首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
A series of random copoly(styrene)s has been synthesized via radical polymerization of functionalized anthraquinone (AQ) and β-O-4 lignin model monomers. The copolymers were designed to have a different number of styrene spacer groups between the AQ and β-O-4 lignin side chains aiming at investigating the distance effects on AQ/β-O-4 electron transfer mechanisms. A detailed molecular characterization, including techniques such as size exclusion chromatography, MALDI-TOF mass spectrometry, and (1)H, (13)C, (31)P NMR and UV-vis spectroscopies, afforded quantitative information about the composition of the copolymers as well as the average distribution of the AQ and β-O-4 groups in the macromolecular structures. TGA and DSC thermal analysis have indicated that the copolymers were thermally stable under regular pulping conditions, revealing the inertness of the styrene polymer backbone in the investigation of electron transfer mechanisms. Alkaline pulping experiments showed that close contact between the redox active side chains in the copolymers was fundamental for an efficient degradation of the β-O-4 lignin model units, highlighting the importance of electron transfer reactions in the lignin degradation mechanisms catalyzed by AQ. In the absence of glucose, AQ units oxidized phenolic β-O-4 lignin model parts, mainly by electron transfer leading to vanillin as major product. By contrast, in presence of glucose, anthrahydroquinone units (formed by reduction of AQ) reduced the quinone-methide units (issued by dehydration of phenolic β-O-4 lignin model part) mainly by electron transfer leading to guaiacol as major product. Both processes were distance dependent.  相似文献   

2.
Incorporating ester interunit linkages into lignin could facilitate fiber delignification and utilization. In model studies with maize cell walls, we examined how partial substitution of coniferyl alcohol (a normal monolignol) with coniferyl ferulate (an ester conjugate from lignan biosynthesis) alters the formation and alkaline extractability of lignin and the enzymatic hydrolysis of structural polysaccharides. Coniferyl ferulate moderately reduced lignification and cell-wall ferulate copolymerization with monolignols. Incorporation of coniferyl ferulate increased lignin extractability by up to 2-fold in aqueous NaOH, providing an avenue for producing fiber with less noncellulosic and lignin contamination or of delignifying at lower temperatures. Cell walls lignified with coniferyl ferulate were more readily hydrolyzed with fibrolytic enzymes, both with and without alkaline pretreatment. Based on our results, bioengineering of plants to incorporate coniferyl ferulate into lignin should enhance lignocellulosic biomass saccharification and particularly pulping for paper production.  相似文献   

3.
木质素生物合成及其基因工程研究进展   总被引:29,自引:0,他引:29  
木质素是维管植物的一种主要组成成分,是植物适应陆地环境的重要特征之一.然而,它的存在严重影响植物材料在造纸工业与畜牧业生产中的应用,因此其生物合成调控的研究引起人们极大关注.随着各种分析技术和手段的提高,该领域研究取得了突破性的进展.该文重点阐述这些新进展,同时较系统地介绍利用基因工程技术调控木质素生物合成的研究成果,并提出一些关于更有效地利用生物技术手段改良造纸资源植物品质的建议.  相似文献   

4.
In the present work, conformational analysis of lignin models was accomplished by considering four cross-link types (3–5′, β-5′, α-O-4 and β-O-4) and three monomer units [guaiacyl (G), p-hydroxyphenyl (H) and syringyl (S)]. Analysis involving the 3–5′ and β-5′ dimers was conducted following the standard procedure, i.e., rotating the monomers around the single bond. On the other hand, analysis of α-O-4 and β-O-4 dimers followed a distinct protocol with the aid of an interesting chemometric tool called Box-Behnken (BB) design. This methodology was applied with the aim of screening the most relevant dihedral angles. The results show that the conformational space for large systems with several dihedral angles can be mapped satisfactorily through the BB approach, reducing the number of dimensions to be treated at the quantum mechanical level. Furthermore, the quantum mechanics-chemometry-quantum mechanics (QM/BB/QM) method proposed here allows us to determine calculated torsional angles for lignin models in good agreement with crystallographic data for some model compounds.  相似文献   

