首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacteria of the genus Blattabacterium are intracellular symbionts that reside in specialized cells of cockroaches and the termite Mastotermes darwiniensis. They appear to be obligate mutualists, and are transmitted vertically in the eggs. Such characteristics are expected to lead to equivalent phylogenies for host and symbiont, and we tested this hypothesis using recently accumulated data on relationships among termites and cockroaches and their Blattabacterium spp. Host and symbiont topologies were found to be highly similar, and various tests indicated that they were not statistically different. A close relationship between endosymbionts from termites and members of the wood-feeding cockroach genus Cryptocercus was found, supporting the hypothesis that the former evolved from subsocial, wood-dwelling cockroaches. The majority of the Blattabacterium spp. sequences appear to have undergone similar rates of evolution since their divergence from a common ancestor, and an estimate of this rate was determined based on early Cretaceous host fossils. The results support the idea that the stem group of modern cockroaches radiated sometime between the late Jurassic and early Cretaceous-not the Carboniferous, as has been suggested on the basis of roach-like fossils from this epoch.  相似文献   

2.
Fungi are the main decomposers of litter and wood, driving carbon and nutrient cycles. Despite a large number of studies, fungal community composition is remarkably difficult to predict. In the present study, we explore the importance of secondary metabolites and nutrient content in wood and bark as determinants of fungal community composition. We used aspen (Populus tremula) logs of similar size, from one location, and measured concentrations of carbon, nitrogen and secondary metabolites in bark and wood sampled shortly after felling. Fungal DNA was extracted from logs directly after felling and after two seasons of decomposition, and the fungal communities were assessed using DNA-metabarcoding. Concentrations of metabolites varied considerably between individual trees, and we also observed significant differences within single trees. Plant metabolites and nitrogen concentrations significantly affected fungal community composition. For the overall fungal communities and for wood saprotrophic fungi, the explanatory power of wood and bark metabolites was highest in logs decomposed over two seasons. In recently felled trees however, concentration of metabolites had a stronger effect on plant pathogens and endophytes. We conclude that secondary metabolites represent an overlooked, but important niche dimension for fungal communities in both functional sapwood and dead wood.  相似文献   

3.
Spore characteristics of wood-inhabiting fungi suggest that wind is their predominant dispersal vector. However, since they are restricted to ephemeral habitats, colonizing new patches should benefit from dispersal by animals with similar habitat preferences because the directed, resource-searching movement of animals increases the likelihood of reaching suitable habitats. Here we determine which fungal guilds are carried by wood-inhabiting beetles and what influences beetle-associated fungal communities. High-throughput sequencing identified >1800 fungal taxa from beetle communities that emerged from 64 experimental logs. Beetle-associated fungi included mutualistic, decomposing, pathogenic and mycorrhizal fungi; decomposers were the most diverse. Partial-procrustes analysis revealed that the total beetle-associated community and mutualists were correlated (p ≤ 0.05) with beetle community composition and decomposers were marginally correlated (p ≤ 0.10) with beetle community composition. All three groups were marginally correlated with the total fungal communities that inhabit the dead wood. Our results show that beetles carry a broad range of wood-inhabiting fungi and beetle-associated fungal communities are determined by environmental factors and the vectoring beetle community and to some degree by the fungal source community. This suggests that wood-inhabiting beetles contribute to fungal dispersal, including directed dispersal, which could affect fungal community assembly and ecosystem processes like wood decomposition.  相似文献   

4.
Acetylene reduction was examined periodically for as long as 68 months in the outer and inner bark, sapwood, and heartwood of decaying logs of western hemlock [Tsuga heterophylla (Raf.) Sarg.] western redcedar (Thuja plicata D. Don), Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco], and Pacific silver fir (Abies amabilis Dougl. ex Forbes) in the western Oregon Cascade Mountains. Tissues from freshly cut logs from sound trees were unable to reduce acetylene. However, after 18 months of decomposition, acetylene reduction was found in all log tissues except heartwood. Over the 68-month study period, no significant relationship between reduction rate and tissue moisture was found. Acetylene reduction rates differed significantly among tissues, log species, and time of exposure to decomposers. Although acetylene reduction generally showed a steady increase with time, tissues of some species showed a more complex, nonlinear pattern of change. Although the amount of nitrogen fixed is low compared to the total present in decaying logs, it might be an important source of readily available nitrogen for the microbiota responsible for decomposition.Paper 2587, Forest Research Laboratory, Oregon State University, Corvallis.Paper 2587, Forest Research Laboratory, Oregon State University, Corvallis.  相似文献   

