首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heme oxygenase (HO) catalyzes the degradation of heme to biliverdin. The crystal structure of human HO-1 in complex with heme reveals a novel helical structure with conserved glycines in the distal helix, providing flexibility to accommodate substrate binding and product release (Schuller, D. J., Wilks, A., Ortiz de Montellano, P. R., and Poulos, T. L. (1999) Nat. Struct. Biol. 6, 860-867). To structurally understand the HO catalytic pathway in more detail, we have determined the crystal structure of human apo-HO-1 at 2.1 A and a higher resolution structure of human HO-1 in complex with heme at 1.5 A. Although the 1.5-A heme.HO-1 model confirms our initial analysis based on the 2.08-A model, the higher resolution structure has revealed important new details such as a solvent H-bonded network in the active site that may be important for catalysis. Because of the absence of the heme, the distal and proximal helices that bracket the heme plane in the holo structure move farther apart in the apo structure, thus increasing the size of the active-site pocket. Nevertheless, the relative positioning and conformation of critical catalytic residues remain unchanged in the apo structure compared with the holo structure, but an important solvent H-bonded network is missing in the apoenzyme. It thus appears that the binding of heme and a tightening of the structure around the heme stabilize the solvent H-bonded network required for proper catalysis.  相似文献   

2.
O Tapia  H Eklund 《Enzyme》1986,36(1-2):101-114
Water structure in the substrate channel of liver alcohol dehydrogenase as a function of the oxidation state of the coenzyme nicotinamide ring has been studied with Monte Carlo simulations. X-ray data on water structure has been analyzed. The simulations show an order-disorder effect in the water distribution produced by the charge state of the ring; also, solvation-desolvation effects are detected. For positively charged ring, the water molecules form a fluctuated H-bonded network that connects the deeply buried active site zinc to the bulk solvent. This network together with the side chain of Ser-48 most likely is the support for a proton relay system thereby providing a mechanism responsible of the pKa shift of the zinc-bound water as it is produced by the oxidized coenzyme binding.  相似文献   

3.
The Trp-cage, an 18-20 residue miniprotein, has emerged as a primary test system for evaluating computational fold prediction and folding rate determination efforts. As it turns out, a number of stabilizing interactions in the Trp-cage folded state have a strong pH dependence; all prior Trp-cage mutants have been destabilized under carboxylate-protonating conditions. Notable among the pH dependent stabilizing interactions within the Trp-cage are: (1) an Asp as the helix N-cap, (2) an H-bonded Asp9/Arg16 salt bridge, (3) an interaction between the chain termini which are in close spatial proximity, and (4) additional side chain interactions with Asp9. In the present study, we have prepared Trp-cage species that are significantly more stable at pH 2.5 (rather than 7) and quantitated the contribution of each interaction listed above. The Trp-cage structure remains constant with the pH change. The study has also provided measures of the stabilizing contribution of indole ring shielding from surface exposure and the destabilizing effects of an ionized Asp at the C-terminus of an α-helix.  相似文献   

4.
5.
The conformation of the encephalitogenic protein isolated from normal human myelin has been studied by circular dichroism and surface tension techniques. The findings support the conclusion that this protein has a highly ordered structure in solution, with little α-helical or β structure. Conformational changes were observed at extremes of pH. Heating at high or low pH values had the effect of inducing more structure as determined by circular dichroism. Surface tension measurements showed a low temperature conformational change at low pH and a high temperature conformational change at high pH. At other pH values the structure appeared to be stable.  相似文献   

6.
WasCFP, a pH-dependent green fluorescent protein with a tryptophan-based chromophore (Thr65-Trp66-Gly67) in anionic state, was designed from a cyan precursor mCerulean. In this study, the three-dimensional structure of WasCFP has been determined by an X-ray method at pH 5.5, pH 8.0 and pH 10.0, with a resolution of 1.14, 1.25 and 1.5 Å, respectively. We show that changes in the acidity of the media are accompanied by a synchronous change of the side chain conformations of the residues in the near-chromophore environment. Subsequent changes in the local H-bond network interacting with the chromophore lead to considerable alterations in the protein spectral properties as a consequence of reversible processes of ionization-protonation of the Trp chromophore. These experimental results have been supported by quantum chemistry calculations.  相似文献   