5.
Pan X  Sano Y 《Bioresource technology》2005,96(11):1256-1263
Fractionation of wheat straw was investigated using an atmospheric acetic acid process. Under the typical conditions of 90% (v/v) aqueous AcOH, 4% H(2)SO(4) (w/w, on straw), ratio of liquor to straw (L/S) 10 (v/w), pulping temperature 105 degrees C, and pulping time 3h, wheat straw was fractionated to pulp (cellulose), lignin and monosaccharides mainly from hemicellulose with yields of approximately 50%, 15% and 35%, respectively. Acetic acid pulp from the straw had an acceptable strength for paper and could be bleached to a high brightness over 85% with a short bleaching sequence. Acetic acid pulp was also a potential feedstock for fuels and chemicals. The acetic acid process separated pentose and hexose in wheat straw to a large extent. Most of the pentose (xylan) was dissolved, whereas the hexose (glucan) remained in the pulp. Approximately 30% of carbohydrates in wheat straw were hydrolyzed to monosaccharides during acetic acid pulping, of which xylose accounted for 70% and glucose for 12%. The acetic acid lignin from wheat straw showed relatively lower molecular weight and fusibility, which made the lignin a promising raw material for many products, such as adhesive and molded products.  相似文献   

6.
An original reaction system (the phase separative reaction system) has been designed for derivatizing native lignins to highly phenolic, functional polymers. This system is composed of a phenol derivative and concentrated acid, which are not miscible at room temperature. The key point of the lignin functionalization process, including the phase separative system, is that lignin and carbohdrates, which are totally different in structures and reactivitie, are modified individually in the different phases: lignin is present in the organic phase and carbohydrates in the aqueous phase. Through the process, lignin was modified selectively at Calpha-positions of side chains, the most reactive sites, to give highly phenolic, light-colored, diphenylmethane-type materials which still retained original interunit linkages formed by the dehydrogenative polymerization during the biosynthesis. The carbohydrates were swollen, followed by partial hydrolysis and dissolution in the acid solution, resulting in the perfect decomposition of interpenetrating polymer network structures in the cell wall. Therefore, the functionalization of lignin and the separation of resulting lignin from carbohydrates were quickly achieved at room temperature, independent of wood species. This process would be a powerful tool for estimating strutures and reactivities of lignins as well as the functionalization of lignins, because of the selective structural modifications. (c) 1995 John Wiley & Sons, Inc.  相似文献   

7.
Lignin in plant cell walls is a complex, irregular polymer built from phenylpropanoid C6-C3 units that are connected via various C-C and C-O linkages. A recent study using time-of-flight secondary ion mass spectrometry (ToF-SIMS) with Ga primary ion bombardment showed that lignin polymers can be characterized by specific positive ions possessing a substituted aromatic ring (so-called guaiacyl or syringyl rings), which are the basic building units of lignin. To study the relationship between the characteristic ions of lignin and the common interunit linkages, various lignin dimer model compounds were investigated using ToF-SIMS. The resulting dimer spectra showed that the characteristic ions with a guaiacyl ring at m/z 137 and 151 result from rupture of most common interunit linkages, not only 8-O-4' linkages, which are the most abundant in lignin, but also 8-1', 8-5', and 8-8'. There was no evidence of rupture of 5-5' linkages. These results show that ToF-SIMS offers a new tool for the direct analysis of the depolymerized fragments of lignin polymers. The mechanisms for the fragmentation of lignin dimer models in ToF-SIMS were proposed that allow ToF-SIMS fragmentation rules to be deduced. Adduct ions such as [M + 13]+ ([M + CH]+) were also produced in fragmentation of the dimers and are thought to arise from the combination of the molecules with their stable fragments.  相似文献   

