首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Caspase-8 and -10 are thought to be involved in a signaling pathway leading to death receptor-mediated apoptosis. The prodomains of these caspases are known to form fibrous structures in the perinuclear region when overexpressed, though the meaning of the structures remains unclear. In a previous study we showed that the overexpressed caspase-8 or -10 prodomain (PDCasp8 or PDCasp10) did not induce cell death, and we hypothesized that these prodomains interfere with the receptor-mediated cell death signaling pathway. Indeed, in 293, HeLa and Jurkat cells, cell death mediated by agonistic anti-Fas antibody, TRAIL or overexpression of full-length caspase-8 was significantly inhibited by overexpression of PDCasp8 or PDCasp10 which colocalized with the Golgi complex and with overexpressed FADD. However, when about 20 amino acid residues were deleted from either terminus of the caspase-10 prodomain (amino acid residue 1 to 219), the ability to inhibit Fas-mediated cell death was lost. Interestingly, these deletion mutants also lost the ability to make fibrous structures and to bind FADD, suggesting that FADD binding is important for their function, and that PDCasp8 and PDCasp10 act as dominant-negative inhibitors.  相似文献   

2.
The production of bio-active interleukin-1beta (IL-1beta), a pro-inflammatory cytokine, is mediated by activated caspase-1. One of the known molecular mechanisms underlying pro-caspase-1 processing and activation involves binding of the caspase-1 prodomain to a caspase recruitment domain (CARD)-containing serine/threonine kinase known as RIP2/CARDIAK/RICK. We have identified a novel protein, COP (CARD only protein), which has a high degree of sequence identity to the caspase-1 prodomain. COP binds to both RIP2 and the caspase-1 prodomain and inhibits RIP2-induced caspase-1 oligomerization. COP inhibits caspase- 1-induced IL-1beta secretion as well as lipopolysaccharide-induced IL-1beta secretion in transfected cells. Our data indicate that COP can regulate IL-1beta secretion, implying that COP may play a role in down-regulating inflammatory responses analogous to the CARD protein ICEBERG.  相似文献   

3.
4.
Caspase-2 is unique among mammalian caspases because it localizes to the nucleus in a prodomain-dependent manner. The caspase-2 prodomain also regulates caspase-2 activity via a caspase recruitment domain that mediates oligomerization of procaspase-2 molecules and their subsequent autoactivation. In this study we sought to map specific functional regions in the caspase-2 prodomain that regulate its nuclear transport and also its activation. Our data indicate that caspase-2 contains a classical nuclear localization signal (NLS) at the C terminus of the prodomain which is recognized by the importin alpha/beta heterodimer. The mutation of a conserved Lys residue in the NLS abolishes nuclear localization of caspase-2 and binding to the importin alpha/beta heterodimer. Although caspase-2 is imported into the nucleus, mutants lacking the NLS were still capable of inducing apoptosis upon overexpression in transfected cells. We define a region in the prodomain that regulates the ability of caspase-2 to form dot- and filament-like structures when ectopically expressed, which in turn promotes cell killing. Our data provides a mechanism for caspase-2 nuclear import and demonstrate that association of procaspase-2 into higher order structures, rather than its nuclear localization, is required for caspase-2 activation and its ability to induce apoptosis.  相似文献   

5.
6.
Apoptosis plays an important role in the dysfunction of exocrine glands. Fas is a death-inducing receptor found on many types of cells including epithelial acinar cells. To elucidate the intracellular mechanism of Fas-mediated cell death in exocrine glands, an epithelial acinar cell line, SMG-C6, was studied. Caspase-1, -3, -8, and -9 activities were elevated in SMG-C6 cells after the induction of apoptosis by soluble Fas ligand (FasL). The activation of caspase-1 and -8 occurred prior to caspase-3 and -9 activation. The caspase-1 inhibitor, zYVAD-fmk, was effective in preventing cell death, whereas the caspase-3 and -8 inhibitors (ac-DEVD-CHO and ac-IETD-CHO, respectively) were not. zYVAD-fmk was able to inhibit caspase-3 activation indicating that caspase-1 is upstream to caspase-3. Furthermore, kinetic studies show that caspase-1 is an early event in the Fas apoptotic pathway. This study shows that caspase-1 participates in Fas-mediated apoptosis of epithelial cells by initiating the caspase cascade.  相似文献   

