首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Upon inoculation into AKR mice, mink cell focus-forming murine leukemia virus (MCF MLV) accelerates thymic lymphoma formation. During the preleukemic phase of disease, we observed the induction of apoptosis in thymic lymphocytes. A similar induction of apoptosis was observed for cultured mink epithelial cells after MCF13 MLV infection. In this study, the relevance of viral pathogenicity to cell killing was determined by testing the susceptibility of various cell types from different species to lymphomagenic MLVs. We observed that the cytopathic effect of lymphomagenic MLVs was restricted to mink cells. Southern blot analysis of MLV-infected cells revealed an accumulation of the linear form of unintegrated viral DNA, particularly in mink cells after MCF13 MLV infection. Thus, a strong correlation was observed between viral superinfection, which results in the accumulation of high levels of unintegrated viral DNA, and cell killing. Immunoblot analysis for MCF13 MLV-infected mink epithelial cells did not show a significant change in total p53 levels or its phosphorylated form at Ser-15 compared with that in mock-treated cells. Moreover, a time course analysis for mink epithelial cells infected with MCF13 MLV did not reveal mitochondrial depolarization or a significant change in Bax levels. These results demonstrate that MCF13 MLV induces apoptosis preferentially in cells in which superinfection occurs, and the mechanism involved is independent of p53 activation and mitochondrial damage.  相似文献   

2.
The generation of cytopathic effects by murine leukemia viruses (MLVs) in different cell types correlates with the ability of the virus to induce thymic lymphoma. We showed that the induction of apoptosis in mink epithelial cells by mink cell focus-forming (MCF) MLV infection results in the accumulation of high levels of both unintegrated viral DNA and the envelope precursor polyprotein (gPr80env). Comparisons of envelope protein expression levels of plasmid clones of the env gene of the MCF13 and noncytopathic NZB-9 MLV strains demonstrated that the accumulation of MCF13 gPr80env results in endoplasmic reticulum stress and is sufficient for the induction of apoptosis.  相似文献   

3.
Nanua S  Yoshimura FK 《Journal of virology》2004,78(21):12071-12074
We previously demonstrated that mink cells undergo apoptosis after MCF13 murine leukemia virus (MLV) infection. In this study, we observed that virus-infected mink epithelial cells had significantly larger amounts of steady-state levels of MCF13 MLV envelope precursor protein (gPr80(env)) than did Mus dunni fibroblasts, which are resistant to virus-induced cytopathicity. Infection of mink cells with the noncytopathic NZB-9 MLV did not result in the accumulation of gPr80(env). MCF13 MLV infection of mink cells produced low cell surface expression of envelope glycoprotein and less efficient spread of infectious virus. Western blot analysis of mink epithelial cells infected with MCF13 MLV showed an increase in GRP78/BiP, which was not observed for either mink cells infected with NZB-9 MLV or M. dunni fibroblasts infected with MCF13 MLV. MCF13 MLV infection of mink cells also resulted in a significant upregulation of CHOP/GADD153. These results indicate that the accumulation of MCF13 MLV gPr80(env) triggers endoplasmic reticulum stress, which may mediate apoptosis in mink epithelial cells.  相似文献   

4.
Infection of thymic lymphocytes by a mink cell focus-forming murine leukemia virus induces apoptosis during the preleukemic period of lymphomagenesis. In this study, we observed that during this period, the viral envelope precursor polyprotein accumulated to high levels in thymic lymphocytes from mice inoculated with virus. Envelope accumulation occurred with the same kinetics as the induction of endoplasmic reticulum (ER) stress, which resulted in the upregulation of the 78-kDa glucose-regulated protein (GRP78). In thymic lymphomas, GRP78 levels were higher than those in virus-infected preleukemic cells, and GRP58 was upregulated. These results suggest that Env precursor accumulation induces ER stress, which participates in thymic lymphocyte apoptosis. The subsequent upregulation of ER chaperone proteins GRP78 and GRP58 may contribute to rescuing cells from virus-induced apoptosis.  相似文献   