5.
Fungi are the main agents of coarse woody debris decomposition in forest ecosystems. We examined the associations of environmental variables with fungal community structures in dead pine logs at 12 geographically distant sites using amplicon pyrosequencing of fungal ITS rDNA. A total of 575 operational taxonomic units (OTUs) were identified based on clustering at 97% similarity. Among the known fungal ecological groups, saprotrophic fungi generally showed highest frequency of occurrence and were positively associated with mean annual temperature (MAT) and log diameter. Wood decay fungi with unknown decay type were positively associated with pine wilt disease and negatively associated with log diameter. Ordination analysis of the 42 most prevalent OTUs showed that MAT and annual precipitation significantly explained the observed fungal community structure. These results suggested that climate conditions and site history differentially effect structure fungal communities in pine logs among different ecological groups.  相似文献   

6.
Termites are instantly recognizable mound-builders and house-eaters: their complex social lifestyles have made them incredibly successful throughout the tropics. Although known as 'white ants', they are not ants and their relationships with other insects remain unclear. Our molecular phylogenetic analyses, the most comprehensive yet attempted, show that termites are social cockroaches, no longer meriting being classified as a separate order (Isoptera) from the cockroaches (Blattodea). Instead, we propose that they should be treated as a family (Termitidae) of cockroaches. It is surprising to find that a group of wood-feeding cockroaches has evolved full sociality, as other ecologically dominant fully social insects (e.g. ants, social bees and social wasps) have evolved from solitary predatory wasps.  相似文献   

7.
Zielonka  Tomasz  Piątek  Grzegorz 《Plant Ecology》2004,172(1):63-72
This is a study of the colonization pattern of herbs and dwarf shrubs on rotten logs in subalpine spruce forests (Plagiothecio Piceetum) in the Tatra Mountains. On four study plots (total area 1.43 ha.) all dead logs were measured and the decomposition stage was estimated using the 8-degree scale. For each log the cover of all vascular species, bryophytes and lichens was determined according to the methods of classical phytosociology. Constancy and an index of coverage were calculated for all vascular species growing on logs. The total volume of logs was relatively high (93 m3 ha–1) and constituted 22% of the volume of living trees. Logs and stumps covered 411 m2 ha–1. These values are similar to those known from natural spruce forest from Carpathians and Scandinavia. The 8 stages of decomposition were equally represented, which indicates a constant supply of dead wood to the forest floor over time. The colonization of dead wood starts with lichens, followed by bryophytes and finally herbs and tree saplings. The first vascular plant colonists of dead logs appear at decay stage nr. 3 at least 20 years after tree death. The most suitable condition for most of the herb species corresponds to decay stage nr. 6 ca. 50 years after tree death. The herb cover is distinctively dominated by Vaccinium myrtillus. Simultaneously with herb species, tree seedlings colonize the logs. Constancy and abundance of Norway spruce saplings increases with advanced decomposition. It seems that the herb cover of logs does not hinder the regeneration of spruce.  相似文献   

8.
9.
Ecosystems comprise living organisms and organic matter or detritus. In earlier community ecology theories, ecosystem dynamics were normally understood in terms of aboveground, green‐world trophic interaction networks, or food webs. Recently, there has been growing interest in the role played in ecosystem dynamics by detritus in underground, brown‐world interactions. However, the role of decomposers in the consumption of detritus to produce nutrients in ecosystem dynamics remains unclear. Here, an ecosystem model of trophic food chains, detritus, decomposers, and decomposer predators demonstrated that decomposers play a totally different role than that previously predicted, with regard to their relationship between nutrient cycling and ecosystem stability. The high flux of nutrients due to efficient decomposition by decomposers increases ecosystem stability. However, moderate levels of ecosystem openness (with movement of materials) can either greatly increase or decrease ecosystem stability. Furthermore, the stability of an ecosystem peaks at intermediate openness because open systems are less stable than closed systems. These findings suggest that decomposers and the food‐web dynamics of brown‐world interactions are crucial for ecosystem stability, and that the properties of decomposition rate and openness are important in predicting changes in ecosystem stability in response to changes in decomposition efficiency driven by climate change.  相似文献   

