首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is increasing evidence that central noradrenaline (NA) transport mechanisms are implicated in the central nervous system complications of acute liver failure. In order to assess this possibility, binding sites for the high affinity NA transporter ligand [3H]-nisoxetine were measured by quantitative receptor autoradiography in the brains of rats with acute liver failure resulting from hepatic devascularization and in appropriate controls. In vivo microdialysis was used to measure extracellular brain concentrations of NA. Severe encephalopathy resulted in a significant loss of [3H]-nisoxetine sites in frontal cortex and a concomitant increase in extracellular brain concentrations of NA in rats with acute liver failure. A loss of transporter sites was also observed in thalamus of rats with acute liver failure. This loss of NA transporter sites could result from depletion of central NA stores due to a reserpine-like effect of ammonia which is known to accumulate to millimolar concentrations in brain in ischemic liver failure. Impaired NA transport and the consequent increase in synaptic concentrations and increased stimulation of neuronal and astrocytic noradrenergic receptors could be implicated in the pathogenesis of the encephalopathy and brain edema characteristic of acute liver failure.  相似文献   

2.
Portal-systemic encephalopathy (PSE) is characterized by a neuropsychiatric disorder progressing through personality changes, to stupor and coma. Previous studies have revealed alterations of serotonin and of its metabolite 5-hydroxyindoleacetic acid (5-HIAA) in brain tissue and CSF in experimental (rat) and human PSE. Increased brain 5-HIAA concentrations could result from its decreased removal rather than to increased serotonin metabolism. In order to evaluate this possibility, CSF 5-HIAA concentrations were measured using an indwelling cisterna magna catheter technique at various times following end-to-side portacaval anastomosis in rats (the most widely used animal model of PSE) treated with probenecid, a competitive inhibitor that blocks the active transport of acid metabolites out of the brain and CSF. Following portacaval anastomosis and probenecid treatment, CSF concentrations of 5-HIAA were increased to a greater extent than in sham-operated controls. When data were expressed as per-cent baseline values, the relative increase of CSF 5-HIAA in portacaval shunted rats following probenecid treatment was not significantly different from sham-operated controls. These findings confirm that increased 5-HIAA in the CNS in experimental PSE results from increased 5HT metabolism or turnover and that the probenecid-sensitive acid metabolite carrier is intact in PSE.  相似文献   

3.
Hepatic encephalopathy (HE) is a neuropsychiatric disorder that occurs in both acute and chronic liver failure. Although the precise pathophysiologic mechanisms responsible for HE are not completely understood, a deficit in neurotransmission rather than a primary deficit in cerebral energy metabolism appears to be involved. The neural cell most vulnerable to liver failure is the astrocyte. In acute liver failure, the astrocyte undergoes swelling resulting in increased intracranial pressure; in chronic liver failure, the astrocyte undergoes characteristic changes known as Alzheimer type II astrocytosis. In portal-systemic encephalopathy resulting from chronic liver failure, astrocytes manifest altered expression of several key proteins and enzymes including monoamine oxidase B, glutamine synthetase, and the so-called peripheral-type benzodiazepine receptors. In addition, expression of some neuronal proteins such as monoamine oxidase A and neuronal nitric oxide synthase are modified. In acute liver failure, expression of the astrocytic glutamate transporter GLT-1 is reduced, leading to increased extracellular concentrations of glutamate. Many of these changes have been attributed to a toxic effect of ammonia and/or manganese, two substances that are normally removed by the hepatobiliary route and that in liver failure accumulate in the brain. Manganese deposition in the globus pallidus in chronic liver failure results in signal hyperintensity on T1-weighted Magnetic Resonance Imaging and may be responsible for the extrapyramidal symptoms characteristic of portal-systemic encephalopathy. Other neurotransmitter systems implicated in the pathogenesis of hepatic encephalopathy include the serotonin system, where a synaptic deficit has been suggested, as well as the catecholaminergic and opioid systems. Further elucidation of the precise nature of these alterations could result in the design of novel pharmacotherapies for the prevention and treatment of hepatic encephalopathy.  相似文献   

