首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The levels of functional mRNA encoding glucose-6-phosphate dehydrogenase (G6PDH; EC 1.1.1.49) were examined in hepatocytes from fasted and fasted/carbohydrate-refed rats and in hepatocytes inoculated into primary culture. Functional G6PDH mRNA was assessed in a cell-free protein synthesis system in vitro. We observed that hepatocytes from fasted/carbohydrate-refed rats had a 12-fold higher level of mRNA than did hepatocytes from fasted rats. The possibility that the adrenal glucocorticoids and insulin were responsible for the increase in G6PDH mRNA in refed rats was examined by studying the effect of insulin and the synthetic glucocorticoid, dexamethasone, on the level of functional G6PDH mRNA in primary cultures of rat hepatocytes maintained in a chemically defined medium. Hepatocytes from fasted rats were inoculated into primary culture and maintained for 48 h either in the absence of hormones or in the presence of insulin alone, dexamethasone alone or both hormones together. We observed that dexamethasone alone caused a fourfold increase in G6PDH mRNA while insulin caused about a twofold increase. Both hormones together elicited an increase that was additive. A comparison of functional G6PDH mRNA levels with the effect of the hormones on G6PDH activity and relative rate of enzyme synthesis suggests that the glucocorticoid elevates the level of G6PDH mRNA within the cell without causing a concommitant increase in the rate of synthesis of the enzyme or the level of G6PDH activity. The results obtained with the primary cultures of hepatocytes indicate that insulin and the glucocorticoids are probably involved with the regulation of hepatic G6PDH mRNA. However, involvement of other hormones, such as thyroid hormone, seems likely since the induced levels of G6PDH mRNA in hepatocytes in culture was one-third of that observed in refed rats.  相似文献   

3.
Reproducible induction of the enzyme tyrosine aminotransferase by dibutyryl cAMP (Bt2cAMP) in a line of HTC hepatoma cells in suspension culture requires that the cells be preinduced with dexamethasone, a synthetic glucocorticoid which itself induces tyrosine aminotransferase. Concentrations of dexamethasone that do not induce tyrosine aminotransferase fail to support Bt2cAMP induction, removal of the steroid from the medium leads to a loss of the Bt2cAMP effect, and an HTC cell line whose aminotransferase is not steroid-inducible does not respond to the cyclic nucleotide. We show that the further induction of tyrosine aminotransferase by Bt2cAMP in dexamethasone-treated cells is due to an increased rate of enzyme synthesis. The cyclic nucleotide has no effect on aminotransferase synthesis in cells grown in the absence of steroid. Several lines of evidence suggest that dexamethasone acts at a step beyond the activation of protein kinase by cAMP: (a) basal levels of cAMP are not altered by growth of HTC cells in dexamethasone; (b) accumulation of cAMP from the medium is not enhanced; (c) the glucocorticoid does not induce cAMP-dependent protein kinase in HTC cells; and (d) there is no augmentation of cAMP binding to the regulatory protein, nor is there any change in cAMP activation of protein kinase caused by growth in dexamethasone. These results help define a system that should be useful in studying the interaction of cyclic nucleotides and steroid hormones.  相似文献   

4.
Schwann cells have been identified as targets for glucocorticoids. Besides genes implicated in the myelination process, the target genes of glucocorticoids have not been identified in these cells. For that purpose, we performed microarray analysis on MSC80 (mouse Schwann cells) treated with a synthetic glucocorticoid, dexamethasone. These cells express a functional glucocorticoid receptor (GR), but none of the other steroid receptors. This allowed us to identify genes specifically regulated by GR in the absence of the mineralocorticoid receptor. Among the 5000 genes analyzed, 12 were at least two-fold upregulated and 91 genes were at least two-fold down-regulated upon treatment with dexamethasone. Because of their potential role in Schwann cell homeostasis, we selected, for further analysis, the upregulated genes encoding glutamine synthetase (GS) and cytosolic aspartate aminotransferase (cAspAT). These genes play a crucial role in the glutamate cycle which was shown to be vital in neuron-astrocyte cross-talk in the central nervous system. Their activation was confirmed by semi-quantitative and real-time PCR. A detailed analysis of cAspAT promoter activity revealed that the mechanism of regulation by GR in Schwann cells differs from that in hepatoma cells, suggesting a cell-specific regulation. The transactivation potency of the two Glucocorticoid Responsive Units (GRU) present in the cAspAT promoter seems to be dependent on the levels of the GR in MSC80 cells. Furthermore, we show that an increase in GR levels under certain circumstances could considerably potentiate the effects of glucocorticoids on the cAspAT promoter via synergistic activation of both GRU, To the opposite, an enhancement in GR levels did not further potentiate Dex-activation of the GS promoter, showing a differential mechanism of action of GR in the context of both promoters.  相似文献   