7.
L Lebioda  B Stec 《Biochemistry》1991,30(11):2817-2822
Enolase in the presence of Mg2+ catalyzes the elimination of H2O from 2-phosphoglyceric acid (PGA) to form phosphoenolpyruvate (PEP) and the reverse reaction, the hydration of PEP to PGA. The structure of the ternary complex yeast enolase-Mg2(+)-PGA/PEP has been determined by X-ray diffraction and refined by crystallographic restrained least-squares to an R = 16.9% for those data with I/sigma (I) greater than or equal to 2 to 2.2-A resolution with a good geometry of the model. The structure indicates the substrate molecule in the active site has its hydroxyl group coordinated to the Mg2+ ion. The carboxylic group interacts with the side chains of His373 and Lys396. The phosphate group is H-bonded to the guanidinium group of Arg374. A water molecule H-bonded to the carboxylic groups of Glu168 and Glu211 is located at a 2.6-A distance from carbon-2 of the substrate in the direction of its proton. We propose that this cluster functions as the base abstracting the proton in the catalytic process. The proton is probably transferred, first to the water molecule, then to Glu168, and further to the substrate hydroxyl to form a water molecule. Some analogy is apparent between the initial stages of the enolase reverse reaction, the hydration of PEP, and the proteolytic mechanism of the metallohydrolases carboxypeptidase A and thermolysin. The substrate/product binding is accompanied by large movements of loops Ser36-His43 and Ser158-Gly162. The role of these conformational changes is not clear at this time.  相似文献   

8.
We have employed the rapid-freeze technique to prepare specimens for electron microscopy of a coat protein solution of tobacco mosaic virus at equilibrium at pH 7.0 and 6.8, ionic strength 0.1 M and 20 degrees C. The former are the conditions for the most rapid assembly of the virus from its isolated protein and RNA. At both pH values, the equilibrium mixture contains approximately 80% of a "20 S" aggregate and 20% of a "4 S" aggregate (the so-called A-protein). The specimens were prepared either totally unstained or positively stained with methyl mercury nitrate, which binds to an amino acid residue (Cys27) internally located within the subunit, which we show not to affect the virus assembly. The images in the electron microscope are compatible only with the major structure for the "20 S" aggregate at pH 7.0 containing two rings of subunits and these aggregates display the same binding contacts as those seen between the aggregate that forms the asymmetric unit in the crystal, which has been shown by X-ray crystallography to be a disk containing two rings, each of 17 subunits, oriented in the same direction. In contrast, the images from specimens prepared at pH 6.8 show the major structure to be a proto-helix at this slightly lower pH, demonstrating that the technique of cryo-electron microscopy is capable of distinguishing between these aggregates of tobacco mosaic virus coat protein. The main structure in solution at pH 7.0 must therefore be very similar to that in the crystal, although slight differences could occur and there are probably other, minor, components in a mixture of species sedimenting around 20 S under these conditions. The equilibrium between aggregates is extremely sensitive to conditions, with a drop of 0.2 pH unit tipping the disk to proto-helix ratio from approximately 10:1 at pH 7.0 to 1:10 at pH 6.8. This direct determination of the structure of the "20 S" aggregate in solution, under conditions for virus assembly, contradicts some recent speculation that it must be helical, and establishes that, at pH 7.0, it is in fact predominantly a two-layer disk as it had been modelled before.  相似文献   

