首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Paramyxovirinae envelope glycoproteins constitute a premier model to dissect how specific and dynamic interactions in multisubunit membrane protein complexes can control deep-seated conformational rearrangements. However, individual residues that determine reciprocal specificity of the viral attachment and fusion (F) proteins have not been identified. We have developed an assay based on a pair of canine distemper virus (CDV) F proteins (strains Onderstepoort (ODP) and Lederle) that share approximately 95% identity but differ in their ability to form functional complexes with the measles virus (MV) attachment protein (H). Characterization of CDV F chimeras and mutagenesis reveals four residues in CDV F-ODP (positions 164, 219, 233, and 317) required for productive interaction with MV H. Mutating these residues to the Lederle type disrupts triggering of F-ODP by MV H without affecting functionality when co-expressed with CDV H. Co-immunoprecipitation shows a stronger physical interaction of F-ODP than F-Lederle with MV H. Mutagenesis of MV F highlights the MV residues homologous to CDV F residues 233 and 317 as determinants for physical glycoprotein interaction and fusion activity under homotypic conditions. In assay reversal, the introduction of sections of the CDV H stalk into MV H shows a five-residue fragment (residues 110-114) to mediate specificity for CDV F-Lederle. All of the MV H stalk chimeras are surface-expressed, show hemadsorption activity, and trigger MV F. Combining the five-residue H chimera with the CDV F-ODP quadruple mutant partially restores activity, indicating that the residues identified in either glycoprotein contribute interdependently to the formation of functional complexes. Their localization in structural models of F and H suggests that placement in particular of F residue 233 in close proximity to the 110-114 region of H is structurally conceivable.  相似文献   

2.
A monoclonal antibody (MCI20.6) which inhibited measles virus (MV) binding to host cells was previously used to characterize a 57- to 67-kDa cell surface glycoprotein as a potential MV receptor. In the present work, this glycoprotein (gp57/67) was immunopurified, and N-terminal amino acid sequencing identified it as human membrane cofactor protein (CD46), a member of the regulators of complement activation gene cluster. Transfection of nonpermissive murine cells with a recombinant expression vector containing CD46 cDNA conferred three major properties expected of cells permissive to MV infection. First, expression of CD46 enabled MV to bind to murine cells. Second, the CD46-expressing murine cells were able to undergo cell-cell fusion when both MV hemagglutinin and MV fusion glycoproteins were expressed after infection with a vaccinia virus recombinant encoding both MV glycoproteins. Third, M12.CD46 murine B cells were able to support MV replication, as shown by production of infectious virus and by cell biosynthesis of viral hemagglutinin after metabolic labeling of infected cells with [35S]methionine. These results show that the human CD46 molecule serves as an MV receptor allowing virus-cell binding, fusion, and viral replication and open new perspectives in the study of MV pathogenesis.  相似文献   

3.
cDNA clones of the genes encoding either the hemagglutinin (HA) or fusion (F) proteins of the Edmonston strain of measles virus (MV) were expressed in vaccinia virus recombinants. Immunofluorescence analysis detected both proteins on the plasma membranes of unfixed cells as well as internally in fixed cells. Immunoprecipitation of metabolically radiolabeled infected-cell extracts by using specific sera demonstrated a 76-kDa HA polypeptide and gene products of 60, 44, and 23 kDa which correspond to a MV F precursor and cleavage products F0, F1, and F2, respectively. Neither recombinant induced cell fusion of Vero cells when inoculated individually, but efficient cell fusion was readily observed upon coinfection of cells with both recombinants. Inoculation of dogs with the vaccinia virus-MV F recombinant (VV-MVF) did not give rise to detectable MV-neutralizing antibody. Inoculation of dogs with the vaccinia virus-MV HA recombinant (VV-MVHA) or coinoculation with both recombinants (VV-MVF and VV-MVHA) induced significant MV-neutralizing titers that were increased following a booster inoculation. Inoculation of dogs with the vaccinia virus recombinants or with MV failed to induce canine distemper virus (CDV)-neutralizing antibodies. Upon challenge with a lethal dose of virulent CDV, signs of infection were observed in dogs inoculated with (VV-MVF). No symptoms of disease were observed in dogs that had been vaccinated with VV-MVHA or with VV-MVHA and VV-MVF and then challenged with CDV. All dogs vaccinated with the recombinant viruses as well as those inoculated with MV or a vaccine strain of CDV survived CDV challenge.  相似文献   