8.
A rapid and mild extraction protocol for the preparation of lignin was achieved by microwave-assisted heating in formic acid at 101 °C under atmospheric pressure. In this case, birch lignin was extracted with microwave heating process (ML) in formic acid and characterized by elemental analysis, FTIR, GPC, 1H NMR and 13C–1H HSQC. In addition, the antioxidant activity of the samples was investigated. For comparative study, milled wood lignin (MWL) and lignin extracted with oil bath heating process (OL) were prepared. The results showed that the lignin yield under microwave heating was much higher than that under oil bath heating. A maximal delignification degree (89.77%) was achieved when microwave heating time was 30 min. When double time (60 min) was used under oil bath heating, the delignification degree was 66.11%. The structural characterization showed that the lignin structure of ML did not change dramatically, which is a mixture of GS-type with β-O-4′ ether bond as the major inter-unit linkage. As for antioxidant activity against DPPH, the radical scavenging index (RSI) of ML was 1.20, which was higher than that of MWL (0.53), suggesting that ML exhibited much higher antioxidant activity than MWL.  相似文献   

9.
Pretreatment plays an important role in the efficient enzymatic hydrolysis of biomass into fermentable sugars for biofuels. A highly effective pretreatment method is reported for corn stover which combines mild alkali-extraction followed by ionic liquid (IL) dissolution of the polysaccharides and regeneration (recovery of the polysaccharides as solids). Air-dried, knife-milled corn stover was soaked in 1% NaOH at a moderate condition (90°C, 1 h) and then thoroughly washed with hot deionized (DI) water. The alkali extraction solublized 75% of the lignin and 37% of the hemicellulose. The corn stover fibers became softer and smoother after the alkali extraction. Unextracted and extracted corn stover samples were separately dissolved in an IL, 1-butyl-3-methylimidazolium chloride (C(4) mimCl), at 130°C for 2 h and then regenerated with DI water. The IL dissolution process did not significantly change the chemical composition of the materials, but did alter their structural features. Untreated and treated corn stover samples were hydrolyzed with commercial enzyme preparations including cellulases and hemicellulases at 50°C. The glucose yield from the corn stover sample that was both alkali-extracted and IL-dissolved was 96% in 5 h of hydrolysis. This is a highly effective methodology for minimizing the enzymatic loading for biomass hydrolysis and/or maximizing the conversion of biomass polysaccharides into sugars.  相似文献   

10.
Summary

Wheat bran contains several ester-linked dehydrodimers of ferulic acid, which were detected and quantified after sequential alkaline hydrolysis. The major dimers released were: trans-5-[(E)-2-carboxyvinyl]-2-(4-hydroxy-3-methoxy-phenyl)-7-methoxy-2,3-dihydrobenzofuran-3-carboxylic acid (5–8-BendiFA), (Z)-β-(4-[(E)-2-carboxyvinyl]-2-methoxy-phenoxy)-4-hydroxy-3-methoxycinnamic acid (8-O-4-diFA) and (E,E)-4,4′-dihydroxy-5,5′-dimethoxy-3,3′-bicinnamic acid (5–5-diFA). trans-7-hydroxy-1-(4-hydroxy-3methoxyphenyl)-6-methoxy-1,2-dihydro-naphthalene-2,3-dicarboxylic acid (8–8-diFA cyclic form) and 4,4′-dihydroxy-3,3′-dimethoxy-β,β'-bicinnamic acid (8–8-diFA non cyclic form) were not detected. One of the most abundant dimers, 8-O-4-diFA, was purified from de-starched wheat bran after alkaline hydrolysis and preparative HPLC. The resultant product was identical to the chemically synthesised 8-O-4-dimer by TLC and HPLC as confirmed by 1H-NMR and mass spectrometry. The absorption maxima and absorption coefficients for the synthetic compound in ethanol were: λmax: 323 nm, λmin: 258 nm, ελmax (M?1cm?1): 24800 ± 2100 and ε280 (M?1cm?1): 19700 ± 1100. The antioxidant properties of 8-O-4-diFA were assessed using: (a) inhibition of ascorbate/iron-induced peroxidation of phosphatidylcholine liposomes and; (b) scavenging of the radical cation of 2,2′-azinobis (3-ethyl-benzothiazoline-6-sulphonate) (ABTS) relative to the water-soluble vitamin E analogue, Trolox C. The 8-O-4-diFA was a better antioxidant than ferulic acid in both lipid and aqueous phases. This is the first report of the antioxidant activity of a natural diferulate obtained from a plant.  相似文献   

