首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lower Miocene cross-stratified sands of the Gering and Monroe Creek Formations exposed on Scotts Bluff National Monument in western Nebraska, U.S.A., were deposited by migrating sand bars in a braided river system similar to the modern Platte River in eastern Nebraska and, like the Platte, contain local lenses of parallel stratified sediment that accumulated in ponded areas of abandoned channels. During times of low discharge, broad areas of river bar sands and abandoned channel sediments were subaerially exposed on the Miocene river plain. These sediments, like those exposed in the Platte River today, were subjected to burrowing by insects and other animals.Trace fossils in Lower Miocene braided river deposits are: vertical shelter burrows, horizontal deposit-feeding burrows, bioturbated layers, and vertical passageways between bioturbated layers. The burrows are cylindrical to sub-cylindrical in cross-section, internally meniscate or massive, generally non-branching, and smooth walled. Shelter burrows are similar in shape and size to recent burrows dug by beetles in river sediment for protection from day-time temperatures, to pass the night, and to hibernate. The shelter burrows, deposit-feeding burrows, and vertical passageways in the Lower Miocene sediments occur in four distinct “populations” with modal diameters of 1–2, 3–4, 7–8, and 10–12 mm. The occurrence of both vertical and horizontal burrows in all four “populations” suggests that they could have been made by the same insect. “Populations” with modal diameters of 1–2, 3–4, and 7–8 mm also occur in modern Platte River sediment and are made by tiger-beetle larvae (3–4 mm) and heterocerid (1–2 mm) beetles. Miocene shelter burrows, deposit-feeding burrows, bioturbated layers, and vertical passageways, therefore, could have been formed by different types of beetles, and/or larval instars and adults of the same beetle species.  相似文献   

2.
A trace fossil assemblage from the Lower Jurassic East Berlin Formation of the Newark Supergroup, Hartford Basin, New England, USA, includes: Scoyenia gracilis, Skolithos ichnosp., Palaeophycus striatus, Planolites montanus, Fuersichnus ichnosp., fusiform burrows, pelleted material, an escape structure, and large burrows.

This assemblage is assigned to the Scoyenia ichnofacies. Specific lebensspuren are not limited to specific lithofacies; instead, their initial distribution seems to have been influenced principally by water availability within an ephemeral lacustrine/alluvial plain system. Other factors in distribution may have included amounts of organic matter, patterns of sedimentation, sediment grain size, biotic factors (settling from invertebrate drift, competition), and additional abiotic factors (wind deflation, waves, currents, desiccation, soft‐sediment deformation, evaporite formation, pedoturbation).

Extreme environmental conditions within the original depositional setting strongly influenced the availability of water which, in turn, strongly influenced the paleoecology of burrowing invertebrates in this nonmarine system.  相似文献   

3.
Muddy sediments are elastic solids through which morphologically diverse animals extend burrows by fracture. Muddy sediments inhabited by burrowing infauna vary considerably in mechanical properties, however, and at high enough porosities, muds can be fluidized. In this study, we examined burrowing behaviors and mechanisms of burrow extension for three morphologically diverse polychaete species inhabiting soft muddy sediments. Worms burrowed in gelatin, a transparent analog for muddy sediments, and in natural sediments in a novel viewing box enabling visualization of behaviors and sediment responses. Individuals of Scalibregma inflatum and Sternaspis scutata can extend burrows by fracture, but both also extended burrows by plastic deformation and by combinations of fracture and plastic deformation. Mechanical responses of sediments corresponded to different burrowing behaviors in Scalibregma; direct peristalsis was used to extend burrows by fracture or a combination of plastic deformation and fracture, whereas a retrograde expansive peristaltic wave extended burrows by plastic deformation. Burrowing speeds differed between behaviors and sediment mechanical responses, with slower burrowing associated with plastic deformation. Sternaspis exhibited less variability in behavior and burrowing speed but did extend burrows by different mechanisms consistent with observations of Scalibregma. Individuals of Ophelina acuminata did not extend burrows by fracture; rather individuals plastically deformed sediments similarly to individuals of the related Armandia brevis. Our results extend the range of natural sediments in which burrowing by fracture has been observed, but the dependence of burrow extension mechanism on species, burrowing behavior, and burrowing speed highlights the need for better understanding of mechanical responses of sediments to burrowers.  相似文献   