5.
In a previous study we identified the subpopulations of thymus cells that were infected by the lymphomagenic MCF13 murine leukemia virus (MLV) (F. K. Yoshimura, T. Wang, and M. Cankovic, J. Virol. 73:4890-4898, 1999) and observed an effect on thymus size by virus infection. In this report we describe our results which demonstrate that MCF13 MLV infection of thymuses reduced the number of T lymphocytes in this organ. Histological examination showed diffuse lymphocyte depletion, which was most striking in the CD4(+) CD8(+) lymphocyte-enriched cortical zone. Consistent with this, flow cytometric analysis showed that the lymphocytes which were depleted were predominantly the immature CD3(-) CD4(+) CD8(+) and CD3(+) CD4(+) CD8(+) cells. A comparison of the percentages of live, apoptotic, and dead cells of the gp70(+) and gp70(-) thymic lymphocytes suggested that this effect on thymus cellularity is a result of virus infection. Studies of the survival of thymic T lymphocytes in culture showed that cells from MCF13 MLV-inoculated mice underwent greater apoptosis and death than cells from control animals. Assays for apoptosis included 7-amino-actinomycin D staining, DNA fragmentation, and cleavage of caspase-3 and poly(ADP-ribose) polymerase proenzymes. Our results suggest that apoptosis of thymic lymphocytes by virus infection is an important step in the early stages of MCF13 MLV tumorigenesis.  相似文献   

6.
M S McGrath  I L Weissman 《Cell》1979,17(1):65-75
We have previously demonstrated that in vitro cell lines of mouse thymic lymphomas express surface receptors specific for the retrovirus that induced them. This study extends these observations to an analysis of receptor-bearing cells in the preleukemic and leukemic phases of spontaneous AKR thymic lymphomagenesis. AKR mice regularly begin expressing N-tropic retroviruses (as assayed on NIH fibroblasts by the XC plaque assay) in several tissues early in life; thymic lymphocytes also express these viruses, but are not autonomously transformed. Later thymic lymphomas emerge which are capable of metastasizing in the host of origin or transplanting leukemias into syngeneic hosts. Just prior to the appearance of thymic lymphomas, these mice also begin producing xenotropic retroviruses [as assayed in xenogeneic (For example, mink) fibroblasts], and concomitant with the appearance of the leukemias is the appearance of "recombinant" retroviruses which cause mink fibroblast foci (MCF); these viruses express elements of both N- and X-tropic virus envelopes and N-tropic viral gene products in their cores. Spontaneous AKR leukemias also produce other retroviruses which do not cause XC plaques or mink fibroblast foci; these are called SL viruses. The subject of this study was to test whether in vivo thymocytes in the preleukemic and leukemic periods also bear receptors specific for N-tropic, recombinant MCF and SL AKR retroviruses. We demonstrated that each spontaneous thymic lymphoma does bear receptors that bind viruses produced by the lymphomas and MCF-247 to a high degree and that bind N-ecotropic AKR retroviruses less well. Thymic lymphocytes predominating in the preleukemic period do not express detectable levels of receptors for either of the viruses. In some mice, receptor-positive cells co-exist with receptor-negative cells; only the receptor-positive cells are capable of transplanting leukemia to syngeneic hosts. We conclude that the presence of specific cell surface receptors for lymphoma cell-produced and recombinant AKR retroviruses is a marker for leukemia in these hosts.  相似文献   

7.
We previously showed that the 93-bp region between the enhancer and promoter (named DEN for downstream of enhancer) of the long terminal repeat (LTR) of the MCF13 murine leukemia virus is an important determinant of the ability of this virus to induce thymic lymphoma. In this study we observed that DEN plays a role in the regulation of virus replication in the thymus during the preleukemic period. A NF-kappaB site in the DEN region partially contributes to the effect of DEN on both lymphomagenicity and virus replication. To further study the effects of DEN and the NF-kappaB site on viral pathogenicity during the preleukemic period, we examined replication of wild-type and mutant viruses with a deletion of the NF-kappaB site or the entire DEN region in the thymus. Thymic lymphocytes which were infected with wild-type and mutant viruses were predominantly the CD3(-) CD4(+) CD8(+) and CD3(+) CD4(+) CD8(+) cells. The increase in infection by wild-type virus and both mutant viruses of these two subpopulations during the preleukemic period ranged from 9- to 84-fold, depending upon the time point and virus. The major difference between the wild-type and both mutant viruses was the lower rate and lower level of mutant virus replication in these thymic subpopulations. Significant differences in replication between wild-type and both mutant viruses were seen in the CD3(-) CD4(+) CD8(+) and CD3(-) CD4(-) CD8(-) subpopulations, suggesting that these thymic cell types are important targets for viral transformation.  相似文献   