9.
The ferrous form of native cytochrome c peroxidase (CCP) is known to undergo a reversible transition when titrated over the pH range of 7.00-9.70. This transition produces a conversion from a pentacoordinate high-spin to a hexacoordinate low-spin heme active site and is clearly apparent in the heme optical absorption spectra. Here, we report the characterization of this transition and its effect upon the local heme environment using various optical spectroscopies. The formation of hexacoordinate low-spin heme is interpreted to involve the binding of His-52 at the distal site after the perturbation of the extensive H-bonded network within and around the heme pocket of CCP(II) at alkaline pH. Interestingly, CD investigations of CCP(II) in the far-UV and Soret regions indicate the dissappearance of a single high-spin species and the existence of at least two low-spin species of CCP(II) as the pH is raised above 7.90. Furthermore, transient resonance Raman experiments demonstrate that the hexacoordinate low-spin species can be photolyzed within 10-ns laser pulses, producing a species similar to the low-pH (high-spin) form of CCP(II) at alkaline pH. However, the extent of photolysis is quite pH dependent, with a maximum photodissociation yield at pH = 8.50.  相似文献   

10.
K J Edwards  T C Jenkins  S Neidle 《Biochemistry》1992,31(31):7104-7109
The crystal structure of the complex formed between the dodecanucleotide d(CGCGAATTCGCG)2 and the drug pentamidine, which is active against the Pneumocystis carinii pathogen in AIDS patients, has been determined to a resolution of 2.1 A and an R-factor of 19.4%. Analysis of the structure has shown the drug to be bound in the 5'-AATT minor groove region of the duplex, with the amidinium groups H-bonded to adenine N3 atoms in an interstrand manner. The drug molecule adopts an extended conformation, and the immediate binding site spans four base pairs. Structural details of the drug-DNA interactions are discussed, and comparison is made with the dodecamer complex of the structurally similar berenil ligand.  相似文献   

11.
The covalent OH bonds of water vibrate and absorb radiation in the near infrared (NIR) region at wavelengths that vary according to the strength of the bonds which, at the same time, are sensitive to the number and/or strength of hydrogen bonds. By means of multivariate analytical tools, such spectral shift was exploited to study the effect of temperature, 25-hydroxycholesterol and progesterone on the H-bonded network of water in DMPA membranes. Temperature was found as the dominating factor altering the NIR spectra of water and then the H-bonds. Increasing temperatures disrupt the H-bonds network, strengthening the OH covalent bonds. The disruption of the H-bonds along the 13–58 °C range was noticeably greater than that caused by lipids or steroids at 500 μM. The H-bonded network of the interfacial water in DMPA membranes was disrupted by the presence of 25-hydroxycholesterol, but no significant disruption was observed in the presence of progesterone. The reduction of the H-bonds entails a reduction in the aggregation of the interfacial water by a reduction in the number of H-bonded molecules. It is proposed that the number of water molecules bonded with two H-bonds diminishes and the number of molecules with no H-bond increases roughly at similar proportions, with a constant population of molecules with one H-bond. The opposed effects of steroids are discussed in the context of their opposed effects on the phase state of membranes, the membrane water content and the steroid molecular structure.  相似文献   

12.
A highly specific proteolytic enzyme cleaving at the carboxyl group of valine has been isolated from Candida tropicalis. Its specificity has been determined by digesting beta-lactoglobulin and a number of synthetic peptides. The enzyme a glycoprotein, has a molecular mass of 40 +/- 7 kDa on the basis of sodium dodecyl sulphate polyacrylamide gel electrophoresis. Its optimum activity occurs at 37 degrees C at a pH between 8-9. It has been named "Valyl-proteinase" because of its selective cleavage.  相似文献   

13.
The X-ray structure of murine adenosine deaminase complexed with the transition-state analogue 6-hydroxyl-1,6-dihydropurine ribonucleoside has been determined from a single crystal grown at pH 4.2 and transferred to mother liquor of increasing pH up to a final pH of 6.0 prior to data collection. The structure has been refined to 2.5 A to a final crystallographic R-factor of 20% using phases from the previously refined 2.4 A structure at pH 4.2. Kinetic measurements show that the enzyme is only 20% active at pH 4.2 whereas it is fully active between pH 6.0 and pH 8.5. The refined structures at either pH are essentially the same. Consideration of the pKa values of the key catalytic residues and the mechanism proposed on the basis of the structure suggests that the ionization state of these residues is largely responsible for the pH dependence on activity.  相似文献   

