首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Angiomodulin (AGM/TAF/mac25) is a 30-kDa glycoprotein that was identified as an integrin-independent cell adhesion protein secreted by human bladder carcinoma cells. AGM is highly accumulated in small blood vessels of tumor tissues. In the present study, we attempted to identify the cell surface receptor and the cell-binding site of AGM using ECV-304 human vascular endothelial cells and BALB/c3T3 mouse fibroblasts. Heparin, heparan sulfate, and dextran sulfate, but not chondroitin sulfate, inhibited both adhesion of the two cell lines to AGM-coated plates and binding of AGM to these cells. Treatment of cells with heparinase, but not chondroitinase, inhibited both cell adhesion to AGM and AGM binding to cells. These results strongly suggested that heparan sulfates are the major receptor for AGM. Furthermore, we determined a 20-amino acid sequence within AGM molecule as its major cell-binding site. The synthetic peptide for the cell-binding sequence showed cell adhesion activity comparable to that of AGM, and the activity was inhibited by heparin and heparan sulfate. The peptide competitively inhibited cell adhesion to AGM and the binding of AGM to cells. These results indicated that AGM binds to cells through interaction of the identified cell-binding sequence with heparan sulfates on cell surface. It was also found that the heparan sulfate-binding peptide inhibited the formation of capillary tube-like structures of vascular endothelial cells in culture.  相似文献   

2.
The chromosomal high mobility group box-1 (HMGB1) protein acts as a proinflammatory cytokine when released in the extracellular environment by necrotic and inflammatory cells. In the present study, we show that HMGB1 exerts proangiogenic effects by inducing MAPK ERK1/2 activation, cell proliferation, and chemotaxis in endothelial cells of different origin. Accordingly, HMGB1 stimulates membrane ruffling and repair of a mechanically wounded endothelial cell monolayer and causes endothelial cell sprouting in a three-dimensional fibrin gel. In keeping with its in vitro properties, HMGB1 stimulates neovascularization when applied in vivo on the top of the chicken embryo chorioallantoic membrane whose blood vessels express the HMGB1 receptor for advanced glycation end products (RAGE). Accordingly, RAGE blockade by neutralizing Abs inhibits HMGB1-induced neovascularization in vivo and endothelial cell proliferation and membrane ruffling in vitro. Taken together, the data identify HMGB1/RAGE interaction as a potent proangiogenic stimulus.  相似文献   

3.
High-mobility group box 1 (HMGB1) is released extracellularly upon cell necrosis acting as a mediator in tissue injury and inflammation. However, the molecular mechanisms for the proinflammatory effect of HMGB1 are poorly understood. Here, we define a novel function of HMGB1 in promoting Mac-1-dependent neutrophil recruitment. HMGB1 administration induced rapid neutrophil recruitment in vivo. HMGB1-mediated recruitment was prevented in mice deficient in the beta2-integrin Mac-1 but not in those deficient in LFA-1. As observed by bone marrow chimera experiments, Mac-1-dependent neutrophil recruitment induced by HMGB1 required the presence of receptor for advanced glycation end products (RAGE) on neutrophils but not on endothelial cells. In vitro, HMGB1 enhanced the interaction between Mac-1 and RAGE. Consistently, HMGB1 activated Mac-1 as well as Mac-1-mediated adhesive and migratory functions of neutrophils in a RAGE-dependent manner. Moreover, HMGB1-induced activation of nuclear factor-kappaB in neutrophils required both Mac-1 and RAGE. Together, a novel HMGB1-dependent pathway for inflammatory cell recruitment and activation that requires the functional interplay between Mac-1 and RAGE is described here.  相似文献   

4.
RAGE as a receptor of HMGB1 (Amphoterin): roles in health and disease   总被引:5,自引:0,他引:5  
HMGB1/Amphoterin is a ubiquitous, highly conserved DNA-binding protein that can be also released to the extracellular space by various cell types. Extracellular HMGB1 regulates migratory responses of several cell types through binding to RAGE that communicates with the cytoskeleton to regulate cell motility. HMGB1-induced cell signalling has been associated with mechanisms of several diseases, including cancer, sepsis, rheumatoid arthritis, stroke and atherosclerosis. This article reviews the evidence linking the functional roles of HMGB1 to RAGE signalling. Furthermore, we discuss the molecular and cellular mechanisms that may explain the roles of HMGB1/RAGE in diverse disease processes.  相似文献   