8.
Q X Li  H Fan 《Journal of virology》1990,64(8):3701-3711
We described previously a preleukemic state in mice inoculated with Moloney murine leukemia virus (M-MuLV) characterized by generalized hematopoietic hyperplasia in the spleen. To investigate this further, long-term bone marrow cultures (LTBMC) from preleukemic mice were established. Surprisingly, LTBMC from M-MuLV-inoculated preleukemic mice showed less hematopoiesis than LTBMC from control mice. This resulted from a quantitative defect in establishment of bone marrow stromal cells in the LTBMC. This phenomenon could also be observed in LTBMC from normal mice infected in vitro with a stock of M-MuLV containing a mink cell focus-forming virus (MCF) derivative (M-MCF), but not in LTBMC infected with M-MuLV alone. This implicated MCF derivatives in the reduction in bone marrow stromal cells. The phenomenon could also be detected in infected NIH 3T3 cells. Combined infection of M-MuLV plus M-MCF resulted in fewer cells, in comparison to uninfected cells or cells infected with either virus alone. Further studies indicated that this was predominantly due to an inhibition in cell growth rather than to cell lysis. The cytopathic effect did not appear to result from overreplication of viral DNA, as measured by Southern blots. Thus, combined infection with M-MuLV and an MCF derivative had cytostatic effects on cell growth. This phenomenon might also contribute to the leukemogenic process in vivo.  相似文献   

9.
The DBA/2 mouse Rmcf gene is responsible for in vivo and in vitro resistance to infection by the polytropic mink cell focus-forming (MCF) virus subgroup of murine leukemia viruses (MLVs). Previous studies suggested that Rmcf resistance is mediated by expression of an interfering MCF MLV envelope (Env) gene. To characterize this env gene, we examined resistance in crosses between Rmcf(r) DBA/2 mice and Mus castaneus, a species that lacks endogenous MCF env sequences. In backcross progeny, inheritance of Rmcf resistance correlated with inheritance of a specific endogenous MCF virus env-containing 4.6-kb EcoRI fragment. This fragment was present in the DBA/2N substrain with Rmcf-mediated resistance but not in virus-susceptible DBA/2J substrain mice. This fragment contains a provirus with a 5' long terminal repeat and the 5' half of env; the gag and pol genes have been partially deleted. The Env sequence is identical to that of a highly immunogenic viral glycoprotein expressed in the DBA/2 cell line L5178Y and closely resembles the env genes of modified polytropic proviruses. The coding sequence for the full-length Rmcf Env surface subunit was amplified from DNAs from virus-resistant backcross mice and was cloned into an expression vector. NIH 3T3 and BALB 3T3 cells stably transfected with this construct showed significant resistance to infection by MCF MLV but not by amphotropic MLV. This study identifies an Rmcf-linked MCF provirus and indicates that, like the ecotropic virus resistance gene Fv4, Rmcf may mediate resistance through an interference mechanism.  相似文献   

10.
Moloney murine leukemia virus (M-MuLV) is a replication-competent, simple retrovirus that induces T-cell lymphoma with a mean latency of 3 to 4 months. During the preleukemic period (4 to 10 weeks postinoculation) a marked decrease in thymic size is apparent for M-MuLV-inoculated mice in comparison to age-matched uninoculated mice. We were interested in studying whether the thymic regression was due to an increased rate of thymocyte apoptosis in the thymi of M-MuLV-inoculated mice. Neonatal NIH/Swiss mice were inoculated subcutaneously (s.c.) with wild-type M-MuLV (approximately 105 XC PFU). Mice were sacrificed at 4 to 11 weeks postinoculation. Thymic single-cell suspensions were prepared and tested for apoptosis by two-parameter flow cytometry. Indications of apoptosis included changes in cell size and staining with 7-aminoactinomycin D or annexin V. The levels of thymocyte apoptosis were significantly higher in M-MuLV-inoculated mice than in uninoculated control animals, and the levels of apoptosis were correlated with thymic atrophy. To test the relevance of enhanced thymocyte apoptosis to leukemogenesis, mice were inoculated with the Mo+PyF101 enhancer variant of M-MuLV. When inoculated intraperitoneally, a route that results in wild-type M-MuLV leukemogenesis, mice displayed levels of enhanced thymocyte apoptosis comparable to those seen with wild-type M-MuLV. However, in mice inoculated s.c., a route that results in attenuated leukemogenesis, significantly lower levels of apoptosis were observed. This supported a role for higher levels of thymocyte apoptosis in M-MuLV leukemogenesis. To examine the possible role of mink cell focus-forming (MCF) recombinant virus in raising levels of thymocyte apoptosis, MCF-specific focal immunofluorescence assays were performed on thymocytes from preleukemic mice inoculated with M-MuLV and Mo+PyF101 M-MuLV. The results indicated that infection of thymocytes by MCF virus recombinants is not required for the increased level of apoptosis and thymic atrophy.  相似文献   