7.
Caspases are universal effectors of apoptosis. The mitochondrial and death receptor pathways activate distinct apical caspases (caspase-9 and -8, respectively) that converge on the proteolytic activation of the downstream executioner caspase-3. Caspase-9 and -8 cleave procaspase-3 to produce a p24 processing intermediate (composed of its prodomain and large subunit), which then undergoes autoproteolytic cleavage to remove the prodomain from the active protease. Recently, several heat shock proteins have been shown to selectively inhibit the mitochondrial apoptotic pathway by disrupting the activation of caspase-9 downstream of cytochrome c release. We report here that the small heat shock protein alphaB-crystallin inhibits both the mitochondrial and death receptor pathways. In S-100 cytosolic extracts treated with cytochrome c/dATP or caspase-8, alphaB-crystallin inhibits the autoproteolytic maturation of the p24 partially processed caspase-3 intermediate. In contrast, neither the closely related small heat shock protein family member Hsp27 nor Hsp70 inhibited the maturation of the p24 intermediate. We also demonstrate that alphaB-crystallin co-immunoprecipitates with the p24 partially processed caspase-3 in vivo. Taken together, our results demonstrate that alphaB-crystallin is a novel negative regulator of apoptosis that acts distally in the conserved cell death machinery by inhibiting the autocatalytic maturation of caspase-3.  相似文献   

8.
BACKGROUND: In the initial stages of Fas-mediated apoptosis the cysteine protease caspase-8 is recruited to the cell receptor as a zymogen (procaspase-8) and is incorporated into the death-signalling complex. Procaspase-8 is subsequently activated leading to a cascade of proteolytic events, one of them being the activation of caspase-3, and ultimately resulting in cell destruction. Variations in the substrate specificity of different caspases have been reported. RESULTS: We report here the crystal structure of a complex of the activated human caspase-8 (proteolytic domain) with the irreversible peptidic inhibitor Z-Glu-Val-Asp-dichloromethylketone at 2.8 A resolution. This is the first structure of a representative of the long prodomain initiator caspases and of the group III substrate specificity class. The overall protein architecture resembles the caspase-1 and caspase-3 folds, but shows distinct structural differences in regions forming the active site. In particular, differences observed in subsites S(3), S(4) and the loops involved in inhibitor interactions explain the preference of caspase-8 for substrates with the sequence (Leu/Val)-Glu-X-Asp. CONCLUSIONS: The structural differences could be correlated with the observed substrate specificities of caspase-1, caspase-3 and caspase-8, as determined from kinetic experiments. This information will help us to understand the role of the various caspases in the propagation of the apoptotic signal. The information gained from this investigation should be useful for the design of specific inhibitors.  相似文献   

9.
Mast cells play an important role in both allergy and innate immunity. Recently, we demonstrated an active interaction between human mast cells and Pseudomonas aeruginosa leading to the production of multiple cytokines. Here, we show that both primary cultured human cord blood-derived mast cells and the human mast cell line HMC-1 undergo apoptosis as determined by single-stranded DNA (ssDNA) formation after stimulation with P. aeruginosa exotoxin A (ETA), a major toxin produced by this bacterium. ETA-induced ssDNA formation was completely inhibited by Z-VAD (where Z is benzyloxycarbonyl), which blocks multiple caspases, suggesting a role for caspases in this process. Active caspase-3 formation in mast cells after an ETA challenge was detected by both Western blotting and flow cytometry analysis. ETA-induced caspase-3 activity in human mast cells was demonstrated by the detection of a characteristic 23 kDa product of D4-GDI (where GDI is guanine nucleotide dissociation inhibitor), an endogenous caspase-3 substrate. Interestingly, a specific caspase-8 inhibitor, Z-IETD-fmk (where fmk is fluoromethyl ketone), blocked ETA-induced cleavage of D4-GDI, but a caspase-9 inhibitor (Z-LEHD-fmk) did not. Treatment of mast cells with caspase-3 inhibitor Z-DEVD-fmk or caspase-8 inhibitor Z-IETD-fmk reduced the generation of ssDNA induced by ETA, suggesting a role for caspase-8 and -3 in ETA-induced mast cell apoptosis. Furthermore, treatment of mast cells with ETA induced decreases of the short form and a long form (p43) of Fas-associated death domain protein (FADD)-like interleukin-1beta-converting enzyme (FLICE) (caspase-8)-inhibitory proteins (FLIPs), which are endogenous caspase-8 inhibitors. Taken together, these results suggest that ETA-induced mast cell apoptosis involves down-regulation of antiapoptotic proteins, FLIPs, and activation of caspase-8 and -3 pathways.  相似文献   