4.
Measles virus (MV) and canine distemper virus (CDV) are morbilliviruses that cause acute illnesses and several persistent central nervous system infections in humans and in dogs, respectively. Characteristically, the cytopathic effect of these viruses is the formation of syncytia in permissive cells. In this study, a vaccinia virus expression system was used to express MV and CDV hemagglutinin (HA) and fusion (F) envelope proteins. We found that cotransfecting F and HA genes of MV or F and HA genes of CDV resulted in extensive syncytium formation in permissive cells while transfecting either F or HA alone did not. Similar experiments with heterologous pairs of proteins, CDV-F with MV-HA or MV-F with CDV-HA, caused significant cell fusion in both cases. These results indicate that in this expression system, cell fusion requires both F and HA; however, the functions of these proteins are interchangeable between the two types of morbilliviruses. Human-mouse somatic hybrids were used to determine the human chromosome conferring susceptibility to either MV and CDV. Of the 12 hybrids screened, none were sensitive to MV. Two of the hybrids containing human chromosome 19 formed syncytia following CDV infection. In addition, these two hybrids underwent cell fusion when cotransfected with CDV-F and CDV-HA (but not MV-F and MV-HA) glycoproteins by using the vaccinia virus expression system. To discover the viral component responsible for cell specificity, complementation experiments coexpressing CDV-HA with MV-F or CDV-F with MV-HA in the CDV-sensitive hybrids were performed. We found that syncytia were formed only in the presence of CDV-HA. These results support the idea that the HA protein is responsible for cell tropism. Furthermore, while the F protein is necessary for the fusion process, it is interchangeable with the F protein from other morbilliviruses.  相似文献   

5.
Canine distemper virus (CDV) and measles virus (MV) cause severe illnesses in their respective hosts. The viruses display a characteristic cytopathic effect by forming syncytia in susceptible cells. For CDV, the proficiency of syncytium formation varies among different strains and correlates with the degree of viral attenuation. In this study, we examined the determinants for the differential fusogenicity of the wild-type CDV isolate 5804Han89 (CDV(5804)), the small- and large-plaque-forming variants of the CDV vaccine strain Onderstepoort (CDV(OS) and CDV(OL), respectively), and the MV vaccine strain Edmonston B (MV(Edm)). The cotransfection of different combinations of fusion (F) and hemagglutinin (H) genes in Vero cells indicated that the H protein is the main determinant of fusion efficiency. To verify the significance of this observation in the viral context, a reverse genetic system to generate recombinant CDVs was established. This system is based on a plasmid containing the full-length antigenomic sequence of CDV(OS). The coding regions of the H proteins of all CDV strains and MV(Edm) were introduced into the CDV and MV genetic backgrounds, and recombinant viruses rCDV-H(5804), rCDV-H(OL), rCDV-H(Edm), rMV-H(5804), rMV-H(OL), and rMV-H(OS) were recovered. Thus, the H proteins of the two morbilliviruses are interchangeable and fully functional in a heterologous complex. This is in contrast with the glycoproteins of other members of the family Paramyxoviridae, which do not function efficiently with heterologous partners. The fusogenicity, growth characteristics, and tropism of the recombinant viruses were examined and compared with those of the parental strains. All these characteristics were found to be predominantly mediated by the H protein regardless of the viral backbone used.  相似文献   