4.
The chondrichthyan faunas from the Danish Maastrichtian chalk and the K/T boundary clay, the Fiskeler, are described for the first time. The rich and diverse fauna discovered in the late Maastrichtian chalk experienced a massive drop in diversity prior to the boundary. However, the fauna started to recover immediately after the deposition of the impact layer during earliest Danian times and had regained much of its diversity during the first few millennia after the bolide impact. Precision sampling has made it possible to document the recovery of the fauna, which did not suffer an extinction event of the same magnitude, as apparently observed in Morocco. At Stevns Klint, only 33 per cent of the chondrichthyan fauna became extinct compared with the 96 per cent in Morocco. The drop in diversity before the boundary is attributed to a sudden change in sea level. Among the sharks found in the chalk and Fiskeler are rare species such as Parasquatina and Echinorhinus and the first representative of Nebrius in Europe.  相似文献   

5.
The Miocene Globigerina Limestone of the Maltese islands contains widespread omission surfaces with very different characteristics and origins.The terminal Lower Globigerina Limestone hardground (TLGLHg) formed during a period of falling sea level. Coccolith assemblages suggest shallowness. Sedimentary structures and trace fossil assemblages, indicate increasing frequency of storm events and erosional episodes, towards the surface. Calcite cementation which took place around Thalassinoides burrows and formed irregular nodules was followed by dissolution of aragonite. It is suggested that lithification was linked to microbial reactions involving organic matter.In contrast two later surfaces, the terminal Middle Globigerina Limestone omissionground (TMGLOg), which marks the Lower to Middle Miocene boundary, and the Fomm-ir-Rih local hardground (FiRLHg) both contain early diagenetic dolomite. Lithification took place in two phases. The dolomite is interpreted to have formed beneath the sea floor; it was subsequently exhumed and partially corroded as the precipitation of calcitic and phosphatic cements took place around burrows open to the circulation of sea water.  相似文献   

6.
Summary The number, morphological details and structure of ostracod shells washed from chalk by mechanical disaggregation differ from those in siliceous chalk treated by hydrofluoric acid (HF, conc.). The shells studied are from erratic material (Ger. “Schollen”, “Geschiebe”) of young Quaternary deposits from Nossentin near Malchow/Mecklenburg, NE Germany; Wicko (Vietzig) near Miedzyzdroje (Misdroy), Isle of Wolin/Baltic Sea, NW Poland (Upper Turonian) and from outcropping chalk (Lower Maastrichtian) of the Island of Rügen/Baltic Sea, NE Germany as well as erratic boulders (Upper Maastrichtian), NE Germany. The differences in the number of shells and their state of preservation are primarily caused by biotic and nonbiotic influences after death, e.g. loss of organic substance and shell deformation by low pressure. Greater destruction of the shell and its sculpture is caused by pressure (sedimentary compaction), recrystallization, sparitization and accretine crystallization of the shell calcite during diagenesis. The silification process or origin of flint in chalk is caused by weakly acidic environmental conditions (pH<5) before sedimentary compaction. It is indicated by dispersed pyrite and by well-preserved siliceous radiolarian skeletons. Finely-foliated opal-CT crystals start growing between the crystallites of the ostracod shell, later on forming lepispheres. Silification is early diagenetic, as verified by the well-preserved shell sculpture and structure and the undisturbed bioturbate structure in siliceous nodules.  相似文献   