4.
The concentration of tryptophan in serum, and the levels of tryptophan, serotonin (5-HT), and 5-hydroxyindole-acetic acid (5-HIAA) in brain are substantially reduced in rats that consume for 6 weeks a diet in which corn is the only source of protein. Single injections of L-tryptophan (25, 50, or 100 mg/kg) cause dose-related increases in brain tryptophan, 5-HT, and 5-HIAA in corn-fed animals. At each dose, brain tryptophan content rises to a proportionately greater extent in corn-fed rats than in well-nourished controls, even though serum tryptophan concentrations attain higher levels in controls. This difference may reflect the greatly reduced serum concentrations in corn-fed rats of other large neutral amino acids that compete with tryptophan for uptake into the brain (tyrosine, phenylalanine, leucine, isoleucine, and valine). However, the substantial decrease in serum albumin levels also diminishes the binding of tryptophan to serum albumin; thus it is not yet possible to state which of these changes is responsible for the much greater increments in brain tryptophan observed in corn-fed rats after tryptophan injection. The fact that tryptophan administration rapidly restores brain 5-hydroxyindole levels in corn-fed animals suggests that the reductions in 5-HT and 5-HIAA levels associated with this type of malnutrition may be largely caused by inadequate availability of substrate.  相似文献   

5.
There is increasing evidence to suggest that hepatic encephalopathy in acute liver failure is the result of altered glutamatergic function. In particular, the high affinity uptake of glutamate is decreased in brain slices and synaptosomes from rats with acute liver failure as well as by exposure of cultured astrocytes to concentrations of ammonia equivalent to those reported in brain in acute liver failure. Both protein and gene expression of the recently cloned and sequenced astrocytic glutamate transporter GLT-1 are significantly reduced in the brains of rats with acute liver failure. Decreased expression of GLT-1 in brain in acute liver failure results in increased extracellular brain glutamate concentrations which correlates with arterial ammonia concentrations and with the appearance of severe encephalopathy and brain edema in these animals. Ammonia-induced reductions in expression of GLT-1 resulting in increased extracellular glutamate concentrations could explain some of the symptoms (hyperexcitability, cerebral edema) characteristic of hepatic encephalopathy in acute liver failure.  相似文献   

6.
The agents p-chlorophenylalanine (PCPA) and p-chloroamphetamine (PCA) deplete brain serotonin (5-HT) levels by two different mechanisms; PCPA inhibits the enzyme tryptophan hydroxylase, whereas PCA has a neurotoxic action on certain 5-HT neurons. The parameters of [3H]paroxetine binding to homogenates prepared from the cerebral cortex of rats treated with PCPA, PCA, or saline; vehicle were investigated. The tissue concentrations of 5-HT and 5-hydroxyindole-3-acetic acid (5-HIAA) were also determined by HPLC in the same brain samples. After PCPA treatment, neither the maximum binding capacity (Bmax) nor the dissociation constant (KD) of [3H]paroxetine for the 5-HT uptake recognition site differed from controls despite a substantial reduction in the concentration of 5-HT and 5-HIAA. In contrast, significant changes in both the Bmax and KD values were observed in the cerebral cortex of rats treated with PCA. Furthermore, [3H]paroxetine binding and tissue concentrations of 5-HT and 5-HIAA were measured in the following different regions of the rat brain: cingulate, parietal, and visual cortical areas; dorsal and ventral hippocampus; rostral and caudal halves of neostriatum; ventral mesencephalic tegmentum; and midbrain raphe nuclei region after administration of PCPA, PCA, or saline vehicle. There was an excellent correlation between regional 5-HT levels and specific [3H]paroxetine binding in control and PCA-treated rats although this correlation was lost after PCPA treatment. Under these conditions, the 5-HT innervation remains unchanged whereas the concentration of 5-HT and 5-HIAA is greatly reduced. Thus, [3H]paroxetine binding appears to provide a reliable marker of 5-HT innervation density within the mammalian CNS.  相似文献   

7.
Glutamate transporters in hyperammonemia   总被引:2,自引:0,他引:2  
Evidence suggests that increases in brain ammonia due to congenital urea cycle disorders, Reye Syndrome or liver failure have deleterious effects on the glutamate neurotransmitter system. In particular, ammonia exposure of the brain in vivo or in vitro preparations leads to alterations of glutamate transport. Exposure of cultured astrocytes to ammonia results in reduced high affinity uptake sites for glutamate due to a reduction in expression of the astrocytic glutamate transporter GLAST. On the other hand, acute liver failure leads to decreased expression of a second astrocytic glutamate transporter GLT-1 and a consequent reduction in glutamate transport sites in brain. Effects of the chronic exposure of brain to ammonia on cellular glutamate transport are less clear. The loss of glutamate transporter activity in brain in acute liver failure and hyperammonemia is associated with increased extracellular brain glutamate concentrations which may be responsible for the hyperexcitability and cerebral edema observed in hyperammonemic disorders.  相似文献   

