness of vaginal microbiota using 454 pyrosequencing. Follow-up visits at days 5 and 30 showed a greater BV cure rate in the probiotics-treated subjects (88.0 and 96 %, respectively) compared to the metronidazole-treated subjects (83.3 and 70 %, respectively [p?=?0.625 at day 5 and p?=?0.013 at day 30]). Treatment with metronidazole reduced the taxa diversity and eradicated most of the BV-associated phylotypes, while probiotics only suppressed the overgrowth and re-established vaginal homeostasis gradually and steadily. Despite significant interindividual variation, the microbiota of the actively treated groups or participants constituted a unique profile. Along with the decrease in pathogenic bacteria, such as Gardnerella, Atopobium, Prevotella, Megasphaera, Coriobacteriaceae, Lachnospiraceae, Mycoplasma, and Sneathia, a Lactobacillus-dominated vaginal microbiota was recovered. Acting as vaginal sentinels and biomarkers, the relative abundance of Lactobacillus and pathogenic bacteria determined the consistency of the BV clinical and microbiologic cure rates, as well as recurrent BV. Both 7-day intravaginal metronidazole and 10-day intravaginal probiotics have good efficacy against BV, while probiotics maintained normal vaginal microbiota longer due to effective and steady vaginal microbiota restoration, which provide new insights into BV treatment.  相似文献   

17.
摘要 目的:探讨经会阴三维超声在不同分娩方式初产妇肛门括约肌复合体(ASC)和盆膈裂孔(PH)影响的评估价值。方法:选择2017年1月~2019年12月我院进行分娩的初产妇150例,按照分娩方式分成阴道分娩组71例,剖宫产组79例,比较两组基线资料。对所有受试者均实施经会阴三维超声检查,比较两组缩肛动作下肛门内括约肌(IAS)远端、中端及远端平面厚度,肛门外括约肌(EAS)远端平面及耻骨直肠肌(PRM)中端平面厚度,分娩前、产后6周、产后3个月PH左右径、PH前后径以及PH面积。结果:两组孕妇年龄、孕周及体质指数比较无差异(P>0.05),阴道分娩组IAS近端6点钟方向、12点钟方向平面厚度以及IAS中端、12点钟方向平面厚度均小于剖宫产组(P<0.05)。阴道分娩组EAS远端12点钟方向平面厚度小于剖宫产组(P<0.05)。阴道分娩组产后6周的PH左右径大于剖宫产组(P<0.05)。阴道分娩组产后6周的PH前后径大于剖宫产组(P<0.05)。阴道分娩组产后6周的pH面积大于剖宫产组(P<0.05)。结论:经会阴三维超声可有效评估初产妇ASC和PH的影响情况,分娩会对初产妇ASC和PH产生影响,阴道分娩的初产妇产后存在明显的ASC厚度减小和PH增大现象。  相似文献   

18.
Recent data point at the similarity between the perianal and vaginal microflora in terms of Lactobacillus species involved. Bacterial vaginosis, the most common perturbation of the vaginal microflora involving primarily overgrowth of Gardnerella vaginalis, has also been suggested to involve a recto-vaginal pathway. We addressed this issue with regard to bacteria of the Bifidobacteriaceae family. In particular, we investigated the putative concordance of the presence of G. vaginalis and a series of Bifidobacteria between the perianal and vaginal microflora in 10 patients with bacterial vaginosis through multicolor fluorescence in situ hybridization analysis of desquamated epithelial cells.G. vaginalis was found in a biofilm mode of growth at the perianal and vaginal sites. In most women at least one of the following species was detected perianally: Bifidobacterium adolescentis, Bifidobacterium longum, Bifidobacterium breves, Bifidobacterium bifidum and Bifidobacterium catenulatum. At the vaginal site, none of these Bifidobacteria was found.We conclude that bacterial vaginosis does not occur as a result of simple growth per continuum of perianal bacteria. Only some species originating from the intestinal tract do display pronounced vaginotropism, like G. vaginalis, whereas many other species do not.  相似文献   

19.
Bifidobacteria are a major microbial component of infant gut microbiota, which is believed to promote health benefits for the host and stimulate maturation of the immune system. Despite their perceived importance, very little is known about the natural development of and possible correlations between bifidobacteria in human populations. To address this knowledge gap, we analyzed stool samples from a randomly selected healthy cohort of 87 infants and their mothers with >90% of vaginal delivery and nearly 100% breast-feeding at 4 months. Fecal material was sampled during pregnancy, at 3 and 10 days, at 4 months, and at 1 and 2 years after birth. Stool samples were predicted to be rich in the species Bifidobacterium adolescentis, B. bifidum, B. dentium, B. breve, and B. longum. Due to high variation, we did not identify a clear age-related structure at the individual level. Within the population as a whole, however, there were clear age-related successions. Negative correlations between the B. longum group and B. adolescentis were detected in adults and in 1- and 2-year-old children, whereas negative correlations between B. longum and B. breve were characteristic for newborns and 4-month-old infants. The highly structured age-related development of and correlation networks between bifidobacterial species during the first 2 years of life mirrors their different or competing nutritional requirements, which in turn may be associated with specific biological functions in the development of healthy gut.  相似文献   

20.
The human vaginal environment harbours a community of bacteria that plays an important role in maintaining vaginal health and in protecting this environment from various urogenital infections. This bacterial population, also known as vaginal microbiota, has been demonstrated to be dominated by members of the Lactobacillus genus. Several studies employing 16S rRNA gene-based amplicon sequencing have classified the vaginal microbiota into five distinct community state types (CSTs) or vaginotypes. To deepen our understanding of the vaginal microbiota we performed an in-depth meta-analysis of 1312 publicly available datasets concerning healthy vaginal microbiome information obtained by metagenomics sequencing. The analysis confirmed the predominance of taxa belonging to the Lactobacillus genus, followed by members of the genera Gardnerella, Vibrio and Atopobium. Moreover, the statistical robustness offered by this meta-analysis allowed us to disentangle the species-level composition of dominant and accessory taxa constituting each vaginotype and to revisit and refine the previously proposed CST classification. In addition, a functional characterization of the metagenomic datasets revealed particular genetic features associated with each assigned vaginotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号