5.
The present study investigates the effect and interaction of glucocorticoid and thyroid hormones on the induction of phosphoenolpyruvate carboxykinase (PEPck) mRNA and enzyme protein under in vivo conditions and in serum-free cultured hepatocytes from hypothyroid rats. In hypothyroid/adrenalectomized rats T3 significantly enhanced the cAMP induced PEPck mRNA activity within 3-6 h. This effect was further enhanced by the presence of glucocorticoids. The half-life of PEPck mRNA, as determined after administration of cordycepin, was not affected by hypothyroidism or hyperthyroidism (t 1/2 approximately equal to 45 min), but considerably prolonged by the absence of glucocorticoid hormones (t 1/2 less than 80 min). In hepatocytes in culture Bt2cAMP (0.2 mM) provoked an increase in translatable PEPck mRNA within 2 h incubation time. Preincubation with either T3 (0.1 microM) or dexamethasone (0.1 microM) for 4 h significantly enhanced the cAMP response on PEPck mRNA. Addition of both, T3 plus dexamethasone further enhanced this Bt2cAMP-mediated effect. By measurement of PEPck synthesis corresponding findings were observed. It is concluded that glucocorticoid and thyroid hormones predominantly enhance the cAMP-provoked induction of hepatic PEPck mRNA and, consequently, of PEPck synthesis. Their effect is rapid, significant and additive, indicating an independent action. While glucocorticoids, in addition, accelerate PEPck mRNA degradation, the PEPck mRNA decay rate is similar in the presence and absence of thyroid hormones.  相似文献   

6.
7.
Regulation of rat liver maturation in vitro by glucocorticoids.   总被引:3,自引:1,他引:2       下载免费PDF全文
The biochemistry of liver maturation was studied by using the RLA209-15 fetal rat hepatocyte line that is temperature sensitive for maintenance of the differentiated fetal liver phenotype. At 33 degrees C these cells were dedifferentiated; but at 40 degrees C they were phenotypically differentiated and, like normal fetal hepatocytes, synthesized moderate levels of albumin and transferrin, high levels of authentic (69,000 and 73,000 molecular weight) rat fetal alpha-fetoprotein (AFP), and low levels of a 65,000-molecular-weight variant AFP. Our results indicated that administration of glucocorticoid hormones to RLA209-15 cells at 40 degrees C induced a series of events associated with normal hepatocyte maturation; synthesis of fetal AFP was inhibited, whereas the synthesis of variant AFP, albumin, transferrin, tyrosine aminotransferase, and alpha 1-acid glycoprotein was induced. The variant AFP was produced by RLA209-15 cells at both temperatures and was encoded by an mRNA of 1.7 kilobases (kb). The fetal AFP was encoded by an mRNA of 2.2 kb. Normal adult rat liver contained three AFP mRNAs of 2.2 (minor), 1.7, and 1.5 kb. The 1.7-kb adult liver AFP mRNA comigrated with the RNA found in RLA209-15 cells, and both directed the synthesis of a 50,000-molecular-weight precursor polypeptide of the variant AFP. Administration of glucocorticoids to RLA209-15 cells grown at 33 degrees C stimulated synthesis of both the fetal and variant AFPs, but the levels of the 2.2-kb AFP mRNA were preferentially increased. RLA209-15 cells contained two glucocorticoid receptor mRNAs of 6.8 and 4.5 kb. The glucocorticoid-mediated maturation described above was blocked by the antiglucocorticoid RU486.  相似文献   