8.
Rat brain monoamine and serotonin S2 receptor changes during pregnancy   总被引:1,自引:0,他引:1  
The concentrations of noradrenaline (NA), dopamine (DA), serotonin (5-HT), and their metabolites were determined in 5 brain areas of non-pregnant, 15 and 20 day pregnant and 4 day post-partum rats. Striatal 5-HT content was significantly lower in 15 and 20 day pregnant rats than in estrous controls. A significant decrease in striatal and frontal cortex 5-hydroxyindole-3-acetic acid (5-HIAA) concentration was observed in 15 day pregnant rats. Significant increases in hypothalamic and hippocampal NA levels were observed at 4 days post-partum. Frontal cortex serotonin S2 receptorKd was reduced in 4 day post-partum rats. There was no significant change in S2 receptorB max during pregnancy. Levels of progesterone were negatively correlated with striatal DA, homovanillic acid (HVA), 5-HT, and 5-HIAA levels, hypothalamic DA, hippocampal 5-HT, and frontal cortex 5-HIAA values as well as striatal HVA to DA, and HVA to 3,4-dihydroxyphenylacetic acid (DOPAC) ratios and amygdaloid HVA to DOPAC ratios. The limbic neurotransmitter changes might possibly contribute to mood changes which occur during pregnancy and post-partum.  相似文献   

9.
1. Frontal and parieto-occipital electroencephalography (EEG) of young (4 months-old) and aged (17 and 22 months-old) Wistar rats were analyzed, both during movement and during waking immobility. 2. The levels of monoamines, serotonin and their metabolites were measured from the frontal cortex, parieto-occipital cortex, hippocampus, brainstem and midbrain. 3. In aged rats, as compared to young rats, the most apparent changes of the quantitative EEG spectrum were the decreased amplitude of alpha (5-10 Hz) and beta (10-20 Hz) frequency bands in the frontal and parieto-occipital cortices during both movement and waking immobility behavior (p less than 0.05). 4. The levels of dopamine (DA), homovanillinic acid (HVA), serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA) or the ratios of 5-HT/5-HIAA and DA/HVA did not differ between young and aged rats in any brain region studied, with the exceptions of brainstem DA and parieto-occipital 5-HIAA, which were elevated in aged rats (p less than 0.05). 5. In the frontal cortex, hippocampus and midbrain, noradrenaline (NA) levels of aged rats were slightly increased as compared to young rats (p less than 0.05). 6. NA levels of the parieto-occipital cortex and brainstem did not change during aging. 7. Furthermore, there were no clear correlations between the decreased amplitude of the quantitative EEG spectrum and monoamine or serotonin concentrations, or the ratios of 5-HT/5-HIAA and DA/HVA in the cerebral cortex of aging Wistar rat.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The extracellular concentrations of 5-hydroxytryptamine (5-HT) and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) have been determined in six brain areas of awake rats (frontal cortex, striatum, hypothalamus, hippocampus, inferior colliculus, and raphe nuclei) using intracerebral microdialysis. The extracellular levels of 5-HT showed no significant differences among the brain regions studied. The tissue levels of 5-HT and 5-HIAA as well as the extracellular concentration of 5-HIAA were significantly higher in raphe nuclei. The regional distribution of tissue and extracellular 5-HIAA were very similar, suggesting that extracellular 5-HIAA depends mainly on the output from the intracellular compartment. On the other hand, extracellular 5-HT and tissue 5-HT showed a different distribution pattern. The tissue/extracellular ratio for 5-HT ranged from 739 in frontal cortex to 2,882 in raphe, whereas it only amounted to 1.8-3.6 for 5-HIAA. The relationship between the present results and the density of 5-HT uptake sites in these areas is discussed.  相似文献   