10.
We have recently reported that Ginsenoside Rh2 (G-Rh2) induces the activation of two initiator caspases, caspase-8 and caspase-9 in human cancer cells. However, the molecular mechanism of its death-inducing function remains unclear. Here we show that G-Rh2 stimulated the activation of both caspase-8 and caspase-9 simultaneously in HeLa cells. Under G-Rh2 treatment, membrane death receptors Fas and TNFR1 are remarkably upregulated. However, the induced expression of Fas but not TNFR1 was contributed to the apoptosis process. Moreover, significant increases in Fas expression and caspase-8 activity temporally coincided with an increase in p53 expression in p53-nonmutated HeLa and SK-HEP-1 cells upon G-Rh2 treatment. In contrast, Fas expression and caspase-8 activity remained constant with G-Rh2 treatment in p53-mutated SW480 and PC-3 cells. In addition, siRNA-mediated knockdown of p53 diminished G-Rh2-induced Fas expression and caspase-8 activation. These results indicated that G-Rh2-triggered extrinsic apoptosis relies on p53-mediated Fas over-expression. In the intrinsic apoptotic pathway, G-Rh2 induced strong and immediate translocation of cytosolic BAK and BAX to the mitochondria, mitochondrial cytochrome c release, and subsequent caspase-9 activation both in HeLa and in SW480 cells. p53-mediated Fas expression and subsequent downstream caspase-8 activation as well as p53-independent caspase-9 activation all contribute to the activation of the downstream effector caspase-3/-7, leading to tumor cell death. Taken together, we suggest that G-Rh2 induces cancer cell apoptosis in a multi-path manner and is therefore a promising candidate for antitumor drug development.  相似文献   

11.
Jain N  Sudhakar Ch  Swarup G 《The FEBS journal》2007,274(17):4396-4407
Tumour necrosis factor-alpha (TNF-alpha) is a cytokine that is involved in many functions, including the inflammatory response, immunity and apoptosis. Some of the responses of TNF-alpha are mediated by caspase-1, which is involved in the production of the pro-inflammatory cytokines interleukin-1beta, interleukin-18 and interleukin-33. The molecular mechanisms involved in TNF-alpha-induced caspase-1 gene expression remain poorly defined, despite the fact that signaling by TNF-alpha has been well studied. The present study was undertaken to investigate the mechanisms involved in the induction of caspase-1 gene expression by TNF-alpha. Treatment of A549 cells with TNF-alpha resulted in an increase in caspase-1 mRNA and protein expression, which was preceded by an increase in interferon regulatory factor-1 and p73 protein levels. Caspase-1 promoter reporter was activated by the treatment of cells with TNF-alpha. Mutation of the interferon regulatory factor-1 binding site resulted in the almost complete loss of basal as well as of TNF-alpha-induced caspase-1 promoter activity. Mutation of the p53/p73 responsive site resulted in reduced TNF-alpha-induced promoter activity. Blocking of p73 function by a dominant negative mutant or by a p73-directed small hairpin RNA reduced basal as well as TNF-alpha-induced caspase-1 promoter activity. TNF-alpha-induced caspase-1 mRNA and protein levels were reduced when p73 mRNA was down-regulated by small hairpin RNA. Caspase-5 gene expression was induced by TNF-alpha, which was inhibited by the small hairpin RNA-mediated down-regulation of p73. Our results show that TNF-alpha induces p73 gene expression, which, together with interferon regulatory factor-1, plays an important role in mediating caspase-1 promoter activation by TNF-alpha.  相似文献   

12.
It has recently become apparent that the microenvironment made up of the extracellular matrix may affect cell signaling. In this study, we evaluated Fas-triggered apoptosis in T cells in contact with tumor cells, which resembles the cell-to-cell interactions found in tumor regions. Jurkat cells were less susceptible to the Fas-mediated apoptosis when cocultured with U118, HeLa, A549, and Huh-7 tumor cells. This was indicated by less plasma membrane alteration, an amelioration of the loss of mitochondria membrane potential, a decrease in caspase-8 and caspase-3 activation, a decrease in DNA fragmentation factor-45/35 cleavage, and a reduction in the breakage of DNA when compared with Jurkat cells cultured alone. In contrast, the tumor cell lines MCF-7 and HepG2 produced no such protective effect. This protective event was independent of the expression of Fas ligand on the tumor cells. Interrupting the beta integrins-matrix interaction diminished the coculture effect. In Jurkat cells, cell matrix contact reduced the assembly of the Fas death-inducing signaling complex and Bcl-x(L) cleavage, but enhanced the phosphorylation of ERK1/2, p38 MAPK, and Akt. Only PI3K inhibitor, but not kinase inhibitors for MEK, ERK1/2, p38 MAPK, JNK, protein kinase C, and protein kinase A, completely abolished this tumor cell contact-associated protection and in parallel restored Fas-induced Bcl-x(L) cleavage as well as decreasing the phosphorylation of Bad at serine 136. Together, our results indicate that stimulation of the beta integrin signal of T cells by contact with tumor cells may trigger a novel protective signaling through the PI3K/Akt pathway of T cells against Fas-mediated apoptosis.  相似文献   