7.
The hemipelagic domain of the ancient southern continental margin of Iberia is home to a strongly condensed pelagic succession (6–15 cm thick) characterized by the presence of phosphate stromatolites. This succession, probably generated in the slope of the continental margin, records a period of some 9 Ma, corresponding to the latest Maastrichtian to Late Thanetian interval. A microstratigraphical analysis allows for characterizing and biostratigraphically dating six successive developmental stages in the succession, which outline the main environmental evolution of the depositional setting. The first of them determined the generation of a submarine hardground during the latest Maastrichtian to earliest Danian interval. The other five are represented by five successive microstratigraphical, unconformity-bounded, genetic units, respectively Early–Middle Danian, Late Danian–Early Selandian, intra-Selandian, Late Selandian–Early Thanetian, and Middle–?Late Thanetian in age. The three oldest units are characterized by the accretion of phosphate stromatolites, favoured by very low rates of pelagic sedimentation and by a microbially mediated extra input of phosphate. The two youngest units are dominated by carbonate deposition, which has always taken place at very low rates. Condensed sedimentation was abruptly interrupted at the end of the Palaeocene (?latest Thanetian), when the condensed succession and its hosting substrate were gravitationally slumped and re-deposited at the base of the slope in the form of a mega-debris flow that can be now observed in Sierra de Aixorta (Alicante, SE Spain). The Aixorta pelagic phosphatic stromatolites are among the youngest ever described, and their existence suggests that the oceanographic conditions necessary for their development prevailed during most of the Palaeocene, but disappeared during the Late Selandian, never to return.  相似文献   

8.
The thickest uppermost Cretaceous to lowermost Paleogene (Maastrichtian to Danian) sedimentary succession in the world is exposed on southern Seymour Island (65° South) in the James Ross Basin, Antarctic Peninsula. This fossiliferous shallow marine sequence, which spans the Cretaceous–Paleogene boundary, has allowed a high-resolution analysis of well-preserved marine palynomorphs. Previous correlation of Cretaceous–Paleogene marine palynomorph assemblages in the south polar region relied on dinoflagellate cyst biozonations from New Zealand and southern Australia. The age model of the southern Seymour Island succession is refined and placed within the stratigraphical context of the mid to high southern palaeolatitudes. Quantitative palynological analysis of a new 1102 m continuous stratigraphical section comprising the uppermost Snow Hill Island Formation and the López de Bertodano Formation (Marambio Group) across southern Seymour Island was undertaken. We propose the first formal late Maastrichtian to early Danian dinoflagellate cyst zonation scheme for the Antarctic based on this exceptional succession. Two new late Maastrichtian zones, including three subzones, and one new early Danian zone are defined. The oldest beds correlate well with the late Maastrichtian of New Zealand. In a wider context, a new South Polar Province based on Maastrichtian to Danian dinoflagellate cysts is proposed, which excludes most southern South American marine palynofloras. This interpretation is supported by models of ocean currents around Antarctica and implies an unrestricted oceanic connection across Antarctica between southern South America and the Tasman Sea.  相似文献   

9.
Detailed field observations across and along the Cretaceous-Palaeogene (K-Pg) boundary interval in the Caravaca section, SE Spain, together with laboratory analyses reveal a well-developed lowermost Danian dark-colored trace fossil assemblage. The trace fossils range continuously from the bioturbated horizons in the dark boundary layer (lowermost Danian), to the uppermost Maastrichtian sediments. The rusty boundary layer at the base of the dark boundary layer, usually related to the K-Pg boundary impact, is traditionally considered as undisturbed. However, ichnological analysis at the Caravaca section shows that this rusty boundary layer is cross-cut vertically by Zoophycos and Chondrites, but also penetrated laterally by Chondrites, revealing an important colonization of the substrate. Stereomicroscope analysis shows sharp burrow margins of dark-colored Chondrites directly against the surrounding red sediment of the rusty layer. Colonization of unfavorable substrates by Zoophycos and Chondrites tracemakers, as that represented by the rusty boundary layer, was possible because of constructing of open, probably of actively ventilated burrows that facilitate colonization of sediments poor in oxygen and food. Significant bioturbational disturbance of the rusty layer can cause vertical and horizontal redistribution of the components related to the K-Pg boundary impact and, in consequence, to induce erroneous interpretations. A detailed ichnological analysis of the K-Pg boundary interval, with special attention to the rusty layer, reveals an essential tool to avoid misinterpretations.  相似文献   