11.
The serotonin transporter (SERT) regulates extracellular levels of the neurotransmitter serotonin (5-hydroxytryptamine) in the brain by facilitating uptake of released 5-hydroxytryptamine into neuronal cells. SERT is the target for widely used antidepressant drugs, including imipramine, fluoxetine, and (S)-citalopram, which are competitive inhibitors of the transport function. Knowledge of the molecular details of the antidepressant binding sites in SERT has been limited due to lack of structural data on SERT. Here, we present a characterization of the (S)-citalopram binding pocket in human SERT (hSERT) using mutational and computational approaches. Comparative modeling and ligand docking reveal that (S)-citalopram fits into the hSERT substrate binding pocket, where (S)-citalopram can adopt a number of different binding orientations. We find, however, that only one of these binding modes is functionally relevant from studying the effects of 64 point mutations around the putative substrate binding site. The mutational mapping also identify novel hSERT residues that are crucial for (S)-citalopram binding. The model defines the molecular determinants for (S)-citalopram binding to hSERT and demonstrates that the antidepressant binding site overlaps with the substrate binding site.  相似文献   

12.
Abstract: The administration of tryptophan (Trp)-free amino acid mixtures to depressed patients responding to serotonin [5-hydroxytryptamine (5-HT)] uptake inhibitors (SSRIs) worsens their clinical state. This procedure reduces Trp availability to brain and thus impairs 5-HT synthesis. We have examined the influence of Trp depletion on extracellular 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) concentrations in the rat brain using in vivo microdialysis. The treatment with the SSRI fluvoxamine significantly increased 5-HT content in dialysates from frontal cortex, as compared with control rats (10.2 ± 2.7 vs. 3.1 ± 0.4 fmol per fraction), whereas 5-HIAA was unaffected. Food deprivation for 20 h reduced dialysate 5-HT content to almost control values in fluvoxamine-treated rats (10.2 ± 2.7 vs. 4.3 ± 0.6 fmol per fraction) but did not alter dialysate 5-HIAA content (7.8 ± 0.4 vs. 7.2 ± 0.5 pmol per fraction). The administration of Trp-free amino acid mixtures to fluvoxamine-treated rats significantly attenuated the release of 5-HT in frontal cortex (~50%) and, to a lesser extent, in the midbrain raphe nuclei. This effect was more marked in rats not deprived from food before the experiments (67% reduction of dialysate 5-HT content in frontal cortex) and was absent in control rats (treated with saline). In contrast, dialysate 5-HIAA was markedly affected by Trp depletion in all groups, including controls (65–75% reductions). These data show that the administration of an amino acid mixture with the same composition and dose (in milligrams per kilogram of body weight) as those inducing a severe mood impairment in depressed patients reduces 5-HT and 5-HIAA concentrations in brain dialysates. The reduction of 5-HT release, however, occurs only in animals previously treated with the antidepressant fluvoxamine for 2 weeks, which would be consistent with a marked reduction of 5-HT-mediated transmission in treated depressed patients but not in healthy controls.  相似文献   

13.
Occurrence and Distribution of 5-Hydroxytryptophol in the Rat   总被引:2,自引:1,他引:1  
Abstract: The distribution of the serotonin metabolites 5-hydroxytryptophol (5-HTOL) and 5-hydroxyindoleacetic acid (5-HIAA) was determined in the rat by a sensitive and specific gas chromatography-mass spectrometric assay. 5-HTOL occurred in all tissues assayed, with highest concentrations in small intestine (mean ± S.E.M. = 193 ± 13 mg/g), lung (78.8 ± 13.2 mg/g), and liver (64.1 ± 4.9 mg/g). Brain 5-HTOL concentrations (9.80 ± 0.36 mg/g) were only 1% of brain 5-HIAA levels. Conjugated 5-HTOL accounted for a significant fraction of the total 5-HTOL concentrations in all tissues and varied from 20% in heart to 70% in kidney. In plasma and urine, 5-HTOL occurred almost completely in conjugated form. Except for liver, 5-HIAA concentrations were substantially greater than 5-HTOL in all tissues, plasma, and urine. Highest 5-HIAA concentrations occurred in brain (787 ± 28 mg/g), lung (744 ± 52 mg/g), and small intestine (424 ± 35 mg/g). 5-HTOL concentrations in plasma and urine were about 25% of the respective 5-HIAA levels. It is concluded that significant biotransformation of serotonin to 5-HTOL in the rat occurs in the intestine, liver, and lung while in brain formation of 5-HTOL represents a minor pathway of serotonin metabolism.  相似文献   