13.
Fas, upon cross-linking with Fas ligand (FasL) or Fas agonistic antibody, transduces apoptotic yet also proliferative signals, which have been implicated in tumor pathogenesis. In this study, we investigated the molecular mechanisms that control Fas-mediated signaling in glioma cells. Fas agonistic antibody, CH-11, induced apoptosis in sensitive glioma cells through caspase-8 recruitment to the Fas-mediated death-inducing signaling complex (DISC) where caspase-8 was cleaved to initiate apoptosis through a systematic cleavage of downstream substrates. In contrast, CH-11 stimulated cell growth in resistant glioma cells through recruitment of c-FLIP (cellular Fas-associated death domain (FADD)-like interleukin-1beta-converting enzyme (FLICE)-inhibitory protein) to the Fas-mediated DISC. Three isoforms of long form c-FLIP were detected in glioma cells, but only the phosphorylated isoform was recruited to and cleaved into a p43 intermediate form in the Fas-mediated DISC in resistant cells. Calcium/calmodulin-dependent protein kinase II (CaMK II) activity was up-regulated in resistant cells. Treatment of resistant cells with the CaMK II inhibitor KN-93 inhibited CaMK II activity, reduced c-FLIP expression, inhibited c-FLIP phosphorylation, and rescued CH-11 sensitivity. Transfection of CaMK II cDNA in sensitive cells rendered them resistant to CH-11. These results indicated that CaMK II regulates c-FLIP expression and phosphorylation, thus modulating Fas-mediated signaling in glioma cells.  相似文献   

14.
Yao Z  Duan S  Hou D  Heese K  Wu M 《The EMBO journal》2007,26(4):1068-1080
Activation of the apical caspase-8 is crucial to the extrinsic apoptotic pathway. Although the death effector domain (DED) of caspase-8 has been reported to be involved in death-inducing signaling complex formation, the detailed mechanism of how DED functions in regulating apoptosis remains largely unknown. Here, we demonstrate that the prodomain of the caspase-8/Mch5 can be further cleaved between two tandemly repeated DEDs (DEDa-DEDb) at the amino-acid residue Asp129 by caspase-8 itself. The DEDa fragment generated from the endogenous caspase-8 was detected in isolated nucleoli upon treatment with TRAIL (tumor necrosis factor-related apoptosis-inducing ligand). Cleaved DEDa appears to translocate into the nucleus by association with extracellular signal-regulated protein kinases-1/2 (ERK1/2). Elimination of ERK1/2 expression by RNA interference resulted in a significant attenuation of nuclear entry of DEDa and reduced caspase-8-dependent apoptosis. In the nucleus, DEDa interacts with TOPORS, a p53 and topoisomerase I binding protein, and possibly displaces p53 from TOPORS, allowing p53 to stimulate caspase-8 gene expression. In summary, we postulate a positive feedback loop involving DEDa, which enables the continual replenishment of procaspase-8 during apoptosis.  相似文献   

15.
Caspases are cysteinyl aspartate-specific proteinases, many of which play a central role in apoptosis. Here, we report the identification of a new murine caspase homologue, viz. caspase-14. It is most related to human/murine caspase-2 and human caspase-9, possesses all the typical amino acid residues of the caspases involved in catalysis, including the QACRG box, and contains no or only a very short prodomain. Murine caspase-14 shows 83% similarity to human caspase-14. Human caspase-14 is assigned to chromosome 19p13.1. Northern blot analysis revealed that mRNA expression of caspase-14 is undetectable in all mouse adult tissues examined except for skin, while it is abundantly expressed in mouse embryos. In contrast to many other caspase family members, murine caspase-14 is not cleaved by granzyme B, caspase-1, caspase-2, caspase-3, caspase-6, caspase-7 or caspase-11, but is weakly processed into p18 and p11 subunits by murine caspase-8. No aspartase activity of murine caspase-14 could be generated by bacterial or yeast expression. Transient overexpression of murine caspase-14 in mammalian cells did not elicit cell death and did not interfere with caspase-8-induced apoptosis. In conclusion, caspase-14 is a member of the caspase family but no proteolytic or biological activities have been identified so far. The high constitutive expression levels in embryos and specific expression in adult skin suggest a role in ontogenesis and skin physiology.  相似文献   