5.
6.
Summary Fibroblast growth factor-7 (FGF-7) and a specific splice variant of the FGF tyrosine kinase receptor family (FGFR2IIIb) constitute a paracrine signaling system from stroma to epithelium. Different effects of the manipulation of cellular heparan sulfates and heparin on activities of FGF-7 relative to FGF-1 in epithelial cells suggest that pericellular heparan sulfates may regulate the activity of FGF-7 by a different mechanism than other FGFs. In this report, we employ the heparan sulfate-binding protein, protamine sulfate, to reversibly block cellular heparan sulfates. Protamine sulfate, which does not bind significantly to FGF-7 or FGFR2IIIb, inhibited FGF-7 activities, but not those of epidermal growth factor. The inhibition was overcome by increasing the concentrations of FGF-7 or heparin. Heparin was essential for binding of FGF-7 to recombinant FGFR2IIIb expressed in insect cells or FGFR2IIIb purified away from cell products. These results suggest that, similar to other FGF polypeptides, heparan sulfate within the pericellular matrix is required for activity of FGF-7. Differences in response to heparin and alterations in the BULK heparan sulfate content of cells likely reflect FGF-specific differences in the cellular repertoire of multivalent heparan sulfate chains required for assembly and activation of the FGF signal transduction complex.  相似文献   

7.
Exosomes regulate cell behavior by binding to and delivering their cargo to target cells; however, the mechanisms mediating exosome-cell interactions are poorly understood. Heparan sulfates on target cell surfaces can act as receptors for exosome uptake, but the ligand for heparan sulfate on exosomes has not been identified. Using exosomes isolated from myeloma cell lines and from myeloma patients, we identify exosomal fibronectin as a key heparan sulfate-binding ligand and mediator of exosome-cell interactions. We discovered that heparan sulfate plays a dual role in exosome-cell interaction; heparan sulfate on exosomes captures fibronectin, and on target cells it acts as a receptor for fibronectin. Removal of heparan sulfate from the exosome surface releases fibronectin and dramatically inhibits exosome-target cell interaction. Antibody specific for the Hep-II heparin-binding domain of fibronectin blocks exosome interaction with tumor cells or with marrow stromal cells. Regarding exosome function, fibronectin-mediated binding of exosomes to myeloma cells activated p38 and pERK signaling and expression of downstream target genes DKK1 and MMP-9, two molecules that promote myeloma progression. Antibody against fibronectin inhibited the ability of myeloma-derived exosomes to stimulate endothelial cell invasion. Heparin or heparin mimetics including Roneparstat, a modified heparin in phase I trials in myeloma patients, significantly inhibited exosome-cell interactions. These studies provide the first evidence that fibronectin binding to heparan sulfate mediates exosome-cell interactions, revealing a fundamental mechanism important for exosome-mediated cross-talk within tumor microenvironments. Moreover, these results imply that therapeutic disruption of fibronectin-heparan sulfate interactions will negatively impact myeloma tumor growth and progression.  相似文献   

8.
Fibroblast growth factor-2 (FGF2) is a potent angiogenic factor in gliomas. Heparan sulfate promotes ligand binding to receptor tyrosine kinase and regulates signaling. The goal of this study was to examine the contribution of heparan sulfate proteoglycans (HSPGs) to glioma angiogenesis. Here we show that all brain endothelial cell HSPGs carry heparan sulfate chains similarly capable of forming a ternary complex with FGF2 and fibroblast growth factor receptor-1c and of promoting a mitogenic signal. Immunohistochemical analysis revealed that glypican-1 was overexpressed in glioma vessel endothelial cells, whereas this cell-surface HSPG was consistently undetectable in normal brain vessels. To determine the effect of increased glypican-1 expression on FGF2 signaling, we transfected normal brain endothelial cells, which express low base-line levels of glypican-1, with this proteoglycan. Glypican-1 expression enhanced growth of brain endothelial cells and sensitized them to FGF2-induced mitogenesis despite the fact that glypican-1 remained a minor proteoglycan. In contrast, overexpression of syndecan-1 had no effect on growth or FGF2 sensitivity. We conclude that the glypican-1 core protein has a specific role in FGF2 signaling. Glypican-1 overexpression may contribute to angiogenesis and the radiation resistance characteristic of this malignancy.  相似文献   