6.
Moll M  Klenk HD  Maisner A 《Journal of virology》2002,76(14):7174-7186
The generation of replication-competent measles virus (MV) depends on the incorporation of biologically active, fusogenic glycoprotein complexes, which are required for attachment and penetration into susceptible host cells and for direct virus spread by cell-to-cell fusion. Whereas multiple studies have analyzed the importance of the ectodomains of the MV glycoproteins hemagglutinin (H) and fusion protein (F), we have investigated the role of the cytoplasmic tails of the F and H proteins for the formation of fusogenic complexes. Deletions in the cytoplasmic tails of transiently expressed MV glycoproteins were found to have varying effects on receptor binding, fusion, or fusion promotion activity. F tail truncation to only three amino acids did not affect fusion capacity. In contrast, truncation of the H cytoplasmic tail was limited. H protein mutants with cytoplasmic tails of <14 residues no longer supported F-mediated cell fusion, predominantly due to a decrease in surface expression and receptor binding. This indicates that a minimal length of the H protein tail of 14 amino acids is required to ensure a threshold local density to have sufficient accumulation of fusogenic H-F complexes. By using reverse genetics, a recombinant MV with an F tail of three amino acids (rMV-FcDelta30), as well as an MV with an H tail of 14 residues (rMV-HcDelta20), could be rescued, whereas generation of viruses with shorter H tails failed. Thus, glycoprotein truncation does not interfere with the successful generation of recombinant MV if fusion competence is maintained.  相似文献   

7.
To understand the molecular determinants of measles virus (MV) cytopathicity, we have characterized mutant viruses exhibiting a more-extensive cell-to-cell fusion while maintaining efficient replication to high titers. A virus which is modified by the addition of an 8-amino-acid Flag epitope tag at the cytoplasmic tail of its H (for MV hemagglutinin) envelope glycoprotein replicates efficiently, has an increased cytopathicity, possesses a greater infectivity per particle, and has an altered protein composition compared with that of unmodified MV. The mutant phenotype is not specifically linked to the epitope sequence, since an alternatively added HA (for influenza virus-derived hemagglutinin) epitope tag caused similar effects. We demonstrate that both epitope tags weaken the interaction between the H and fusion (F) glycoproteins in virus-infected cells. This reduction in strength of H/F interaction is independent of the presence of the viral matrix (M) protein. Viruses with this less stable complex are more sensitive to neutralization by a soluble octameric form of the CD46 receptor, consistent with their increased fusogenicity. Similar analyses of glycoproteins derived from MV strains with reduced cytopathicities confirm that the strength of H and F glycoprotein interaction is a modulator of viral fusogenicity.  相似文献   

8.
Nipah virus (NiV) and Hendra virus (HeV) are novel paramyxoviruses from pigs and horses, respectively, that are responsible for fatal zoonotic infections of humans. The unique genetic and biological characteristics of these emerging agents has led to their classification as the prototypic members of a new genus within the Paramyxovirinae subfamily called HENIPAVIRUS: These viruses are most closely related to members of the genus Morbillivirus and infect cells through a pH-independent membrane fusion event mediated by the actions of their attachment (G) and fusion (F) glycoproteins. Understanding their cell biological features and exploring the functional characteristics of the NiV and HeV glycoproteins will help define important properties of these emerging viruses and may provide new insights into paramyxovirus membrane fusion mechanisms. Using a recombinant vaccinia virus system and a quantitative assay for fusion, we demonstrate NiV glycoprotein function and the same pattern of cellular tropism recently reported for HeV-mediated fusion, suggesting that NiV likely uses the same cellular receptor for infection. Fusion specificity was verified by inhibition with a specific antiserum or peptides derived from the alpha-helical heptads of NiV or HeV F. Like that of HeV, NiV-mediated fusion also requires both F and G. Finally, interactions between the glycoproteins of the paramyxoviruses have not been well defined, but here we show that the NiV and HeV glycoproteins are capable of highly efficient heterotypic functional activity with each other. However, no heterotypic activity was observed with envelope glycoproteins of the morbilliviruses Measles virus and Canine distemper virus.  相似文献   