10.
Coarse woody debris supports large numbers of saproxylic fungal species. However, most of the current knowledge comes from Scandinavia and studies relating the effect of stand or log characteristics on the diversity and composition of decomposer fungi have not been conducted in Northeastern Canada. Logs from five tree species were sampled along a decomposition gradient in nine stands representing three successional stages of the boreal mixed forest of Northwestern Quebec, Canada. Using a molecular fingerprinting technique, we assessed fungal community Shannon–Weaver diversity index, richness, and composition. We used linear mixed models and multivariate analyses to link changes in fungal communities to log and stand characteristics. We found a total of 33 operational taxonomic units (OTUs) including an indicator species for balsam fir (similar to Athelia sp.) and one found only in aspen stands (similar to Calocera cornea). Spruce logs supported the highest fungal Shannon–Weaver diversity index and OTU number. Our results support the hypothesis that log species influences fungal richness and diversity. However, log decay class does not. Stand composition, volume of coarse woody debris, and log chemical composition were all involved in structuring fungal communities. Maintaining the diversity of wood-decomposing communities therefore requires the presence of dead wood from diverse log species.  相似文献   

11.
Decaying wood plays an important role in forest biodiversity, nutrient cycling and carbon balance. Community structure of wood-inhabiting fungi changes with mass loss of wood, but the relationship between substrate quality and decomposers is poorly understood. This limits the extent to which these ecosystem services can be effectively managed. We studied the fungal community and physico-chemical quality (stage of decay, dimensions, density, moisture, C : N ratio, lignin and water or ethanol extractives) of 543 Norway spruce logs in five unmanaged boreal forest sites of southern Finland. Fungi were identified using denaturing gradient gel electrophoresis and sequencing of DNA extracted directly from wood samples. Macroscopic fruiting bodies were also recorded. Results showed a fungal community succession with decreasing wood density and C : N ratio, and increasing moisture and lignin content. Fungal diversity peaked in the most decayed substrates. Ascomycetes typically colonized recently fallen wood. Brown-rot fungi preferred the intermediate decay stages. White-rot fungi represented approximately one-fifth of sequenced species in all decay phases excluding the final phase, where ectomycorrhizal (ECM) fungi became dominant. Lignin content of logs with white-rot fungi was low, and ECM fungi were associated with substrates containing abundant nitrogen. Macroscopic fruiting bodies were observed for only a small number of species detected with molecular techniques.  相似文献   

12.
Picea abies logs were inoculated with Resinicium bicolor, Fomitopsis pinicola or left un-inoculated and placed in an old-growth boreal forest. Mass loss and fungal community data were collected after 6 yr to test whether simplification of the fungal community via inoculation affects mass loss and fungal community development. Three techniques were used to survey communities: (1) observation of fruiting structures; (2) culturing on media; and (3) cloning and sequencing of ITS rDNA. Fruit body surveys detected the smallest number of species (18, 3.8 per log), DNA-based methods detected the most species (72, 31.7 per log), and culturing detected an intermediate number (23, 7.2 per log). Initial colonizer affected community development and inoculation with F. pinicola led to significantly greater mass loss. Relationships among fungal community composition, community richness and mass loss are complex and further work is needed to determine whether simplification of fungal communities affects carbon sequestration in forests.  相似文献   

13.
《Fungal biology》2019,123(7):497-506
Fungi and arthropods represent some of the most diverse organisms on our planet, yet the ecological relationships between them remain largely unknown. In animals, fungal growth on body surfaces is often hazardous and is known to cause mortality. In contrast, here we report the presence of an apparently non-harmful mycobiome on the cuticle of whip spiders (Arachnida: Amblypygi). The associations are not species-specific and involve a diversity of fungal species, including cosmopolitan and local decomposers as well as entomopathogens. We discuss the ecology of the detected fungal species and hypothesize that the thick epicuticular secretion coat of whip spiders (the cerotegument) promotes fungal growth. It is possible that this relationship is beneficial towards the host if it leads to parasite control or chemical camouflage. Our findings, which are the first from this arthropod lineage, indicate that non-pathogenic interactions between arthropods and fungi may be much more widespread than predicted and call for more studies in this area.  相似文献   