11.
利用沸水浴法和超声辅助提取法提取鸡腿菇粗多糖,分别得到对应的多糖水浴提取的多糖(WCP)和超声提取的多糖(UCP)。采用苯酚硫酸法测得WCP和UCP中的总糖质量分数分别为87.997%和72.937%。用季铵盐沉淀法和Sephadex G 200凝胶层析法对WCP和UCP进行分离纯化,得WCP3 1、UCP3 1 2个主要组分,用傅立叶红外光谱(FTIR)和原子力显微镜(AFM)对提取多糖的结构进行表征。结果显示:WCP3 1和UCP3 1均具有一般多糖类物质的特征吸收峰,WCP3 1和UCP3 1的单糖残基均以β吡喃环存在,但超声波可导致部分C O双键断裂形成C—O链接;WCP3 1呈现大量的近似螺旋聚集体和少量球状聚集体,但是UCP3 1是较小的分散球状聚集体,说明超声波可断裂多糖的分子链间或链内氢键,导致近似螺旋聚集体的降解。  相似文献   

12.
Lignin changes during plant growth were investigated in a selected Eucalyptus globulus clone. The lignin composition and structure were studied in situ by a new procedure enabling the acquisition of two-dimensional nuclear magnetic resonance (2D-NMR) spectra on wood gels formed in the NMR tube as well as by analytical pyrolysis-gas chromatography-mass spectrometry. In addition, milled-wood lignins were isolated and analyzed by 2D-NMR, pyrolysis-gas chromatography-mass spectrometry, and thioacidolysis. The data indicated that p-hydroxyphenyl and guaiacyl units are deposited at the earlier stages, whereas the woods are enriched in syringyl (S) lignin during late lignification. Wood 2D-NMR showed that β-O-4' and resinol linkages were predominant in the eucalypt lignin, whereas other substructures were present in much lower amounts. Interestingly, open β-1' structures could be detected in the isolated lignins. Phenylcoumarans and cinnamyl end groups were depleted with age, spirodienone abundance increased, and the main substructures (β-O-4' and resinols) were scarcely modified. Thioacidolysis revealed a higher predominance of S units in the ether-linked lignin than in the total lignin and, in agreement with NMR, also indicated that resinols are the most important nonether linkages. Dimer analysis showed that most of the resinol-type structures comprised two S units (syringaresinol), the crossed guaiacyl-S resinol appearing as a minor substructure and pinoresinol being totally absent. Changes in hemicelluloses were also shown by the 2D-NMR spectra of the wood gels without polysaccharide isolation. These include decreases of methyl galacturonosyl, arabinosyl, and galactosyl (anomeric) signals, assigned to pectin and related neutral polysaccharides, and increases of xylosyl (which are approximately 50% acetylated) and 4-O-methylglucuronosyl signals.  相似文献   

13.
β-glucanase Cel12A from Stachybotrys atra has been cloned and expressed in Aspergillus niger. The purified enzyme showed high activity of β-1,3-1,4-mixed glucans, was also active on carboxymethylcellulose (CMC), while it did not hydrolyze crystalline cellulose or β-1,3 glucans as laminarin. Cel12A showed a marked substrate preference for β-1,3-1,4 glucans, showing maximum activity on barley β-glucans (27.69 U mg(-1)) while the activity on CMC was much lower (0.51 U mg(-1)). Analysis by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), isoelectric focussing (IEF), and zymography showed the recombinant enzyme has apparent molecular weight of 24 kDa and a pI of 8.2. Optimal temperature and pH for enzyme activity were 50°C and pH 6.5. Thin layer chromatography analysis showed that major hydrolysis products from barley β-glucan and lichean were 3-O-β-cellotriosyl-D-glucose and 3-O-β-cellobiosyl-D-glucose, while glucose and cellobiose were released in smaller amounts. The amino acid sequence deduced from cel12A revealed that it is a single domain enzyme belonging to the GH12 family, a family that contains several endoglucanases with substrate preference for β-1,3-1,4 glucans. We believe that S. atra Cel12A should be considered as a lichenase-like or nontypical endoglucanase.  相似文献   