9.
The Edmonston strain of measles virus (MV) that utilizes the human CD46 as the cellular receptor produced cytopathic effects (CPE) in all of the primate cell lines examined. In contrast, the wild-type MV strains isolated in a marmoset B-cell line B95a (the KA and Ichinose strains) replicated and produced CPE in some but not all of the primate lymphoid cell lines. To determine the mechanism underlying this difference in cell tropism, we used a recently developed recombinant vesicular stomatitis virus (VSV) containing as a reporter the green fluorescent protein gene in lieu of the VSV G protein gene (VSVDeltaG*). MV glycoproteins were efficiently incorporated into VSVDeltaG*, producing the VSV pseudotypes. VSVDeltaG* complemented with VSV G protein efficiently infected all of the cell lines tested. The VSV pseudotype bearing the Edmonston hemagglutinin (H) and fusion (F) protein (VSVDeltaG*-EdHF) infected all cell lines in which the Edmonston strain caused CPE, including the rodent cell lines to which the human CD46 gene was stably transfected. The pseudotype bearing the wild-type KA H protein and Edmonston F protein (VSVDeltaG*-KAHF) infected all lymphoid cell lines in which the wild-type MV strains caused CPE as efficiently as VSVDeltaG*-EdHF, but it did not infect any of the cell lines resistant to infection with the KA strain. The results indicate that the difference in cell tropism between these MV strains was largely determined by virus entry, in which the H proteins of respective MV strains play a decisive role.  相似文献   

10.
We have identified the major cellular endoprotease that activates the fusion (F) glycoprotein of measles virus (MV) and have engineered a serine protease inhibitor (serpin) to target the endoprotease and inhibit the production of infectious MV. The F-protein precursor of MV was not cleaved efficiently into the mature F protein in human colon carcinoma cells lacking functional furin, indicating that furin is the major enzyme responsible for activation of the MV F protein. A human serpin alpha 1-antitrypsin variant was engineered to specifically inhibit furin. When expressed from a recombinant vaccinia virus in primate cells infected by MV, the engineered serpin (alpha 1-PDX) specifically inhibited furin-catalyzed cleavage of the F-protein precursor without affecting synthesis of other MV proteins. We generated human glioma cells stably expressing alpha 1-PDX. MV infection in these cells did not result in syncytia. The infected cells produced all the MV proteins, but the F-protein precursor remained largely uncleaved. This did not prevent virus assembly. However, the released virions contained inactive F-protein precursor rather than mature F protein, and infectious-virus titers were reduced by 3 to 4 orders of magnitude. These results show that a mature F protein is not required for the assembly of MV but is crucial for virus infectivity. The engineered serpin may offer a novel molecular antiviral approach against MV.  相似文献   

11.
Protein interactions play key roles throughout all subcellular compartments. In the present paper, we report the visualization of protein interactions throughout living mammalian cells using two oligomerizing MV (measles virus) transmembrane glycoproteins, the H (haemagglutinin) and the F (fusion) glycoproteins, which mediate MV entry into permissive cells. BiFC (bimolecular fluorescence complementation) has been used to examine the dimerization of these viral glycoproteins. The H glycoprotein is a type II membrane-receptor-binding homodimeric glycoprotein and the F glycoprotein is a type I disulfide-linked membrane glycoprotein which homotrimerizes. Together they co-operate to allow the enveloped virus to enter a cell by fusing the viral and cellular membranes. We generated a pair of chimaeric H glycoproteins linked to complementary fragments of EGFP (enhanced green fluorescent protein)--haptoEGFPs--which, on association, generate fluorescence. Homodimerization of H glycoproteins specifically drives this association, leading to the generation of a fluorescent signal in the ER (endoplasmic reticulum), the Golgi and at the plasma membrane. Similarly, the generation of a pair of corresponding F glycoprotein-haptoEGFP chimaeras also produced a comparable fluorescent signal. Co-expression of H and F glycoprotein chimaeras linked to complementary haptoEGFPs led to the formation of fluorescent fusion complexes at the cell surface which retained their biological activity as evidenced by cell-to-cell fusion.  相似文献   

12.
Signaling lymphocytic activation molecule (SLAM, CD150) is the universal morbillivirus receptor. Based on the identification of measles virus (MV) hemagglutinin (H) amino acids supporting human SLAM-dependent cell entry, we mutated canine distemper virus (CDV) H and identified residues necessary for efficient canine SLAM-dependent membrane fusion. These residues are located in two nearby clusters in a new CDV H structural model. To completely abolish SLAM-dependent fusion, combinations of mutations were necessary. We rescued a SLAM-blind recombinant CDV with six mutations that did not infect ferret peripheral blood mononuclear cells while retaining full infectivity in epithelial cells.  相似文献   

