首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Serotonin is actively transported into brush-border membrane vesicles isolated from normal human term placentas and an inward-directed NaCl gradient provides the driving force for this process. Uptake is negligible if Na+ is replaced by Li+, K+, Rb+, Cs+ or choline. The presence of Cl- seems necessary for the maximal activity of this Na+-dependent uptake system. Intravesicular K+ (20-40 mM) stimulates serotonin uptake, the stimulation being considerably greater at pH 7.5 than at pH 6.5. But, in the absence of K+, uptake at pH 6.5 was twice the uptake at pH 7.5. Unlabeled serotonin and dopamine inhibit the uptake of radiolabeled serotonin and the IC50 values are 70 nM and 20 microM, respectively. Histamine and 5-hydroxytryptophan do not significantly interact with the system (IC50 greater than 1 mM). Kinetic analysis reveals that serotonin uptake in these vesicles occurs via a single, saturable, high affinity system (Kt = 51 +/- 2 nM; Vmax = 6.4 +/- 0.1 pmol/mg of protein/15 s). The transporter is highly sensitive to inhibition by imipramine (IC50 = 32 nM) and desipramine (IC50 = 160 nM) but relatively insensitive to reserpine and hydralazine.  相似文献   

2.
3.
Acute liver failure (ALF) is frequently complicated by the development of brain edema that can lead to intracranial hypertension and severe brain injury. Neuroimaging techniques allow a none-invasive assessment of brain tissue and cerebral hemodynamics by means of transcranial Doppler ultrasonography, magnetic resonance and nuclear imaging with radioligands. These methods have been very helpful to unravel the pathogenesis of this process and have been applied to patients and experimental models. They allow monitoring the outcome of patients with ALF and neurological manifestations. The increase in brain water can be detected by observing changes in brain volume and disturbances in diffusion weighted imaging. Neurometabolic changes are detected by magnetic resonance spectroscopy, which provides a pattern of abnormalities characterized by an increase in glutamine and a decrease in myo-inositol. Disturbances in cerebral blood flow are depicted by SPECT or PET and can be monitored and the bedside by assessing the characteristics of the waveform provided by transcranial Doppler ultrasonography. Neuroimaging methods, which are rapidly evolving, will undoubtedly lead to future diagnostic and therapeutic progress that could be very helpful for patients with ALF.  相似文献   

4.
5.
Brain edema remains a challenging obstacle in the management of acute liver failure (ALF). Cytotoxic mechanisms associated with brain edema have been well recognized, but evidence for vasogenic mechanisms in the pathogenesis of brain edema in ALF has been lacking. Recent reports have not only shown a role of matrix metalloproteinase-9 in the pathogenesis of brain edema in experimental ALF but have also found significant alterations in the tight junction elements including occludin and claudin-5, suggesting a vasogenic injury in the blood-brain barrier (BBB) integrity. This article reviews and explores the role of the paracellular tight junction proteins in the increased selective BBB permeability that leads to brain edema in ALF.  相似文献   

6.
7.
《Cytokine》2015,74(2):270-276
BackgroundOsteopontin (OPN) is a novel phosphoglycoprotein expressed in Kupffer cells that plays a pivotal role in activating natural killer cells, neutrophils and macrophages. Measuring plasma OPN levels in patients with acute liver failure (ALF) might provide insights into OPN function in the setting of massive hepatocyte injury.MethodsOPN levels were measured using a Quantikine® ELISA assay on plasma from 105 consecutive ALF patients enrolled by the US Acute Liver Failure Study Group, as well as controls including 40 with rheumatoid arthritis (RA) and 35 healthy subjects both before, and 1 and 3 days after undergoing spine fusion (SF) surgery as a model for acute inflammation.ResultsMedian plasma OPN levels across all etiologies of ALF patients were elevated 10- to 30-fold: overall median 1055 ng/mL; range: 33–19,127), when compared to healthy controls (median in pre-SF patients: 41 ng/mL; range 2.6–86.4). RA and SF post op patients had elevated OPN levels (37 ng/mL and 198 ng/mL respectively), well below those of the ALF patients. Median OPN levels were highest in acetaminophen (3603 ng/mL) and ischemia-related ALF (4102 ng/mL) as opposed to viral hepatitis (706 ng/mL), drug-induced liver injury (353 ng/mL) or autoimmune hepatitis (436 ng/mL), correlating with the degree of hepatocellular damage, as reflected by aminotransferase values (R value: 0.47 for AST, p < 0.001).ConclusionsOPN levels appeared to correlate with degree of liver necrosis in ALF. Very high levels were associated with hyperacute injury and good outcomes. Whether OPN exerts a protective effect in limiting disease progression in this setting remains uncertain.  相似文献   