14.
Aging was associated with an increase in the density of specific binding sites for [3H]imipramine in postmortem specimens of human hypothalamus, frontal cortex, and parietal cortex. In general, [3H]imipramine binding was not affected by factors considered difficult to control in postmortem studies, i.e., time from death to autopsy and cause of death. The in vitro regulation of [3H]imipramine binding by sodium was impaired with age in hypothalamic homogenates. In vitro regulation of [3H]imipramine binding by chloride was intact. Determination of the concentrations of 5-hydroxytryptamine (serotonin) and 5-hydroxyindoleacetic acid in hypothalamus and frontal cortex indicated no apparent age-related changes in indole metabolism. The age-related increase in brain [3H]imipramine binding and impairment in the in vitro regulation of binding by ions are similar to changes observed previously in aged mouse brain. The increase in brain antidepressant binding sites is discussed in relationship to other indices of brain serotonergic function in aging and to the relationship of [3H]imipramine binding and depression.  相似文献   

15.
Abstract— Intraperitoneal administration of both D- or L-tryptophan elevated the levels of serotonin and 5-hydroxyindoleacetic acid in the brains of hypophysectomized and intact rats. In intact rats, the increase in brain 5-hydroxyindoles was slower after D-tryptophan than after L-tryptophan. Similarly, brain tryptophan rose more slowly after administration of D-tryptophan. The uptake of L-tryptophan from blood into brain was at a rate about one-third that of 3H2O. D-tryptophan uptake was at 1/25 that of 3H2O. Brain and liver tryptophan aminotransferase activities were stereospecific for the L-isomer and no evidence could be found for a tryptophan racemase in brain. Evisceration prevented the increase in brain 5-hydroxyindoles following peripheral administration of D-tryptophan administration but not that after L-tryptophan. The serotonin ratios between the two brain regions examined remained constant following administration of either D- or L-tryptophan. On the basis of these results we concluded that the increase in brain 5-hydroxyindoles following administration of L-tryptophan was not dependent upon stress-induced changes in pituitary hormones and that the elevations after D-tryptophan were dependent upon its prior conversion to L-tryptophan via peripheral deamination and subsequent transamination.  相似文献   

16.
Ammonia is a key neurotoxin involved in the neurological complications of acute liver failure. The present study was undertaken to study the effects of exposure to pathophysiologically relevant concentrations of ammonium chloride on cultured brain capillary endothelial cells in order to identify mechanisms by which ammonia may alter blood-brain barrier function. Conditionally immortalized mouse brain capillary endothelial cells (TM-BBB) were used as an in vitro model of the blood-brain barrier. Gene expression of a series of blood-brain barrier transporters and tight junction proteins was assessed by quantitative real time PCR analysis. Exposure to ammonia (5mM for 72h) resulted in significant increases in mRNA levels of taurine transporter (TAUT; 2.0-fold increase) as well as creatine transporter (CRT; 1.9-fold increase) whereas claudin-12 mRNA expression was significantly reduced to 67.7% of control levels. Furthermore, [(3)H]taurine and [(14)C]creatine uptake were concomitantly increased following exposure to ammonia, suggesting that up-regulation of both TAUT and CRT under hyperammonemic conditions results in an increased function of these two transporters in TM-BBB cells. TAUT and CRT are respectively involved in osmoregulation and energy buffering in the brain, two systems that are thought to be affected in acute liver failure. Furthermore, claudin-12 down-regulation suggests that hyperammonemia may also affect tight junction integrity. Our results provide evidence that ammonia can alter brain capillary endothelial cell gene expression and transporter function. These findings may be relevant to pathological situations involving hyperammonemia, such as liver disease.  相似文献   

17.
Four weeks following portacaval anastomosis (PCA) in the rat, severe liver atrophy, sustained hyperammonemia, and increased plasma and brain tryptophan are observed. Administration of ammonium acetate (NH4Ac) to rats with PCA precipitates severe signs of hepatic encephalopathy (HE) (loss of righting reflex progressing to loss of consciousness and ultimately deep coma). To evaluate the relationship between the deterioration of neurological status in HE and serotonin (5-HT) metabolism, the levels of 5-HT, its precursor 5-hydroxytryptophan, and its major metabolite 5-hydroxy-indole-3-acetic acid (5-HIAA) were measured by HPLC with ion-pairing and electrochemical detection in three well-defined areas of the cerebral cortex: anterior cingulate, piriform and entorhinal, and frontoparietal; as well as in the caudate-putamen, the raphe nuclei, and the locus ceruleus in rats with PCA at different stages of HE, before and after injection of NH4Ac, as well as in sham-operated controls. The results demonstrate increased 5-HIAA/5-HT ratios after PCA and NH4Ac loading, suggesting increased 5-HT turnover in the brains of these animals. However, these changes do not appear to be related to the precipitation of coma as no significant difference in 5-HT turnover was observed between precoma and coma stages of HE. Increased 5-HT turnover in brain of shunted rats may be related to early symptoms of HE such as altered sleep patterns and disorders of motor coordination.  相似文献   