14.
The three-dimensional structure of endo-1,4-beta-xylanase II (XYNII) from Trichoderma reesei has been determined by X-ray diffraction techniques and refined to a conventional R-factor of 18.3% at 1.8 A resolution. The 190 amino acid length protein was found to exist as a single domain where the main chain folds to form two mostly antiparallel beta-sheets, which are packed against each other in parallel. The beta-sheet structure is twisted, forming a large cleft on one side of the molecule. The structure of XYNII resembles that of Bacillus 1,3-1,4-beta-glucanase. The cleft is an obvious suggestion for an active site, which has putative binding sites for at least four xylose residues. The catalytic residues are apparently the two glutamic acid residues (Glu86 and Glu177) in the middle of the cleft. One structure was determined at pH 5.0, corresponding to the pH optimum of XYNII. The second structure was determined at pH 6.5, where enzyme activity is reduced considerably. A clear structural change was observed, especially in the position of the side chain of Glu177. The observed conformational change is probably important for the mechanism of catalysis in XYNII.  相似文献   

15.
The stability of the dodecameric Listeria monocytogenes Dps has been compared with that of the Listeria innocua protein. The two proteins differ only in two amino acid residues that form an intersubunit salt-bridge in L. innocua Dps. This salt-bridge is replaced by a hydrogen bonding network in L. monocytogenes Dps as revealed by the X-ray crystal structure. The resistance to low pH and high temperature was assayed for both Dps proteins under equilibrium conditions and kinetically. Despite the identical equilibrium behavior, significant differences in the kinetic stability and activation energy of the unfolding process are apparent at pH 1.5. The higher stability of L. monocytogenes Dps has been accounted for in terms of the persistence of the hydrogen bonding network at this low pH value. In contrast, the salt-bridge between Lys 114 and Asp 126 characteristic of L. innocua Dps is most likely abolished due to protonation of Asp 126.  相似文献   

16.
The crystal structure of penicillin G acylase from Escherichia coli has been determined to a resolution of 1.3 A from a crystal form grown in the presence of ethylene glycol. To study aspects of the substrate specificity and catalytic mechanism of this key biotechnological enzyme, mutants were made to generate inactive protein useful for producing enzyme-substrate complexes. Owing to the intimate association of enzyme activity and precursor processing in this protein family (the Ntn hydrolases), most attempts to alter active-site residues lead to processing defects. Mutation of the invariant residue Arg B263 results in the accumulation of a protein precursor form. However, the mutation of Asn B241, a residue implicated in stabilisation of the tetrahedral intermediate during catalysis, inactivates the enzyme but does not prevent autocatalytic processing or the ability to bind substrates. The crystal structure of the Asn B241 Ala oxyanion hole mutant enzyme has been determined in its native form and in complex with penicillin G and penicillin G sulphoxide. We show that Asn B241 has an important role in maintaining the active site geometry and in productive substrate binding, hence the structure of the mutant protein is a poor model for the Michaelis complex. For this reason, we subsequently solved the structure of the wild-type protein in complex with the slowly processed substrate penicillin G sulphoxide. Analysis of this structure suggests that the reaction mechanism proceeds via direct nucleophilic attack of Ser B1 on the scissile amide and not as previously proposed via a tightly H-bonded water molecule acting as a "virtual" base.  相似文献   