8.
肝再生剌激因子对小鼠实验性急性肝损伤的保护作用   总被引:4,自引:1,他引:3  
安威 《生理学报》1991,43(5):415-427
A hepatic stimulator substance (HSS) was extracted from the liver of male weanling SD rats according to the method of LaBrecque. The mice were injected with carbon tetrachloride or D-galactosamine to induce hepatic injuries and the protective effect of HSS on thus induced hepatic damage was investigated. The results were as follows: (1) HSS could suppresses the elevation of sGPT and sGOT induced by carbon tetrachloride intoxication in a dose-dependent manner. (2) Hepatic histological findings indicated that the degree of CCl4 or D-galactosamine-induced hepatic lesions could be lessened by HSS. (3) CCl4-induced reduction of hepatic mitochondrial succinic dehydrogenase activity could be restored by HSS. (4) Insulin-glucagon enhanced the survival of D-galactosamine intoxicated mice and stimulated hepatocyte proliferation, thus showing less pronounced hepatic damage.  相似文献   

9.
There is increasing evidence that central noradrenaline (NA) transport mechanisms are implicated in the central nervous system complications of acute liver failure. In order to assess this possibility, binding sites for the high affinity NA transporter ligand [3H]-nisoxetine were measured by quantitative receptor autoradiography in the brains of rats with acute liver failure resulting from hepatic devascularization and in appropriate controls. In vivo microdialysis was used to measure extracellular brain concentrations of NA. Severe encephalopathy resulted in a significant loss of [3H]-nisoxetine sites in frontal cortex and a concomitant increase in extracellular brain concentrations of NA in rats with acute liver failure. A loss of transporter sites was also observed in thalamus of rats with acute liver failure. This loss of NA transporter sites could result from depletion of central NA stores due to a reserpine-like effect of ammonia which is known to accumulate to millimolar concentrations in brain in ischemic liver failure. Impaired NA transport and the consequent increase in synaptic concentrations and increased stimulation of neuronal and astrocytic noradrenergic receptors could be implicated in the pathogenesis of the encephalopathy and brain edema characteristic of acute liver failure.  相似文献   

10.
11.
12.
Cerebral edema has been identified in all forms of liver disease and is closely related to the development of hepatic encephalopathy. Cerebral edema is most readily recognized in acute liver failure (ALF), while the main cause of death in patients with ALF is multi-organ failure; brain herniation as a result of intracranial hypertension does remain a major cause of mortality. The mechanisms responsible for cerebral edema in ALF suggest both cytotoxic and vasogenic injury. This article reviews the gross and ultrastructural changes associated with cerebral edema in ALF. The primary cause of cerebral edema is associated with astrocyte swelling, mainly perivascular edema and ammonia still remains the primary neurotoxin involved in its pathogenesis. The astrocytic changes were confined to the gray matter. The other organelles involved in the pathogenesis of ALF include mitochondria, basement membrane, pericytes, microglial cells, blood-brain barrier (BBB) etc. Discrete neuronal changes have recently been reported. Recent studies in animal and humans have demonstrated the microglial changes which have the potential to cause neuronal dysfunction in ALF. The alterations in BBB still remain unclear though few studies have showed disruption of tight junction proteins indicating the involvement of BBB in cellular swelling.  相似文献   

13.
The present study concerns the morphological and biochemical lesional picture of the myocardium in cases of acute heart failure induced by various experimental models: ligature of the coronary artery, direct electric stimulation of the heart by catheterism, lethal hemorrhage, pneumothorax, beta-adrenergic shock. Worthy of note was the similitude of the lesional myocardium pictures characterized electron microscopically by a wide range of lesions, from reversible to focal cytolysis, and biochemically by decrease of mitochondrial enzymes, ATP, Mg2-1 X K+ and increase of Na+ X H2O, Ca2+. Problems linked to the pathogenesis, reversibility of the lesions and efficiency of certain therapeutical means are discussed.  相似文献   

14.
Antibodies to cardiolipin (aCLA), a phospholipid primarily localized in inner mitochondrial membranes, were transiently elevated (P<0.01) when mice were exposed to an industrial surfactant and then infected with influenza B virus, a model of acute liver failure (ALF). Children with ALF also had elevated levels of aCLA.  相似文献   

15.
Acute liver failure (ALF) is a rare but potentially fatal disease in children. The etiology is multifactorial, including infection, autoimmune, and genetic disorders, as well as indeterminate hepatitis, which has a higher requirement for liver transplantation. Activation of the innate and adaptive immune systems leads to hepatocyte-specific injury which is mitigated by T regulatory cell activation. Recovery of the native liver depends on activation of apoptotic and regenerative pathways, including the integrated stress response (ISR; e.g., PERK), p53, and HNF4α. Loss-of-function mutations in these pathways cause recurrent ALF in response to non-hepatotropic viruses. Deeper understanding of these mechanisms will lead to improved diagnosis, management, and outcomes for pediatric ALF.  相似文献   