18.
Rats were given L-tryptophan, 50 mg/kg i.p., and its concentration in the CNS was monitored in individual freely moving animals using repeated sampling of cisternal CSF and concurrent striatal dialysis. The 5-hydroxytryptamine metabolite 5-hydroxyindoleacetic acid (5-HIAA) was also measured. Results were compared with changes of central tryptophan and 5-HIAA concentrations in brains of rats killed at various times after administration of L-tryptophan, 50 mg/kg i.p. Tryptophan changes in CSF were proportionate to those in whole brain and followed essentially identical time courses. Results for the striatal dialysate and whole striatum also paralleled each other. Similarly, results for 5-HIAA showed proportionality between CSF and brain and between dialysate and striatum. The data obtained were used to determine pharmacokinetic data for individual rats, i.e., areas under curves for both tryptophan and 5-HIAA and half-lives for the decline of tryptophan. Kinetic parameters varied considerably from rat to rat. However, mean half-lives for tryptophan in CSF, brain, dialysate, and striatum were all comparable. Results in general show the value of repeated CSF sampling and intracerebral dialysis for concurrent monitoring of changes of indole metabolism in the whole brain and a specific brain region, respectively. The methods should be suitable for the continuous monitoring of changes of central transmitter metabolism in parallel with observation of behavior following environmental or dietary changes or drug administration. They also should be of use in the investigation of drug kinetics in the CNS.  相似文献   

19.
Serotonin (5-HT) uptake sites, or transporters, were measured in the neostriatum (caudate putamen) of wild type (+/+) mice and heterozygous (wv/+) and homozygous (wv/wv) weaver, as well as in heterozygous Lurcher (Lc/+) mutants. These topological surveys were carried out by quantitative ligand binding autoradiography using the uptake site antagonist [3H]-citalopram as a probe of innervation densities in four quadrants of the rostral neostriatum and in two halves of the caudal neostriatum. In addition, tissue concentrations of 5-HT, 5-hydroxyindole-3-acetic acid and 5-hydroxytryptophol were measured by high-performance liquid chromatography with electrochemical detection in these neostriatal divisions. In +/+ mice and in Lc/+ mutants there was a dorso-ventral gradient of increasing 5-HT levels, and they exhibited a similar heterogeneity of [3H]-citalopram labeling. In contrast, the gradients of 5-HT concentrations and [3H]-citalopram binding disappeared in the weaver mutants, suggesting a rearrangement of the 5-HT innervation. This reorganization of the 5-HT system in the neostriatum was more obvious in the wv/wv and is compatible with the hypothesis that the postnatal dopaminergic deficiencies that characterize weaver mutants lead to a sprouting of fibers and thus constitute a genetic model of dopaminergic denervation that leads to a 5-HT hyperinnervation.  相似文献   

20.
The action of 1.0 and 10.0 mg/kg (i.p.) of corticosterone on serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) contents and on serotonin turnover, measured by an MAO-inhibitor method, was studied at 30 and 120 min after administration. A 1.0 mg/kg dose of corticosterone increased the serotonin content and turnover in the hypothalamus and mesencephalon 30 min after administration; however, it was ineffective on dorsal hippocampus and frontal and parietal cortex. 5-HIAA content did not change significantly in any of the brain areas studied. A 10.0 mg/kg dose of corticosterone decreased the serotonin content and turnover in the hypothalamus and mesencephalon; it was ineffective in other brain areas investigated. 5-HIAA content significantly decreased in the hypothalamus while it increased in the mesencephalon and dorsal hippocampus. In the parietal and frontal cortex, 5-HIAA content did not change following administration of 10.0 mg/kg of corticosterone. At 120 min after corticosterone administration, neither 5-HT content and turnover nor 5-HIAA content showed any change in the brain areas investigated. The results suggest that corticosteroids might change the activity of the brain serotoninergic system in a dose- and time-dependent manner, and in this way the serotoninergic system might play an important role in mediation of the corticosteroid effect exerted on brain function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号