16.
Coxsackievirus B3-induced apoptosis and caspase-3   总被引:11,自引:0,他引:11  
Yuan JP  Zhao W  Wang HT  Wu KY  Li T  Guo XK  Tong SQ 《Cell research》2003,13(3):203-209
  相似文献   

17.
18.
Caspase-9 plays a critical role in the initiation of apoptosis by the mitochondrial pathway. Activation of caspase-9 is inhibited by phosphorylation at Thr(125) by ERK1/2 MAPKs in response to growth factors. Here, we show that phosphorylation of this site is specific for these classical MAPKs and is not strongly induced when JNK and p38alpha/beta MAPKs are activated by anisomycin. By deletion and mutagenic analysis, we identify domains in caspase-9 and ERK2 that mediate their interaction. Binding of ERK2 to caspase-9 and subsequent phosphorylation of caspase-9 requires a basic docking domain (D domain) in the N-terminal prodomain of the caspase. Mutational analysis of ERK2 reveals a (157)TTCD(160) motif required for recognition of caspase-9 that acts independently of the putative common docking domain. Molecular modeling supports the conclusion that Arg(10) in the D domain of caspase-9 interacts with Asp(160) in the TTCD motif of ERK2. Differences in the TTCD motif in other MAPK family members could account for the selective recognition of caspase-9 by ERK1/2. This selectivity may be important for the antiapoptotic role of classical MAPKs in contrast to the proapoptotic roles of stress-activated MAPKs.  相似文献   

19.
Caspase-12, mainly detected in endoplasmic reticulum (ER), has been suggested to play a role in ER-mediated apoptosis and inflammatory caspase activation pathway. Cleavage of the prodomain by caspase-3/-7 at the carboxyl terminus of Asp94 or m-calpain at the carboxyl terminus of Lys158 was reported to be a part of caspase-12-involved apoptosis. We biochemically characterized the prodomain-free forms of caspase-12 and the equivalent enzymes; Δpro1(G95-D419), rev-Δpro1[(T319-N419)-(G95-D318), a reverse form of Δpro1] and rev-Δpro2[(T319-N419)-(T159-D318)]. The three variants showed comparable activities which were dependent on salt concentration and pH. Auto-proteolytic cleavage was observed at two sites (carboxyl termini of Asp318 and Asp320) in Δpro1. Constitutively active forms of caspase-12 (rev-Δpro1 and rev-Δpro2) could induce cell death in cells transfected with the corresponding expression vectors, but no cleavage of caspase-3, DFF45 or Bid was observed, indicating caspase-12 may mediate a distinct apoptotic pathway rather than caspase-8 or -9-mediated cell death.  相似文献   

20.
Caspase-3 is an essential executioner of apoptosis responsible for regulating many important cellular processes, among them the number of circulating monocytes, central players in the innate immune response. The activation of caspase-3 requires its processing from an inactive precursor. Here we show that the small heat shock protein 27 (Hsp27) associates with caspase-3 and protein-protein interaction experiments in vivo and with purified proteins demonstrate a direct interaction between Hsp27 and the amino-terminal prodomain of caspase-3. Using an in vitro caspase-3 activation assay, our results further establish that the interaction of Hsp27 with the caspase-3 prodomain inhibits the second proteolytic cleavage necessary for caspase-3 activation, revealing a novel mechanism for the regulation of this effector caspase. Hsp27 expression in monocytes is constitutive. Consistent with a central role of Hsp27 in blocking caspase-3 activation, Hsp27 down-regulation by double-stranded RNA interference induces apoptosis of macrophages, whereas Hsp27 overexpression increases the life span of monocytes by inhibiting apoptosis. Highlighting the importance of cell partitioning in the regulation of apoptosis, immunofluorescence, and subcellular fractionation studies revealed that whereas both caspase-3 and Hsp27 are cytoplasmic in fresh monocytes (i.e. not undergoing apoptosis), Hsp27 moves to the nucleus during apoptosis, a relocalization that can be blocked by promoting the differentiation of monocytes to macrophages or by inhibiting cell death. These results reveal a novel mechanism of caspase-3 regulation and underscore a novel and fundamental role of Hsp27 in the regulation of monocyte life span.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号