13.
Wild-type measles virus (MV) isolated from B95a cells has a restricted host cell specificity and hardly replicates in Vero cells, whereas the laboratory strain Edmonston (Ed) replicates in a variety of cell types including Vero cells. To investigate the role of H protein in the differential MV host cell specificity and cell fusion activity, H proteins of wild-type MV (IC-B) and Ed were coexpressed with the F protein in Vero cells. Cell-cell fusion occurred in Vero cells when Ed H protein, but not IC-B H protein, was expressed. To analyze the role of H protein in the context of viral infection, a recombinant IC-B virus bearing Ed H protein (IC/Ed-H) and a recombinant Ed virus bearing IC-B H protein (Ed/IC-H) were generated from cloned cDNAs. IC/Ed-H replicated efficiently in Vero cells and induced small syncytia in Vero cells, indicating that Ed H protein conferred replication ability in Vero cells on IC/Ed-H. On the other hand, Ed/IC-H also replicated well in Vero cells and induced small syncytia, although parental Ed induced large syncytia in Vero cells. These results indicated that an MV protein(s) other than H protein was likely involved in determining cell fusion and host cell specificity of MV in the case of our recombinants. SLAM (CDw150), a recently identified cellular receptor for wild-type MV, was not expressed in Vero cells, and a monoclonal antibody against CD46, a cellular receptor for Ed, did not block replication or syncytium formation of Ed/IC-H in Vero cells. It is therefore suggested that Ed/IC-H entered Vero cells through another cellular receptor.  相似文献   

14.
Subacute sclerosing panencephalitis (SSPE) is a fatal sequela associated with measles and is caused by persistent infection of the brain with measles virus (MV). The SI strain was isolated in 1976 from a patient with SSPE and shows neurovirulence in animals. Genome nucleotide sequence analyses showed that the SI strain genome possesses typical genome alterations for SSPE-derived strains, namely, accumulated amino acid substitutions in the M protein and cytoplasmic tail truncation of the F protein. Through the establishment of an efficient reverse genetics system, a recombinant SI strain expressing a green fluorescent protein (rSI-AcGFP) was generated. The infection of various cell types with rSI-AcGFP was evaluated by fluorescence microscopy. rSI-AcGFP exhibited limited syncytium-forming activity and spread poorly in cells. Analyses using a recombinant MV possessing a chimeric genome between those of the SI strain and a wild-type MV strain indicated that the membrane-associated protein genes (M, F, and H) were responsible for the altered growth phenotype of the SI strain. Functional analyses of viral glycoproteins showed that the F protein of the SI strain exhibited reduced fusion activity because of an E300G substitution and that the H protein of the SI strain used CD46 efficiently but used the original MV receptors on immune and epithelial cells poorly because of L482F, S546G, and F555L substitutions. The data obtained in the present study provide a new platform for analyses of SSPE-derived strains as well as a clear example of an SSPE-derived strain that exhibits altered receptor specificity and limited fusion activity.  相似文献   