11.
We derived an amphotropic murine leukemia virus (MuLV) type-specific probe for use in Southern blot hybridizations with cloned and genomic DNAs. A 133-base-pair RsaI-RsaI fragment from the 5' env region of the amphotropic viral isolate 4070A was subcloned into M13mp18 and radiolabeled in vitro. The probe detected the proviral DNAs in mink cells infected with seven different amphotropic MuLV isolates. The probe did not cross hybridize with the DNAs of molecular clones of ecotropic, mink cell focus-forming, or xenotropic MuLVs; nor did it anneal to the proviral DNAs of four xenotropic or six mink cell focus-forming viral isolates grown in mink cells. DNAs of 12 inbred laboratory mouse strains and more than 15 different wild mouse species and subspecies were examined for the presence of endogenous amphotropic env-related fragments. Amphotropic env-related sequences were found only in the DNAs of wild mice trapped in southern California in an area previously shown to harbor mice producing infectious amphotropic virus. Restriction enzyme analyses of DNAs from these mice showed that amphotropic sequences were not present as germ line copies but were the result of congenital or horizontal infection or both in this population. The DNAs of 11 various mammalian and avian species, including both natural predators of mice and squabs from the farms with virus-positive mice, lacked amphotropic envelope-related sequences.  相似文献   

12.
We studied the appearance and structure of murine leukemia viral genomes in preleukemic AKR/J mice by Southern hybridization. Up to an average of one to two copies per thymocyte of unintegrated murine leukemia virus DNA appears in the thymuses of preleukemic mice beginning at 4 to 5 months of age and disappears in leukemic thymuses. The free viral genomes are absent in the spleens, livers, and brains of preleukemic mice. Using a series of ecotropic and nonecotropic murine leukemia virus hybridization probes, we showed that the unintegrated viral genomes are structurally analogous to those of recombinant mink cell focus-forming viruses that appear as proviruses in leukemic AKR thymocytes, suggesting that these free viral DNAs are the direct precursors to the leukemia-specific proviruses. The mosaic of ecotropic and nonecotropic sequences within these unintegrated viral DNAs varies from one preleukemic thymus to another but often appears structurally homogeneous within individual thymuses, indicating that often each thymus was being infected by a unique mink cell focus-forming virus. Analysis of high-molecular-weight DNA shows that recombinant proviruses reside in the chromosomal DNA of thymocytes within the preleukemic thymus, with the number rising to an average of several copies per thymocyte, but we do not detect any preferred integration sites. These results suggest that, in general, before the development of thymic leukemias in AKR mice there is a massive infection by a unique mink cell focus-forming virus which then integrates into many different sites of individual thymocytes, one of which grows out to become a tumor.  相似文献   

13.
Xenotropic murine leukemia virus-related virus (XMRV) is a novel gammaretrovirus that was originally isolated from human prostate cancer. It is now believed that XMRV is not the etiologic agent of prostate cancer. An analysis of murine leukemia virus (MLV) infection in various human cell lines revealed that prostate cancer cell lines are preferentially infected by XMRV, and this suggested that XMRV infection may confer some sort of growth advantage to prostate cancer cell lines. To examine this hypothesis, androgen-dependent LNCaP cells were infected with XMRV and tested for changes in certain cell growth properties. We found that XMRV-infected LNCaP cells can proliferate in the absence of the androgen dihydrotestosterone. Moreover, androgen receptor expression is significantly reduced in XMRV-infected LNCaP cells. Such alterations were not observed in uninfected and amphotropic MLV-infected LNCaP cells. This finding explains why prostate cancer cell lines are preferentially infected with XMRV.  相似文献   

14.
15.
Measles virus infection induces a profound immunosuppression that may lead to serious secondary infections and mortality. In this report, we show that the human cortical thymic epithelial cell line is highly susceptible to measles virus infection in vitro, resulting in infectious viral particle production and syncytium formation. Measles virus inhibits thymic epithelial cell growth and induces an arrest in the G0/G1 phases of the cell cycle. Moreover, we show that measles virus induces a progressive thymic epithelial cell differentiation process: attached measles virus-infected epithelial cells correspond to an intermediate state of differentiation while floating cells, recovered from cell culture supernatants, are fully differentiated. Measles virus-induced thymic epithelial cell differentiation is characterized by morphological and phenotypic changes. Measles virus-infected attached cells present fusiform and stellate shapes followed by a loss of cell-cell contacts and a shift from low- to high-molecular-weight keratin expression. Measles virus infection induces thymic epithelial cell apoptosis in terminally differentiated cells, revealed by the condensation and degradation of DNA in measles virus-infected floating thymic epithelial cells. Because thymic epithelial cells are required for the generation of immunocompetent T lymphocytes, our results suggest that measles virus-induced terminal differentiation of thymic epithelial cells may contribute to immunosuppression, particularly in children, in whom the thymic microenvironment is of critical importance for the development and maturation of a functional immune system.  相似文献   