14.
The decomposition of plant litter plays a fundamental role in the cycling of carbon and nutrients and is driven by complex interactions of biological and physical controls, yet little is known about its variability and controls across spatial scales. Here we address the indirect effects of riparian canopy cover on litter decomposition and decomposers and their variability within a set of hierarchical scales (watershed, stream segments and reaches) controlling for confounding factors that could co-vary with canopy cover (for example, temperature and nutrients), in high-altitude subtropical streams. Total, microbial and invertebrate-driven decomposition rates were approximately 1.4–6.6 times higher in closed-canopy than in open-canopy watersheds. Riparian canopy cover accounted for 62–69% of total variability of decomposition rates and indirectly (via light availability and litter inputs) promoted fungal facilitation of shredders through leaf litter conditioning. In contrast to what we expected, much of the spatial variability in the decomposition occurred at smaller scale (4–20% of total variability among reaches versus <1% among watersheds) and coincided with the greatest variability in shredder abundance and fungal biomass (70 and 17% among reaches, respectively). We conclude that riparian canopy cover may be an important control of natural variability of litter decomposition at the watershed scale through its effects on fungal decomposers and shredder consumption. We also provide evidence of higher reach and minor watershed variability of litter decomposition in stream networks. Our results point to the importance of identifying the sources of natural variability of decomposition and how they interact within and among spatial scales.  相似文献   

15.
The oak longicorn beetle, Moechotypa diphysis (Pascoe), is a pest of bed logs for shiitake mushroom and an invasive species on Japan’s main islands. I attempted to rear larvae of M. diphysis on two artificial diets consisting of a commercially available diet for silkworm plus dried yeast and sawdust of the sawtooth oak, Quercus acutissima Carruthers, or of Japanese beech, Fagus crenata Blume. Newly hatched larvae were inoculated on these artificial diets and reared at 25°C in the dark. More than 60% of larvae emerged as adults when fed with these diets. The weights of emerged adults fed on the artificial diets were heavier than those emerging from logs of Q. acutissima, their natural diet, in a field cage. These results demonstrate that the two artificial diets are useful for rearing M. diphysis larvae and can assist further studies on the development of this invasive species.  相似文献   

16.
1. Invertebrates contribute largely to the decomposition of animal carcasses in natural ecosystems. However, we currently lack experimental evidence for the impact of predatory ants on carrion decomposition. Provided that many ant species display their role in the necrophilous community as predators but not as decomposers, we hypothesized that the ants would negatively affect the carrion decomposition rates by predating on other insect decomposers. 2. In a Tibetan alpine meadow, we conducted a one-factor designed field experiment involving three treatments, that is, 20, 60, and 500 cm of yak (Bos grunniens) carrion plots away from anthills (Camponotus herculeanus), which mirrored the high, intermediate, and low ant abundance, respectively. 3. Our results show that the necrophilous community assemblage differed significantly along the distance gradients from anthills, with the dominance of the necrophilous community shifting from ants in the 20 cm treatment to maggots in the 500 cm treatment. The ants significantly decreased the number of maggots through predation, resulting in a significant decrease of the carrion decomposition rates. However, ants did not change the number of other scavengers albeit they attacked them. 4. These results suggest that the predatory ant C. herculeanus can modify the carrion decomposition rates through generating a strong consumptive effect on decomposers, which is important to understand the necrophilous community assemblage and the decomposition of animal-based materials.  相似文献   