15.
The fusogenic activities of enveloped-virus glycoproteins were analyzed by using a quantitative, sensitive, rapid, and highly versatile recombinant vaccinia virus-based assay measuring activation of a reporter gene upon fusion of two distinct cell populations. One population uniformly expressed vaccinia virus-encoded viral glycoproteins mediating specific binding and fusion activities; the other expressed the corresponding cellular receptor(s). The cytoplasm of one population also contained vaccinia virus-encoded bacteriophage T7 RNA polymerase; the cytoplasm of the other contained a transfected plasmid with the Escherichia coli lacZ gene linked to the T7 promoter. When the two populations were mixed, cell fusion resulted in activation of the LacZ gene in the cytoplasm of the fused cells; beta-galactosidase activity was assessed by colorimetric assay of detergent cell lysates or by in situ staining. We applied this approach to study the human immunodeficiency virus type 1 envelope glycoprotein (Env)-CD4 interaction. Beta-Galactosidase was detected within 1 h after cell mixing and accumulated over the next several hours. Cell fusion dependence was demonstrated by the strict requirement for both CD4 and functional Env expression and by the inhibitory effects of known fusion-blocking monoclonal antibodies and pharmacological agents. Quantitative measurements indicated much higher sensitivity compared with analysis of syncytium formation. The assay was used to probe mechanisms of the cell type specificity for Env-CD4-mediated fusion. In agreement with known restrictions, cell fusion occurred only when CD4 was expressed on a human cell type. Membrane vesicle transfer experiments indicated that CD4 initially produced in either human or nonhuman cells was functional when delivered to human cells, suggesting that the fusion deficiency with nonhuman cells was not associated with irreversible defects in CD4. We also demonstrated that the infectivity specificities of different human immunodeficiency virus type 1 isolates for peripheral blood lymphocytes versus continuous CD4+ cell lines were associated with corresponding fusion selectivities of the respective recombinant Env proteins. The assay enabled analysis of the fusogenic activity of the fusion glycoprotein/hemagglutinin-neuraminidase of the paramyxovirus simian virus 5. This system provides a powerful tool to study fusion mechanisms mediated by enveloped-virus glycoproteins, as well as to screen fusion-blocking antibodies and pharmacological agents.  相似文献   

16.
Corey EA  Iorio RM 《Journal of virology》2007,81(18):9900-9910
The hemagglutinin (H) protein of measles virus (MV) mediates attachment to cellular receptors. The ectodomain of the H spike is thought to consist of a membrane-proximal stalk and terminal globular head, in which resides the receptor-binding activity. Like other paramyxovirus attachment proteins, MV H also plays a role in fusion promotion, which is mediated through an interaction with the viral fusion (F) protein. The stalk of the hemagglutinin-neuraminidase (HN) protein of several paramyxoviruses determines specificity for the homologous F protein. In addition, mutations in a conserved domain in the Newcastle disease virus (NDV) HN stalk result in a sharp decrease in fusion and an impaired ability to interact with NDV F in a cell surface coimmunoprecipitation (co-IP) assay. The region of MV H that determines specificity for the F protein has not been identified. Here, we have adapted the co-IP assay to detect the MV H-F complex at the surface of transfected HeLa cells. We have also identified mutations in a domain in the MV H stalk, similar to the one in the NDV HN stalk, that also drastically reduce fusion yet do not block complex formation with MV F. These results indicate that this domain in the MV H stalk is required for fusion but suggest either that mutation of it indirectly affects the H-dependent activation of F or that the MV H-F interaction is mediated by more than one domain in H. This points to an apparent difference in the way the MV and NDV glycoproteins interact to regulate fusion.  相似文献   

17.
CD46, a complement regulatory protein widely expressed on human cells, serves as an entry receptor for measles virus (MV). We have previously shown that the expression of human CD46 in mouse macrophages restricts MV replication in these cells and enhances the production of nitric oxide (NO) in the presence of gamma interferon (IFN-gamma). In this study, we show that crosslinking human CD46 expressed on the mouse macrophage-like cell line RAW264.7 with purified C3b multimer but not monomer enhances NO production. The enhanced production of NO in response to IFN-gamma was observed again with C3b multimer but not monomer. The augmentation of NO production is human CD46-dependent with a CYT1>CYT2 profile. Thus, the reported MV-mediated NO production, irrespective of whether it is IFN-gamma-dependent or -independent, should be largely attributable to CD46 signaling but not to MV replication. Similar CYT1-dependent augmentation of NO production was reproducible with two CD46 ligating reagents, CD46-specific monoclonal antibodies (mAb) or their F(ab')(2) and MV hemagglutinin (H) and fusion (F) glycoproteins. Co-cultivation of mouse macrophages bearing human CD46 with Chinese hamster ovary (CHO) cells expressing MV H and F enhanced IFN-gamma-induced NO production. Yet, the NO levels induced by F(ab')(2) against CD46 or MV H/F on CHO cells were much lower than those induced by CD46-crosslinking mAb with Fc or MV infection. Removing the cytoplasmic tails of CD46 abrogated the augmentation of NO production triggered by all three stimulators. Thus, the CD46 CYT1 and CYT2 isoforms functionally diverge to elicit innate immune responses, which can be modulated by purified C3b multimer or anti-CD46 mAbs.  相似文献   