10.
The spatangoid Cyclaster danicus has been placed in the genus Brissopneustes by previous authors. The material from the Lower Danian of Denmark includes some abnormal individuals with depressed apical area. These have been previously interpreted as females with a marsupium. A study of both normal and abnormal tests indicates that the depressed apical area is not a marsupium but rather a malformation, possibly caused by adverse environmental conditions or by a parasite. The skeletal morphology indicates that C. danicus was a shallow burrowing form but the malformed individuals probably did not burrow.  相似文献   

11.
The burrowing crab Chasmagnathus granulatus is an important bioturbator that generates dense burrow assemblages (crab beds) characteristic of intertidal habitats of SW Atlantic estuaries. Crab bioturbation affects the topography and hydrodynamics of the sediment, increasing sediment water and organic matter content, decreasing sediment hardness and changing the grain size frequency distribution. In this study, we found that burrowing crabs can decrease the impact of predation by shorebirds on polychaetes. The polychaete Laeonereis acuta Treadwell has U-shaped burrows outside crab beds, which are associated with surface deposit-feeding while their burrows are mainly I-shaped inside which is associated with subsurface deposit feeding behavior. This pattern is likely the result of larger vertical sediment mixing inside crab beds due to crab burrowing. As a result of their feeding strategy, polychaetes appear on the surface more often outside crab beds, which increases their availability for shorebirds. In addition, shorebird species differentially use crab beds. The White-rumped Sandpiper, Calidris fuscicollis Vieillot, preferentially forage outside crab beds, meanwhile the Two-banded Plover Charadrius falklandicus Latham forage more frequently inside crab beds. However, experiments excluding shorebirds inside and outside crab beds showed negative effects of shorebirds only outside crab beds. Thus, our results show that the SW Atlantic burrowing crab C. granulatus affects the strength of the predator–prey interaction between shorebirds and polychaetes.  相似文献   

12.
The architectural and surficial morphologies of crayfish burrows from the Upper Triassic Chinle Formation and Holocene sediments were compared in order to determine: 1) if Triassic burrows could truly be attributed to crayfish activity; 2) how comparable the burrowing mechanisms are; and 3) whether or not a common set of burrowing signatures could be identified for both ancient and modern freshwater crayfish. Materials used in this study include burrows from the members of the Upper Triassic Chinle Formation, casts of modern burrows constructed by Procambarus clarkii Hobbs and Procambarus acutus acutus (Girard) in the laboratory, and casts of naturally constructed modern burrows of Cambarus diogenes di‐ogenes (Girard).

Triassic and Holocene crayfish burrow morphologies exhibit simple to complex architectures, varying degrees of branching, chamber, and chimney development. They also exhibit relatively textured surficial morphologies (bioglyphs) such as scrape and scratch marks, mud‐ and lag‐liners, knobby and hummocky surfaces, pleopod striae, and body impressions. Holocene crayfish construct distinctive burrows due to their conservative limb arrangement, functional morphology, and behavior with respect to environmental stimuli. Similarities between Holocene and Triassic crayfish burrows suggest that extant and Triassic crayfish employed identical burrowing mechanisms. Features of the surficial and architectural morphologies impart a distinctive signature to burrows of both ancient and modern freshwater burrowing crayfish.

Burrowing signatures of crayfish can be used to identify new and previously misinterpreted continental trace fossils. These are useful in studies of the paleohydrogeology, paleoclimatology and paleoecol‐ogy of burrow‐bearing deposits.  相似文献   