14.
对中国北方海域江蓠属养殖龙须菜(Gracilaria lemaneiformis)进行了溴过氧化物酶分离纯化及性质的研究。粗提液中酶催化检测反应不稳定, 活力单位较低或无; 经DEAE cellulose 52离子交换层析, 去除了结构多糖及藻胆蛋白, 酶催化反应稳定, 得到比活力为2.8的电泳纯溴过氧化物酶。对纯化溴过氧化物酶性质研究表明: 该溴过氧化物酶为单体酶, 分子量约66 kD, 溴化单氯双甲酮时的最适pH值为6.0, 在40°C以下和pH 3.0~9.0之间有很好的稳定性。钒酸盐可提高该溴过氧化物酶的催化活性, 而Fe2+、Fe3+、Cu2+、Zn2+和EDTA等化合物对其有较显著的抑制作用。反应动力学实验表明, 该酶对Br-、H2O2的Km分别为53.5 mmol/L和38 mmol/L。  相似文献   

15.
龙须菜中溴过氧化物酶的分离纯化及酶学性质分析   总被引:2,自引:0,他引:2  
对中国北方海域江蓠属养殖龙须菜(Gracilaria lemaneiformis)进行了溴过氧化物酶分离纯化及性质的研究。粗提液中酶催化检测反应不稳定, 活力单位较低或无; 经DEAE cellulose 52离子交换层析, 去除了结构多糖及藻胆蛋白, 酶催化反应稳定, 得到比活力为2.8的电泳纯溴过氧化物酶。对纯化溴过氧化物酶性质研究表明: 该溴过氧化物酶为单体酶, 分子量约66 kD, 溴化单氯双甲酮时的最适pH值为6.0, 在40°C以下和pH 3.0~9.0之间有很好的稳定性。钒酸盐可提高该溴过氧化物酶的催化活性, 而Fe2+、Fe3+、Cu2+、Zn2+和EDTA等化合物对其有较显著的抑制作用。反应动力学实验表明, 该酶对Br-、H2O2的Km分别为53.5 mmol/L和38 mmol/L。  相似文献   

16.
Lignocellulose polysaccharides are encrusted by lignin, which has long been considered an obstacle for efficient use of polysaccharides during processes such as pulping and bioethanol fermentation. Hence, numerous transgenic plant lines with reduced lignin contents have been generated, leading to more efficient enzymatic saccharification and forage digestion. However, lignin is also a potential feedstock for aromatic products and an important direct-combustion fuel, or a by-product fuel in polysaccharide utilization such as pulping and bioethanol production. For aromatic feedstock production, the complicated structure of lignin along with its occlusion within polysaccharide matrices makes lignin utilization intractable. To alleviate these difficulties, simplification of the lignin structure is an important breeding objective for future high-value utilization of lignin. In addition, higher lignin contents are beneficial for increasing heating values of lignocellulose, because lignin has much larger heating values than polysaccharides, cellulose and hemicelluloses. Structural modification of lignin may also be effective in increasing heating values of lignocellulose biomass, because the heating value of p-hydroxyphenyl lignin is highest, followed by those of guaiacyl lignin and of syringyl lignin in this order. Herein, recent developments for augmenting lignin contents and for lignin structural modifications, to improve its utilization by metabolic engineering, are outlined.  相似文献   