8.
9.
The role of glucocorticoids and second messenger systems in the regulation of the vasopressin (VP) gene was studied in the human small cell lung carcinoma cell line GLC-8. Small cell lung carcinoma GLC-8 cells express VP mRNA and contain both glucocorticoid and mineralocorticoid receptors. Treatment with the synthetic glucocorticoid dexamethasone when added alone at 10(-8) M had no effect on the VP mRNA level and decreased the level by 30% at 10(-6) M. However, the effect of dexamethasone changed to positive when cells were simultaneously treated with cAMP-enhancing agents. VP mRNA levels, which were elevated by 1.5- to 2-fold by the cAMP-enhancing agents alone, increased a further 1.5- to 3-fold by dexamethasone. Thus, the combined effect of dexamethasone and cAMP stimulation was a 3- to 7.5-fold increase in VP mRNA levels. Long term treatment with the phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate (TPA) reduced the VP mRNA level by 75%. The TPA-suppressed VP mRNA levels could be up-regulated about 6-fold by simultaneous treatment with 8-bromo-cAMP. Dexamethasone did not alter the TPA-suppressed VP mRNA levels. These results indicate that both cAMP and protein kinase-C pathways as well as glucocorticoid receptors are involved in the regulation of VP mRNA levels and that these factors interact. This leads to a negative or positive response of VP gene expression to glucocorticoids in a state-dependent manner. The interactions may be of significance in a physiological context and relate to the different regulation of VP-expressing systems in the brain.  相似文献   

10.
The third component of C, C3, is the key opsonin of the C cascade and is produced locally within the lung by pulmonary epithelial cells, macrophages, and fibroblasts. Because glucocorticoids regulate the maturation and expression of several physiologically important genes in pulmonary epithelial cells, we examined the effects of glucocorticoids on C3 mRNA expression and C3 synthesis by the human pulmonary epithelial cell line, A549. Treatment with dexamethasone enhanced C3 production in a time- and dose-dependent fashion such that concentrations of dexamethasone greater than or equal to 0.001 microM significantly increased C3 production on day 3 of culture. Natural glucocorticoids, corticosterone, cortisol, and 11-deoxycortisol also increased C3 concentrations in A549 supernatants. Both cycloheximide and the glucocorticoid receptor antagonist, RU486, individually inhibited the effect of dexamethasone on C3 production. Northern analysis demonstrated that the steady state 5.2-kb C3 message increased in A549 cells within 10 h of treatment with dexamethasone. RU486 inhibited the effect of dexamethasone on C3 mRNA expression. The integrity of the C3 thiolester bond, as measured by [3H]iodoacetic acid titration and hemolytic assay, was not disrupted by dexamethasone. We conclude that glucocorticoids such as dexamethasone enhance the expression of C3 mRNA and increase the production of functionally active C3 by A549 cells by a mechanism that is mediated by the intracellular glucocorticoid receptor.  相似文献   

11.
12.
Phorbol ester inhibition of hormonal induction of tyrosine aminotransferase   总被引:2,自引:0,他引:2  
The liver specific enzyme, tyrosine aminotransferase, can be induced by glucocorticoids, cAMP analogs, or insulin. Each of these different inducing agents is believed to act through a separate pathway. The tumor promoting phorbol esters have been reported to stimulate phosphorylation of the insulin receptor and thereby decrease the ability of insulin to induce tyrosine aminotransferase. Our results demonstrate that TPA will not only inhibit the insulin stimulated increase in tyrosine aminotransferase, but will also inhibit induction of the enzyme by glucocorticoids or by cAMP.  相似文献   

13.
The urea cycle, which involves enzymes located in both the mitochondrion and cytoplasm, requires transport of ornithine and citrulline across the mitochondrial membrane by the ornithine/citrulline antiporter ORNT1. Expression of the urea cycle enzymes can change dramatically in response to hormones, but it is not known whether ORNT1 expression also is hormonally regulated. This study therefore tested the hypothesis that ORNT1 mRNA levels in hepatocytes are induced by cAMP and glucocorticoid as are the urea cycle enzyme mRNAs. ORNT1 mRNA was rapidly induced by a cAMP analog and dexamethasone in cultured rat hepatocytes and there was a strong synergistic response to a combination of these agents. Ongoing protein synthesis was required for induction of ORNT1 mRNA by dexamethasone but not by cAMP, suggesting that the dexamethasone response required an accessory factor. Thus, hormonal regulation of ORNT1 mRNA in hepatocytes is coordinated with that of mRNAs encoding the urea cycle enzymes.  相似文献   