16.
17.
Cellular protein kinases, phosphatases, and other serotonin transporter (SERT) interacting proteins participate in several signaling mechanisms regulating SERT activity. The molecular mechanisms of protein kinase G (PKG)-mediated SERT regulation and the site of transporter phosphorylation were investigated. Treatment of rat midbrain synaptosomes with 8-bromo-cGMP increased SERT activity, and the increase was selectively blocked by PKG inhibitors. The V(max) value for serotonin (5-HT) transport increased following cGMP treatment. However, surface biotinylation studies showed no change in SERT surface abundance following PKG activation. (32)P metabolic labeling experiments showed increased SERT phosphorylation in the presence of cGMP that was abolished by selectively inhibiting PKG. Phosphoamino acid analysis revealed that cGMP-stimulated native SERT phosphorylation occurred only on threonine residues. When added to CHO-1 cells expressing SERT, 8-bromo-cGMP stimulated 5-HT transport and SERT phosphorylation. Mutation of SERT threonine 276 to alanine completely abolished cGMP-mediated stimulation of 5-HT transport and SERT phosphorylation. Although the T276A mutation had no significant effect on 5-HT transport or SERT protein expression, mutation to aspartate (T276D) increased the level of 5-HT uptake to that of cGMP-stimulated 5-HT uptake in wild-type SERT-expressing cells and was no longer sensitive to cGMP. These findings provide the first identification of a phosphorylation site in SERT and demonstrate that phosphorylation of Thr-276 is required for cGMP-mediated SERT regulation. They also constitute the first evidence that in the central nervous system PKG activation stimulates endogenous SERT activity by a trafficking-independent mechanism.  相似文献   

18.
The serotonin (5-hydroxytryptamine; 5HT) transporter (SERT) catalyzes the movement of 5HT across cellular membranes. In the brain, SERT clears 5HT from extracellular spaces, modulating the strength and duration of serotonergic signaling. SERT is also an important pharmacological target for antidepressants and drugs of abuse. We have studied the flux of radio-labeled 5HT through the transporter stably expressed in HEK-293 cells. Analysis of the time course of net transport, the equilibrium 5HT gradient sustained, and the ratio of the unidirectional influx to efflux of 5HT indicate that mechanistically, human SERT functions as a 5HT channel rather than a classical carrier. This is especially apparent at relatively high [5HT](out) (> or =10 microM), but is not restricted to this regime of external 5HT.  相似文献   

19.
Summary During the course of chromate-induced acute renal failure (ARF), urinary kallikrein excretion (UKE), a serine protease of distal tubule origin in the normal animal was decreased but tissue kallikrein concentration (TK) was increased, suggesting intracellular accumulation. Severe morphological lesions were observed in proximal tubular cells which showed brush border damage, numerous vesicles, necrosis and liquefaction of cytoplasmic material. Less marked changes were also present in distal tubules: large apical vacuoles and swollen mitochondria. Compared to normal rats, using the peroxidase-anti-peroxidase (PAP) method for light microscopy, greater kallikrein immunoreactivity was detected along the apical pole in distal tubules, on the membrane and in the cytoplasm as well as in the glomerulus. By immunoelectron microscopy, kallikrein was found in the connecting apical area, along the luminal, basolateral and basement membranes, in some vesicles, in Golgi apparatus and on ribosomes bound to endoplasmic reticulum. In the glomerulus, kallikrein was observed along the luminal surface of endothelial cell. After 14 days a progressive recovery of renal function, tissue morphology and UKE towards control values was observed. The presence of immunoreactive kallikrein in the glomerulus observed only during ARF confirmed the previous demonstration of kallikrein mRNA in the glomerulus. The cellular accumulation results more likely from a dysfunction of a general secretory mechanism due to cell membrane alteration than from a specific inhibition of kallikrein production and secretion.  相似文献   

20.
Quick MW 《Neuron》2003,40(3):537-549
Serotonin transporters (SERTs), sites of psychostimulant action, display multiple conducting states in expression systems. These include a substrate-independent transient conductance, two separate substrate-independent leak conductances associated with Na(+) and H(+), and a substrate-dependent conductance of variable stoichiometry, which exceeds that predicted from electroneutral substrate transport. The present data show that the SNARE protein syntaxin 1A binds the N-terminal tail of SERT, and this interaction regulates two SERT-conducting states. First, substrate-induced currents are absent because Na(+) flux becomes strictly coupled to 5HT transport. Second, Na(+)-mediated leak currents are eliminated. These two SERT-conducting states are present endogenously in thalamocortical neurons, act to depolarize the membrane potential, and are modulated by molecules that disrupt SERT and syntaxin 1A interactions. These data show that protein interactions govern SERT activity and suggest that both cell excitability and psychostimulant-mediated effects will be dependent upon the state of association among SERT and its interacting partners.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号