17.
The water-soluble acid agaran isolated from Acanthophora spicifera (Rhodophyta) was submitted to alkaline treatment for the complete cyclization of alpha-L-Galp 6-sulfate to 3,6-An-alpha-L-Galp units. The modified agaran was then partially depolymerized using partial reductive hydrolysis. The resulting oligosaccharide mixture was fractionated by adsorption and ion-exchange chromatography. Fractions were purified by gel-filtration chromatography and studied by ESIMS and NMR spectroscopy, including 1D 1H, 13C, DEPT and 2D 1H, 1H COSY, TOCSY and 1H, 13C HMQC procedures. The following neutral, pyruvylated, sulfated and sulfated/pyruvylated disaccharide alditols were obtained: beta-D-Galp-(1-->4)-3,6-An-L-GalOH; 4,6-O-(1-carboxyethylidene)-beta-D-Galp-(1-->4)-3,6-An-L-GalOH; beta-D-Galp 2-sulfate-(1-->4)-3,6-An-L-GalOH and 4,6-O-(1-carboxyethylidene)-beta-D-Galp 2-sulfate-(1-->4)-3,6-An-L-GalOH.  相似文献   

18.
The efficient production of β-glycosides of capsaicin and 8-nordihydrocapsaicin by cultured cells of Panax ginseng is reported. Capsaicin 4-O-(6-O-β-D-xylopyranosyl)-β-D-glucopyranoside (β-primeveroside, 12%) together with capsaicin 4-O-β-D-glucoside (6%) was isolated from the cell suspension of P. ginseng after one week of incubation with capsaicin. On the other hand, 8-nordihydrocapsaicin was glycosylated to 8-nordihydrocapsaicin 4-O-β-D-glucoside (5%) and 8-nordihydrocapsaicin 4-O-β-primeveroside (9%) by P. ginseng. Pretreatment of the cultured cells with salicylic acid greatly enhanced the glucosylation activity toward capsaicinoids. When 500 μM of salicylic acid was added to the cultures prior to the addition of substrate, capsaicin was converted into capsaicin 4-O-β-D-glucoside (17%) and capsaicin β-primeveroside (21%) and 8-nordihydrocapsaicin was glycosylated to 8-nordihydrocapsaicin 4-O-β-D-glucoside (16%) and 8-nordihydrocapsaicin β-primeveroside (15%).  相似文献   

19.
The objective of this study was to characterize the changes in lignin structure during hydrothermal pretreatment of shrub Tamarix ramosissima. Lignins in residual wood meal were isolated with alkaline ethanol solution and recovered with acid precipitation. A comparison between the recovered lignin fractions with milled wood lignin has been made in terms of yield, purity, gel permeation chromatography, Fourier transform infrared spectroscopy, pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS), 1D 13C and 2D heteronuclear single quantum coherence nuclear magnetic resonance (HSQC NMR) spectroscopic techniques. Semiquantitative HSQC NMR showed that the relative amounts of β-O-4′ (around 76 % side chains) and resinol type substructures (16 %) of lignins were significantly modified during hydrothermal pretreatment. Py-GC/MS analyses brought direct evidences of these lignin samples with high S/G ratios ranging from 1.7 to 2.6. Moreover, the results indicated that an increase in the severity of the hydrothermal pretreatment enhanced the degradation of lignin unit side chains and the condensation of lignin and decreased the molecular weight of the recovered lignin fractions. This study demonstrated that the combination of autohydrolysis and alkaline ethanol process could potentially turn the recovered lignin fractions into value added products being in accordance with the “biorefinery” concept.  相似文献   

20.
The influence of lignin, lignin model compounds, and black liquor from the kraft pulping process on the hydrolysis of xylan by xylanase was investigated. Addition of vanillic acid, acetovanillone, and protocatechuic acid increased the rate of hydrolysis of xylan by as much as 18–50% at low concentrations, but reached maxima at about 0.05% concentration. Addition of vanillin caused a 15% improvement in xylan hydrolysis, while addition of guaiacol more than doubled the hydrolysis rate. Increasing concentrations of either lignin or black liquor also increased the hydrolysis rate of xylan. Circular dichroism spectroscopy indicated a change in the structure of xylanase in the presence of black liquor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号