14.
In adult rat liver, amounts of the urea cycle enzymes are regulated by diet, glucocorticoids, and cAMP. Rat hepatocytes cultured in chemically defined medium were used to precisely define the roles of glucocorticoids and cAMP in regulation of these enzymes at the pretranslational level. With the exception of ornithine transcarbamylase mRNA, cultured rat hepatocytes retain the capacity to express mRNAs for the urea cycle enzymes at the same level observed for liver of intact rats. In the absence of added hormones, mRNAs for argininosuccinate synthetase and argininosuccinate lyase remained at or above normal in vivo levels, while mRNAs for the other three enzymes declined to very low levels. Messenger RNAs for carbamyl phosphate synthetase I, argininosuccinate synthetase, argininosuccinate lyase, and arginase increased in response to either dexamethasone or 8-(4-chlorophenylthio) cAMP (CPT-cAMP). Half-maximal responses occurred at 2-3 nM dexamethasone and at 2-7 microM CPT-cAMP. Cycloheximide abolished the response to dexamethasone but not to CPT-cAMP, suggesting that dexamethasone induced expression of an intermediate gene product required for induction of these mRNAs. The effects of a combination of both hormones were additive for argininosuccinate lyase mRNA and synergistic for carbamyl phosphate synthetase I, argininosuccinate synthetase, and arginase mRNAs. Messenger RNA for ornithine transcarbamylase showed little or no response to any condition tested. Depending on the particular mRNA and hormonal condition tested, increases in mRNA levels ranged from 1.4- to 70-fold above control values.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
16.
17.
18.
H Kido  N Fukusen  N Katunuma 《FEBS letters》1987,223(2):223-226
Epidermal growth factor (EGF) dose-dependently enhanced the induction of tyrosine aminotransferase and tryptophan oxygenase by glucocorticoids in primary cultures of adult rat hepatocytes without itself having any effect on these enzymes in the absence of glucocorticoids. The amplifications were observed even with dexamethasone at high concentrations (10(-6) M-10(-5) M) that had a maximal effect. EGF had no effect on induction of tyrosine aminotransferase by glucagon or Bt2cAMP. The effect of EGF was also observed in adrenal-ectomized and submaxillary gland-ectomized rats. These results suggest that EGF is an endogenous amplifier of the action of glucocorticoids.  相似文献   

19.
In adrenalectomized rats, diacylglycerol, a potent activator of protein kinase C, specifically enhanced the induction of tyrosine aminotransferase and ornithine decarboxylase by even maximally effective doses of dexamethasone phosphate, but itself had no effect on these enzyme inductions in the absence of glucocorticoid. The amplifications of enzyme induction by diacylglycerol was dose-dependent and the time courses of the amplified inductions were similar to those of the inductions by dexamethasone phosphate alone. Since diacylglycerol did not affect the induction of these enzymes by glucagon and insulin, its amplifying effect seemed to be specific for induction by glucocorticoids.  相似文献   

20.
OBJECTIVE: The aims of the study were to evaluate whether growth hormone could be beneficial in a model of hypercatabolism induced by glucocorticoids and to examine its effects on ACTH, corticosterone and IGF-1 levels. The effects of growth hormone on the expression of both glucocorticoid receptor and tyrosine aminotransferase were also evaluated. METHODS: Fifty Wistar rats were divided into five groups and treated as follows: (A) daily subcutaneous injection of growth hormone (4.8 IU/kg/day) and oral placebo, (B) daily injection of placebo and oral dexamethasone (3 mg/kg/day), (C) daily injection of growth hormone and oral dexamethasone, (D) daily injection of placebo and oral placebo, and (E) no treatment. The animals were decapitated seven days after initiating treatment. RESULTS: Growth hormone did not modify the weight loss induced by dexamethasone. Glucocorticoid receptor expression was significantly lower in group A than in group E. An increase in tyrosine aminotransferase was observed in group C. CONCLUSION: Growth hormone did not exert any beneficial effect in this model of hypercatabolism. Growth hormone decreased glucocorticoid receptor expression. This fact could explain its beneficial effect when protein hypercatabolism is not the predominant phenomenon. Growth hormone induced the hyperexpression of tyrosine aminotransferase, thus suggesting an amplifying effect on the glucocorticoid action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号