9.
Phagocytosis of apoptotic cells by macrophages, known as efferocytosis, is a critical process in the resolution of inflammation. High mobility group box 1 (HMGB1) protein was first described as a nuclear nonhistone DNA-binding protein, but is now known to be secreted by activated cells during inflammatory processes, where it participates in diminishing efferocytosis. Although HMGB1 is known to undergo modification when secreted, the effect of such modifications on the inhibitory actions of HMGB1 during efferocytosis have not been reported. In the present studies, we found that HMGB1 secreted by Toll-like receptor 4 (TLR4) stimulated cells is highly poly(ADP-ribosyl)ated (PARylated). Gene deletion of poly(ADP)-ribose polymerase (PARP)-1 or pharmacological inhibition of PARP-1 decreased the release of HMGB1 from the nucleus to the extracellular milieu after TLR4 engagement. Preincubation of macrophages or apoptotic cells with HMGB1 diminished efferocytosis through mechanisms involving binding of HMGB1 to phosphatidylserine on apoptotic cells and to the receptor for advanced glycation end products (RAGE) on macrophages. Preincubation of either macrophages or apoptotic cells with PARylated HMGB1 inhibited efferocytosis to a greater degree than exposure to unmodified HMGB1, and PARylated HMGB1 demonstrated higher affinity for phosphatidylserine and RAGE than unmodified HMGB1. PARylated HMGB1 had a greater inhibitory effect on Ras-related C3 botulinum toxin substrate 1 (Rac-1) activation in macrophages during the uptake of apoptotic cells than unmodified HMGB1. The present results, showing that PARylation of HMGB1 enhances its ability to inhibit efferocytosis, provide a novel mechanism by which PARP-1 may promote inflammation.  相似文献   

10.
11.
High Mobility Group Box 1 (HMGB1) is a nuclear non-histone protein discovered to be released in the extracellular medium as a response to various stimuli and implicated in cancerogenesis. High HMGB1 levels are reported in a variety of tumor types, but there are few data relating HMGB1 to the histological grade or to a particular cell type and cellular localization. We studied the expression of HMGB1 protein in malignant human tumors of different differentiation level and in tumor metastasis. In all tumor tissues, the protein level is elevated. In moderately differentiated carcinomas, the localization of the protein is perinuclear, while in the low differentiated; there is a tendency for non-specific nuclear localization. HMGB1 protein and its receptor RAGE are identified as a ligand–receptor pair that plays an important role in regulating the invasiveness of tumor cells. RAGE is not produced in all of the tested tumor specimens. We found high level of expression in hepatocellular, colorectal, and breast cribriform carcinomas, but not in malignant testicular specimens. Probably, the RAGE synthesis is related to distinctive tumor types. In metastatic cells, RAGE exhibits higher level of expression losing its specific granular cytosolic pattern characteristic for the primary tumors.  相似文献   

12.
13.
14.
High mobility group protein box1 (HMGB1) and its receptor—receptor for advanced glycation end products (RAGE) are pivotal factors in the development and progression of many types of tumor, but the role of HMGB1-RAGE axis in hepatocellular carcinoma (HCC) especially its effects on metastasis and recurrence remains obscure. Here, we report the role of HMGB1-RAGE axis in the biological behaviors of HCC cell lines and the underlying molecular mechanism. We show that the expressions of HMGB1, RAGE, and extracellular HMGB1 increase consistently according to cell metastasis potentials, while the concentration of soluble form of RAGE (sRAGE) is inversely related to metastasis potential of HCC cells. Furthermore, our data show that rhHMGB1 promotes cellular proliferation, migration, and invasion, and increases the level of nuclear factor kappa B (NF-κB), while administrations of HMGB1-siRNA, RAGE-siRNA, anti-HMGB1 neutralizing antibody, anti-RAGE neutralizing antibody, and sRAGE inhibit cellular proliferation, migration, and invasion. Moreover, we also demonstrate that the expression of NF-кB is inhibited by knockdown of HMGB1 or RAGE. Collectively, these data demonstrate that HMGB1 activates RAGE signaling pathways and induces NF-кB activation to promote cellular proliferation, invasion, and metastasis, in HCC cell lines. Taken together, HMGB1-RAGE axis may become a potential target in HCC therapy.  相似文献   

15.
16.
High mobility group box-1 protein (HMGB1) had been proved to induce maturation and activation of dendritic cell (DC), however, the endogenous changes and mechanisms underlying are unknown. Since endoplasmic reticulum stress (ERS) activates an adaptive unfolded protein response (UPR) that facilitates cellular survival and repair, we hypothesized that HMGB1 may regulate the function of DC by modulating ERS. In our study, HMGB1 stimulation induced significant ERS responses in DCs in a time- and dose-dependent manner, demonstrated by the up-regulation of a number of ERS markers. Gene silence of XBP-1 in splenic DCs decreased the levels of CD80, CD86 as well as major histocompatibility complex (MHC)-II expression and cytokine secretion after HMGB1 treatment, when compared with untransfected or nontargeting-transfected DCs (all P<0.05). Moreover, XBP-1 silenced DCs after treatment with HMGB1 failed to stimulate notable proliferation and differentiation of T cells, unlike normal DCs or nontargeting-transfected DCs (all P<0.05). Gene silence of XBP-1 resulted in down-regulation of the receptor for advanced glycation end products (RAGE) expression on the surface of splenic DCs induced by HMGB1 stimulation (P<0.05). These findings demonstrate an important role for ERS and its regulator XBP-1 in HMGB1-induced maturation and activation of DCs.  相似文献   