18.
The frequent overexpression of CD46 in malignant tumors has provided a basis to use vaccine-lineage measles virus (MeV) as an oncolytic virotherapy platform. However, widespread measles seropositivity limits the systemic deployment of oncolytic MeV for the treatment of metastatic neoplasia. Here, we report the development of MeV-Stealth, a modified vaccine MeV strain that exhibits oncolytic properties and escapes antimeasles antibodies in vivo. We engineered this virus using homologous envelope glycoproteins from the closely-related but serologically non-cross reactive canine distemper virus (CDV). By fusing a high-affinity CD46 specific single-chain antibody fragment (scFv) to the CDV-Hemagglutinin (H), ablating its tropism for human nectin-4 and modifying the CDV-Fusion (F) signal peptide we achieved efficient retargeting to CD46. A receptor binding affinity of ~20 nM was required to trigger CD46-dependent intercellular fusion at levels comparable to the original MeV H/F complex and to achieve similar antitumor efficacy in myeloma and ovarian tumor-bearing mice models. In mice passively immunized with measles-immune serum, treatment of ovarian tumors with MeV-Stealth significantly increased overall survival compared with treatment with vaccine-lineage MeV. Our results show that MeV-Stealth effectively targets and lyses CD46-expressing cancer cells in mouse models of ovarian cancer and myeloma, and evades inhibition by human measles-immune serum. MeV-Stealth could therefore represent a strong alternative to current oncolytic MeV strains for treatment of measles-immune cancer patients.  相似文献   

19.
The trimeric fusion (F) glycoproteins of morbilliviruses are activated by furin cleavage of the precursor F(0) into the F(1) and F(2) subunits. Here we show that an additional membrane-proximal cleavage occurs and modulates F protein function. We initially observed that the ectodomain of approximately one in three measles virus (MV) F proteins is cleaved proximal to the membrane. Processing occurs after cleavage activation of the precursor F(0) into the F(1) and F(2) subunits, producing F(1a) and F(1b) fragments that are incorporated in viral particles. We also detected the F(1b) fragment, including the transmembrane domain and cytoplasmic tail, in cells expressing the canine distemper virus (CDV) or mumps virus F protein. Six membrane-proximal amino acids are necessary for efficient CDV F(1a/b) cleavage. These six amino acids can be exchanged with the corresponding MV F protein residues of different sequence without compromising function. Thus, structural elements of different sequence are functionally exchangeable. Finally, we showed that the alteration of a block of membrane-proximal amino acids results in diminished fusion activity in the context of a recombinant CDV. We envisage that selective loss of the membrane anchor in the external subunits of circularly arranged F protein trimers may disengage them from pulling the membrane centrifugally, thereby facilitating fusion pore formation.  相似文献   

20.
We have used site-directed mutagenesis of the hemagglutinin (H) glycoprotein of measles virus (MV) to investigate the molecular basis for the phenotypic differences observed between MV vaccine strains and recently isolated wild-type MV strains. The former downregulate CD46, the putative cellular receptor of MV, are positive for hemadsorption, and are fusogenic in HeLa cells, whereas the latter are negative for these phenotypic markers. CD46 downregulation in particular, could have profound consequences for the immunopathology of MV infection, as this molecule protects the cell from complement lysis. Mutagenesis of two amino acids, valine and tyrosine at positions 451 and 481, respectively, in the H protein from the vaccine-like Hallé MV strain to their counterparts, glutamate and asparagine, in the H protein from the wild-type Ma93F MV strain (creating the V451E/Y481N double mutation) abrogated CD46 downregulation, HeLa cell fusion, and hemadsorption. The converse double mutagenesis of the Ma93F H protein (E451V/N481Y) transferred the CD46-downregulating, fusogenic, and hemadsorption functions to this protein. The data provide the first mapping study of the functional domains of MV H. The consequences of these results for MV vaccine design and the role of CD46 in MV infection are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号