13.
Some fish species living in mudflats construct burrows for dwelling and hiding. The goby Parapocryptes serperaster is a burrowing fish in mudflats of many estuaries in South East Asia. This study was carried out in the Mekong Delta, Vietnam, to examine burrow morphology and usage by this species. Morphology of the burrows constructed by P. serperaster was investigated by resin castings in situ to obtain the physical structure and configuration of each burrow. Fish from the burrows were caught and measured before burrow casts were made. Fish burrows comprised several openings, a few branching tunnels and multi-bulbous chambers. The surface openings were circular, and the shapes of branching tunnels were nearly round. The burrows had interconnected tunnels and various short cul-de-sac side branches. The burrow structure differed between fish sizes, but burrow dimensions were positively correlated with fish size, indicating that larger fish can make larger and more sophisticated burrow. The burrow structure and dimensions were not different between the dry and wet seasons. Laboratory observations showed that P. serperaster used body movements to dig burrows in the sediment. Burrows could provide a low-tide retreat and protection from predators, but were not used for spawning and feeding for this goby species. This study indicates that the burrowing activity of gobies is an important adaptation for living in shallow and muddy habitats.  相似文献   

14.
《Palaeoworld》2022,31(2):334-357
This paper presents a quantitative study of dinoflagellate cysts (dinocysts) and palynofacies of the Campanian–Danian marly succession at the village of Tattofte (western External Rif, northwestern Morocco). The paleoenvironmental and paleoclimatic interpretations, inferred from this palynologic analysis, are compared to coeval sequences of other areas in the Northern Hemisphere. Changes in the relative abundances of dinocyst taxa, which are paleoenvironmental indicators, throughout the section suggest a deposition in a marine inner to outer neritic setting. The upper Campanian dinocyst assemblage is characterized by the presence of outer neritic-oceanic and low productivity indicator taxa (e.g., Spiniferites spp., Odontochitina spp.) and cold-water taxa (e.g., Manumiella spp., Chantangiella spp., Laciniadinium spp.), whereas, the lower Maastrichtian assemblage is characterized by inner neritic, high productivity and warm-water indicator taxa (e.g., Palaeocystodinium spp., Andalusiella spp.). The upper Maastrichtian dinocyst assemblage displays a return to an outer neritic environment under a transgressive regime, but with a cooling pulse and a moderate productivity. However, the Cretaceous–Paleogene (K/Pg) boundary interval records remarkable changes in the relative abundances of dinocyst taxa, indicating an inner neritic (coastal) setting, which is the most proximal in the study section; such changes reflect instable paleoenvironmental conditions which may be related to global cooling periods, likely caused by the Deccan volcanism in India and/or the Chicxulub asteroid impact in Mexico at the K/Pg boundary. In the Danian, the dinocyst relative abundances indicate a gradual return to stable environmental conditions.A quantitative analysis of the kerogen plots (palynomorphs, phytoclasts and amorphous organic matter (AOM)) reveals five types of palynofacies, generally indicating oxic to suboxic marine environments. The upper Campanian and upper Maastrichtian (lowermost part) strata are characterized by a playnofacies (V), indicating a distal shelf, while the lower Maastrichtian and lower Danian (uppermost part) strata record a playnofacies (III), reflecting an intermediate inner-outer neritic environment. However, the K/Pg boundary transition is characterized by playnofacies types (I) and (II), indicating a proximal (coastal) environment.  相似文献   

15.
Contrary to popular assumption, the pedicle of Glottidia is not its principal burrowing organ. The brachiopod props itself up with the pedicle and enters the sediment with the valves leading, anterior end first. The pedicle trails behind. Burrowing is accomplished by cyclical valve motions: rotary, sliding, and gaping movements are used. Rapid valve closure ejects water from the mantle cavity to loosen the sediment. The lateral setae convey mucus-bound sand posteriorly (upwards). X-radiography shows that the burrows are U-shaped: in a few hours, the animal reappears in feeding position with the anterior end pointing out of the sediment and the pedicle extending down into the burrow. This burrowing process explains the substrate preferences of lingulids. The thick. closely spaced setae are adapted for burrowing. The spacing between individuals is increased, suggesting competition for food.  相似文献   