17.
Despite the large number of heparin and heparan sulfate binding proteins, the molecular mechanism(s) by which heparin alters vascular cell physiology is not well understood. Studies with vascular smooth muscle cells (VSMCs) indicate a role for induction of dual specificity phosphatase 1 (DUSP1) that decreases ERK activity and results in decreased cell proliferation, which depends on specific heparin binding. The hypothesis that unfractionated heparin functions to decrease inflammatory signal transduction in endothelial cells (ECs) through heparin-induced expression of DUSP1 was tested. In addition, the expectation that the heparin response includes a decrease in cytokine-induced cytoskeletal changes was examined. Heparin pretreatment of ECs resulted in decreased TNFα-induced JNK and p38 activity and downstream target phosphorylation, as identified through Western blotting and immunofluorescence microscopy. Through knockdown strategies, the importance of heparin-induced DUSP1 expression in these effects was confirmed. Quantitative fluorescence microscopy indicated that heparin treatment of ECs reduced TNFα-induced increases in stress fibers. Monoclonal antibodies that mimic heparin-induced changes in VSMCs were employed to support the hypothesis that heparin was functioning through interactions with a receptor. Knockdown of transmembrane protein 184A (TMEM184A) confirmed its involvement in heparin-induced signaling as seen in VSMCs. Therefore, TMEM184A functions as a heparin receptor and mediates anti-inflammatory responses of ECs involving decreased JNK and p38 activity.  相似文献   

18.
The S100 family proteins MRP-8 (S100A8) and MRP-14 (S100A9) form a heterodimer that is abundantly expressed in neutrophils, monocytes, and some secretory epithelia. In inflamed tissues, the MRP-8/14 complex is deposited onto the endothelium of venules associated with extravasating leukocytes. To explore the receptor interactions of MRP-8/14, we use a model system in which the purified MRP-8/14 complex binds to the cell surface of an endothelial cell line, HMEC-1. This interaction is mediated by the MRP-14 subunit and is mirrored by recombinant MRP-14 alone. The cell surface binding of MRP-14 was blocked by heparin, heparan sulfate, and chondroitin sulfate B, and the binding sites were sensitive to heparinase I and trypsin treatment but not to chondroitinase ABC. Furthermore MRP-8/14 and MRP-14 did not bind to a glycosaminoglycan-minus cell line. MRP-14 has a high affinity for heparin (K(d) = 6.1 +/- 3.4 nm), and this interaction mimicked that with the endothelial cells. We therefore conclude that the MRP-8/14 complex binds to endothelial cells via the MRP-14 subunit interacting chiefly with heparan sulfate proteoglycans. CD36 and RAGE, two other putative receptors for MRP-8/14, were not expressed by HMEC-1 cells. This binding activity may explain the immobilization of the MRP-8/14 complex on endothelium that is observed in vivo.  相似文献   

19.
High mobility group box 1 (HMGB1) is a key player in retinal inflammation. HMGB1 is a danger associated protein pattern receptor which can sense high glucose as a stressor. Increased HMGB1 levels have been found in patients with late stage diabetic retinopathy. HMGB1 can bind toll-like receptor 4 (TLR4) and the receptor for advanced glycation end-products (RAGE), leading to increased inflammation commonly through nuclear factor kappa beta (NFkB). Because diabetic patients have been found to have increased HMGB1 and RAGE levels, as well as polymorphisms of TLR4, a number of investigations have focused on inhibition of these pathways in the diabetic retina. Work in diabetic animal models and cell culture have demonstrated a number of factors that can inhibit HMGB1/TLR4/RAGE signaling. This regulation offers potential new avenues for therapeutic development. This review is focused on HMGB1 signaling and downstream pathways leading to inflammation in the diabetic retina.  相似文献   

20.
血管内皮细胞激活是脓毒症病理生理过程的中心环节。活化的血管内皮细胞为炎症介质的聚集和迁移提供了重要的场所,是放大炎症反应的前提条件。高迁移率族蛋白1(high-mobility group box protein1,HMGB1)是脓毒症晚期致死性的促炎介质,维持并延长了脓毒症病理过程。HMGBl通过晚期糖基化终产物受体(advanced glycation end products receptor,RAGE)对血管内皮细胞有重要的激活作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号