17.
Dead wood is an important habitat for forest organisms, and wood decay fungi are the principal agents determining the dead wood properties that influence the communities of organisms inhabiting dead wood. In this study, we investigated the effects of wood decomposer fungi on the communities of myxomycetes and bryophytes inhabiting decayed logs. On 196 pine logs, 72 species of fungi, 34 species and seven varieties of myxomycetes, and 16 species of bryophytes were identified. Although white rot was the dominant decay type in sapwood and heartwood, brown and soft rots were also prevalent, particularly in sapwood. Moreover, white rot and soft rot were positively and brown rot negatively correlated with wood pH. Ordination analyses clearly showed a succession of cryptogam species during log decomposition and showed significant correlations of communities with the pH, water content, and decay type of wood. These analyses indicate that fungal wood decomposer activities strongly influence the cryptogam communities on dead wood.  相似文献   

18.
Downed woody material (fallen logs) offers ground-dwelling spiders (Araneae) ideal sites for nesting and foraging, but little is known about what characteristics of dead wood influence spider assemblages. In a maple forest of Forillon National Park, in eastern Québec (Canada), spider assemblages on, adjacent to, and away from fallen logs were compared. We also tested how log type (coniferous vs. deciduous) and decomposition stage influenced spider assemblages. Sampling was done for an intensive four-week period using both litter samples and pitfall traps. A total of 5613 spiders representing 83 species from 16 families was collected. Spiders were affected by the presence of logs, as both species diversity and total number of individuals collected were significantly higher on the log surface compared to the forest floor. Ordination analysis revealed a distinct compositional difference between the spider fauna found on the wood surface compared to the forest floor. Wood type and decomposition stage had few significant effects on spider assemblages, except that less decayed logs supported higher spider diversity than logs in advanced stages of decay. Dead wood is clearly important for generalist predators such as spiders, further supporting the conservation importance of fallen logs in northern forest ecosystems.  相似文献   

19.
In subsocial xylophagous cockroaches it is thought that parental feeding is important for the survival and growth of the altricial offspring, but the details of parental feeding in these groups are poorly known. We observed stomodeal (oral) trophallaxis between parents and the 2nd or 3rd instars of the wood‐feeding cockroach Salganea esakii Roth, and here report basic features of trophallaxis in young families. Both the female and male parents fed young nymphs with stomodeal food, and there was no difference in the frequency of the behavior between parental sexes. Up to three nymphs could be fed simultaneously during a single trophallactic event. Adults occasionally rejected contact with nymphs by blocking them with their forelegs. Nymphs utilized trophallactic food from parents more frequently than feeding independently on wood pieces or fecal pellets. Trophallaxis between sibling nymphs was never observed. These results suggest that the 2nd and 3rd instar nymphs rely on the stomodeal substances provided by their parents, and that provisioning is an essential component of subsocial behavior in biparental wood‐feeding cockroaches.  相似文献   

20.
Forests of eastern North America have undergone abrupt transformations over the last several centuries due to changing land use and climate. Researchers look to pre-settlement forests as a guide for forest restoration, though much of our understanding of composition and dynamics in pre-settlement forests is based on spatially restricted sediment records, few and fragmented old-growth stands in a narrow range of site types, and potentially biased historical documentation. Logs from historic structures hold information that may be useful to forest ecology in eastern North America, but before these records can be used, we must first establish where the logs originated, why they were selected over other trees, and what they can and cannot tell us about past forest ecology. Using a case study approach, I collected data from fifteen log structures in the central Appalachian region to compare construction site locations, species used, and mean diameter of logs through time to determine the ecological biases associated with human behavior in log structure construction. Construction site locations changed from valleys to mountains through time and the species used in construction shifted from Quercus alba to a mix of Quercus alba, Liriodendron tulipifera, Pinus strobus, and Castanea dentata over time. The diameter of logs used in construction were generally consistent through time, with an average basal diameter of 31.3 cm (±4.7). Mean age of logs increased through time for Quercus species, regardless of log diameter. These results suggest the species used for structural logs were selected by their abundance at the location of construction but that as construction site locations and resource availability changed through time, the species used in construction changed as well. While there are biases and limitations of dendroecological data from historic structures, the results presented here demonstrate that structural log data provide greater replication during the early European immigration period, representation of upland (valley) forest sites, and establishment of chronologies for species that are not well represented in current tree-ring chronologies (e.g. Castanea dentata, Liriodendron tulipifera). These results suggest structural logs can benefit ecological research by filling the temporal, spatial, and species gaps in tree-ring chronologies not only for the central Appalachian region, but also for other areas in eastern North America.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号