16.
Bioturbation: impact on the marine nitrogen cycle   总被引:2,自引:0,他引:2  
Sediments play a key role in the marine nitrogen cycle and can act either as a source or a sink of biologically available (fixed) nitrogen. This cycling is driven by a number of microbial remineralization reactions, many of which occur across the oxic/anoxic interface near the sediment surface. The presence and activity of large burrowing macrofauna (bioturbators) in the sediment can significantly affect these microbial processes by altering the physicochemical properties of the sediment. For example, the building and irrigation of burrows by bioturbators introduces fresh oxygenated water into deeper sediment layers and allows the exchange of solutes between the sediment and water column. Burrows can effectively extend the oxic/anoxic interface into deeper sediment layers, thus providing a unique environment for nitrogen-cycling microbial communities. Recent studies have shown that the abundance and diversity of micro-organisms can be far greater in burrow wall sediment than in the surrounding surface or subsurface sediment; meanwhile, bioturbated sediment supports higher rates of coupled nitrification-denitrification reactions and increased fluxes of ammonium to the water column. In the present paper we discuss the potential for bioturbation to significantly affect marine nitrogen cycling, as well as the molecular techniques used to study microbial nitrogen cycling communities and directions for future study.  相似文献   

17.
A methodology for trace fossil identification using burrowing signatures is tested by evaluating ancient and modern lungfish and crayfish burrows and comparing them to previously undescribed burrows in a stratigraphic interval thought to contain both lungfish and crayfish burrows. Permian burrows that bear skeletal remains of the lungfish Gnathorhiza, from museum collections, were evaluated to identify unique burrow morphologies that could be used to distinguish lungfish from crayfish burrows when fossil remains are absent. The lungfish burrows were evaluated for details of the burrowing mechanism preserved in the burrow morphologies together forming burrowing signatures and were compared to new burrows in the Chinle Formation of western Colorado to test the methodology of using burrow signatures to identify unknown burrows.

Permian lungfish aestivation burrows show simple, nearly vertical, unbranched architectures and relatively smooth surficial morphologies with characteristic quasi‐horizontal striae on the burrow walls and vertical striae on the bulbous terminus. Burrow lengths do not exceed 0.5 m. In contrast, modern and ancient crayfish burrows exhibit simple to highly complex architectures with highly textured surficial morphologies. Burrow lengths may reach 4 to 5 m.

Burrow morphologies unlike those identified in Gnathorhiza aestivation burrows were found in four burrow groups from museum collections. Two of these groups exhibit simple architectures and horizontal striae that were greater in sinuosity and magnitude, respectively. One of these burrows contains the remains of Lysoro‐phus, but the burrow surface reveals no reliable surficial characteristics. It is not clear whether Lysorophus truly burrowed or merely occupied a pre‐existing structure. The other two groups exhibit surficial morphologies similar to those found on modern and ancient crayfish burrows and may provide evidence of freshwater crayfish in the Permian.

Burrows from the Upper Triassic Chinle Formation in western Colorado exhibit simple to moderately complex architectural morphologies, ranging from predominantly vertical, unbranched, with little or no chamber development to predominantly vertical, few branches, and with minor chamber development. Surficial burrow morphologies are moderate to highly textured. The burrows have scrape marks, scratch marks, mud and lag‐liners, knobby surfaces, pleopod striae, and body impressions.

Although no fossil remains of the burrowing organism were found within or associated with the Chinle burrows from western Colorado, the similarity of architectural and surficial burrow morphologies to those in the Chinle of Canyonlands, Utah and to modern crayfish burrows, clearly indicates that the Colorado burrows are the product of burrowing crayfish rather than lungfish. Evaluation of burrowing signatures preserved in the architectural and surficial burrow morphologies is a very useful tool to compare and contrast Chinle burrows from different regions on the Colorado Plateau. Documentation of crayfish burrows in the Chinle of Utah and Colorado strongly suggests that other large‐diameter Chinle burrows elsewhere on the Colorado Plateau and in stratigraphically equivalent units may also be the product of crayfish activity.  相似文献   