17.
The Asp-His-Ser triad of serine proteases has been regarded, in the present study, as an independent catalytic motif, because in nature it has been incorporated at the active sites of enzymes as diverse as the serine proteases and the lipases. Incorporating this motif into non-protease scaffolds, by rational design and mutagenesis, might lead to the generation of novel catalysts. As an aid to such experiments, a knowledge-based computer modeling procedure has been developed to model the protease Asp-His-Ser triad into non-proteases. Catalytic triads from a set of trypsin family proteases have been analyzed and criteria that characterize the geometry of the triads have been obtained. Using these criteria, the modeling procedure first identifies sites in non-proteases that are suitable for modeling the protease triad. H-bonded Asp-His-Ser triads, that mimic the protease catalytic triad in geometry, are then modeled in at these sites, provided it is stereochemically possible to do so. Thus non-protease sites at which H-bonded Asp-His-Ser triads are successfully modeled in may be considered for mutagenesis experiments that aim at introducing the protease triad into non-proteases. The triad modeling procedure has been used to identify sites for introducing the protease triad in three binding proteins and an immunoglobulin. A scoring function, depending on inter-residue distances, solvent accessibility and the substitution potential of amino acid residues at the modeling sites in the host proteins, has been used to assess the quality of the model triads.  相似文献   

18.
By exploiting the sensitivity of the NIR spectrum, particularly the first overtone of water, to the number and strength of hydrogen bonds, the hydrogen bond network and water polymerization in membranes of DMPA (1,2-dimyristoyl-sn-glycero-3-phosphate) and DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) was investigated as a function of the temperature and the presence of this two phospholipids having the same tail but different polar head. Principal components analysis performed on the spectra was used to disclose subtle spectral changes that mirror the alteration of the vibrational energy of the water O-H bonds, as a measure of the H-bond network. Temperature showed a dominating effect on the H-bond network. Increasing temperatures diminished the number of strongly H-bonded water molecules and increased the number of weakly H-bonded waters. This main effect of temperature was missing after the subtraction of the pure water spectra from the lipid-containing ones. An intriguing secondary effect of temperature was also revealed. Phospholipids exhibited an effect qualitatively similar to that of the temperature. DMPA, and particularly DMPC, disrupted the H-bond network in the neighboring lipid-water interface, reducing water polymerization and strengthening the water O-H bonds. The type of the polar head affects the H-bonds more than duplicate the concentration of the lipid. A connection between head group structure and the effect on the H-bonds network, and the existence of two populations of water molecules are discussed.  相似文献   

19.
On the basis of measurements of enthalpy of dissociation and of dilution, an interamolecular conformational transition induced by pH change is shown for pectic acid in aqueous solution. Additional evidence is given by potentiometic, viscometric, and chiroptical results. The transition from a more rigid, probably H-bonded, structure prevailing at low pH to a more extended one at around neutrality is accompanied by a ΔH value of about 500 cal/equiv and a ΔS value of 1.6 cal/equiv K in water at 25°C. The addition of salts increases the stability of the rigid conformation without changing the general features of the phenomenon. Dilatometric measurements suggest that the transition is accompanied by practically no change in the overall solvation of the polymer chain.  相似文献   

20.
The enzyme 1-aminocyclopropane-1-carboxylate deaminase (ACCD) converts ACC, the precursor of the plant hormone ethylene, to alpha-ketobutyrate and ammonium. This enzyme has been identified in soil bacteria and has been proposed to play a key role in microbe-plant association. A soluble recombinant ACCD from Pseudomonas putida UW4 of molecular weight 41 kDa has been cloned, expressed, and purified. It showed selectivity and high activity towards the substrate ACC: K(M)=3.4+/-0.2 mM and k(cat)=146+/-5 min(-1) at pH 8.0 and 22 degrees C. The enzyme displayed optimal activity at pH 8.0 with a sharp decline to essentially no activity below pH 6.5 and a slightly less severe tapering in activity at higher pH resulting in loss of activity at pH>10. The major component of the enzyme's secondary structure was determined to be alpha-helical by circular dichroism (CD). P. putida UW4 ACCD unfolded at 60 degrees C as determined by its CD temperature profile as well as by differential scanning microcalorimetry (DSC). Enzyme activity was knocked out in the point mutant Gly44Asp. Modeling this mutation into the known yeast ACCD structure shed light on the role this highly conserved residue plays in allowing substrate accessibility to the active site. This enzyme's biochemical and biophysical properties will serve as an important reference point to which newly isolated ACC deaminases from other organisms can be compared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号