18.
A roughly 10.5-m-thick succession within the Langpar Formation of the Um Sohryngkew River section, Meghalaya, India, constrained by the last occurrence of Globotruncanita stuarti and the first occurrence of Parasubbotina pseudobulloides , spans the K/T (Cretaceous–Tertiary) transition. The unit is divisible into three parts with the lower consisting of shaly limestone, weakly calcareous shale and silty shale with coal streaks. The middle part is dominated by calcareous shale with mud flakes, coprolites, burrows and pyrite nodules, followed by alternating limestone and marlite at the top. Planktonic foraminifera are rare to frequent within the unit. Based on the distribution of zonal indices, seven successive planktonic foraminiferal zones are recognized from across the K/T boundary. From base to top, these are CF4, CF3, CF2 and CF1 in the upper Maastrichtian part and Zone P0, Zone Pα and Subzone P1a in the lower Danian part. The biozones indicate that the section is biostratigraphically continuous across the K/T boundary. A similar foraminiferal succession and K/T transition is observed in the Langpar of the Cherrapunji-Mahadeo road section at a distance of over 5km. These K/T outcrops from Meghalaya provide the first record of a continuous K/T sequence in the Indian subcontinent with respect to planktonic foraminifera.  相似文献   

19.
Recent work has shown that muddy sediments are elastic solids through which animals extend burrows by fracture, whereas non-cohesive granular sands fluidize around some burrowers. These different mechanical responses are reflected in the morphologies and behaviours of their respective inhabitants. However, Armandia brevis, a mud-burrowing opheliid polychaete, lacks an expansible anterior consistent with fracturing mud, and instead uses undulatory movements similar to those of sandfish lizards that fluidize desert sands. Here, we show that A. brevis neither fractures nor fluidizes sediments, but instead uses a third mechanism, plastically rearranging sediment grains to create a burrow. The curvature of the undulating body fits meander geometry used to describe rivers, and changes in curvature driven by muscle contraction are similar for swimming and burrowing worms, indicating that the same gait is used in both sediments and water. Large calculated friction forces for undulatory burrowers suggest that sediment mechanics affect undulatory and peristaltic burrowers differently; undulatory burrowing may be more effective for small worms that live in sediments not compacted or cohesive enough to extend burrows by fracture.  相似文献   

20.
The post-mortem history of a prolific Maastrichtian ammonite and nautiloid fauna preserved as phosphatic steinkerns in chalk of the upper Miria Formation of Western Australia is described. Sediment infilling of phragmocones, required for their fossilisation, was accomplished by means of perforations in the shell wall induced by the activity of abundant endoliths. These include borings ascribed to clionid sponges (Entobia), thallophytes, polychaete worms (including Caulostrepis and probable Maeandropolydora), phoronids (Talpina and Gnathichnus) and others of conjectural origin. Sediment infilling by this mechanism is considered to be more applicable to the taphonomy of phragmocones in general than sediment entry through the siphuncle and to be indicative of low sedimentation rates for the hosting strata. Nonheteromorph ammonites, and the nautiloid Cimomia, are preserved almost exclusively as phragmocones in the upper Miria Formation, and are numerically subordinate to the heteromorph Eubaculites which, together with Glyptoxoceras, is preserved predominantly as body chambers. This phragmocone/body chamber preservational contrast is attributed to the influence of shell shape on pre-burial mechanical abrasion. The apparent dominance of Eubaculites is considered to be largely a preservational artifact and ascribed to the ease with which body chambers were infilled, and thereby favoured for steinkern formation, relative to phragmocones. Phragmocones, or parts thereof. not filled with sediment were eliminated from the fossil record by diagenetic aragonite dissolution. Many ammonites with open umbilici have the early whorls missing. This we attribute to the trapping of sediment in the umbilicus prior to burial, preventing endolith attack whereby the early whorls avoided a sediment infilling. However, the protected inner whorls of involute ammonites and Cimomia, which have closed umbilici, and the inner whorls of evolute ammonites where a cemented umbilical plug supported the mouldic cavity left by shell dissolution, were preserved and were commonly infilled with calcite spar later in diagenesis. The dearth of cephalopod fossils in chalk underlying the upper Miria Formation is ascribed to diagenesis in which aragonite dissolution was not preceded by cementation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号