16.
M-MuLV-specific DNA probes were used to establish the state of integration and amplification of recombinant proviral sequences in Moloney virus-induced tumors of Balb/Mo, Balb/c and 129 mice. The somatically acquired viral sequences contain both authentic M-MuLV genomes and recombinants of M-MuLV with endogenous viral sequences. All reintegrated genomes carry long terminal repeat (LTR) sequences at both termini of their genome. In the preleukemic stage a large population of cells exhibiting a random distribution of reintegrated M-MuLV genomes are seen, but during outgrowth of the tumor, selection of cells occurs leaving one or a few clonal descendants in the outgrown tumor. In this latter stage recombinant genomes can be detected. Although these recombinants constitute a heterogeneous group of proviruses, characteristic molecular markers are conserved among many individual proviral recombinants, lending credence to the notion that a certain recombinant structure is a prerequisite for the onset of neoplasia. The structure of these recombinants shows close structural similarities to the previously described mink cell focus-inducing (MCF)-type viruses.  相似文献   

17.
D Ott  R Friedrich    A Rein 《Journal of virology》1990,64(2):757-766
Viral interference studies have demonstrated the existence of four distinct murine leukemia virus (MuLV) receptors on NIH 3T3 mouse cells. The four viral interference groups are ecotropic MuLV; mink cell focus inducing virus (MCF); amphotropic MuLV; and 10A1, a recombinant derivative of amphotropic MuLV that uses a unique receptor but also retains affinity for the amphotropic MuLV receptor. We report here that 10A1 infects rat and hamster cells, unlike its amphotropic parent. We isolated an infectious molecular clone of 10A1 and present here the sequences of the env genes and enhancer regions of amphotropic MuLV and 10A1. The deduced amino acid sequences of amphotropic MuLV and 10A1 gp70su are remarkably similar to those of MCF and xenotropic MuLV (for which mouse cells lack receptors), with 64% amino acids identical in the four groups. We generated a consensus from these comparisons. Further, the differences are largely localized to a few discrete regions: (i) amphotropic MuLV has two short insertions relative to MCF, at residues 87 to 92 and 163 to 169, and (ii) amphotropic MuLV and MCF are totally different in a hypervariable region, which is greater than 30% proline, at residues approximately 253 to 304. 10A1 closely resembles amphotropic MuLV in its N terminus but contains an MCF-type hypervariable region. These results suggest the possibility that receptor specificity is localized in these short variable regions and further that the unique receptor specificity of 10A1 is due to the novel combination of amphotropic MuLV and MCF sequences rather than to the presence of any novel sequences. The Env proteins of ecotropic MuLV are far more distantly related to those of the other four groups than the latter are to each other. We also found that the enhancer regions of amphotropic MuLV and 10A1 are nearly identical, although 10A1 is far more leukemogenic than amphotropic MuLV.  相似文献   

18.
The Moloney murine leukemia virus (MuLV) is a highly leukemogenic virus. To map the leukemogenic potential of Moloney MuLV, we constructed chimeric viral DNA genomes in vitro between parental cloned infectious viral DNA from Moloney and amphotropic 4070-A MuLVs. Infectious chimeric MuLVs were recovered by microinjection of recombinant DNA into NIH/3T3 cells and tested for their leukemogenic potential by inoculation into NIH/Swiss newborn mice. Parental Moloney MuLV and amphotropic 4070-A MuLV induced thymic and nonthymic leukemia, respectively, when inoculated intrathymically. With chimeric MuLVs, we found that the primary determinant of leukemogenicity of Moloney and amphotropic MuLVs lies within the 1.5-kilobase-pair ClaI-PvuI long terminal repeat (LTR)-containing fragment. The presence of additional Moloney env-pol sequences with the Moloney LTR enhanced the leukemogenic potential of a chimeric MuLV significantly, indicating that these sequences were also involved in tumor development. Since parental viruses induced different forms of leukemia, we could also map the viral sequences conferring this disease specificity. We found that the 1.5-kilobase-pair ClaI-PvuI LTR-containing fragment of Moloney MuLV was necessary and sufficient for a chimeric MuLV to induce thymic leukemia. Similarly, the same LTR-containing fragment of amphotropic MuLV was necessary and sufficient for a chimeric MuLV to induce nonthymic leukemia. Therefore, our results suggest that specific sequences within this short LTR-containing fragment determine two important viral functions: the ability to transform cells in vivo (leukemic transformation) and the selection of a specific population of cells to be transformed (disease specificity).  相似文献   

19.
Thymic epithelial reticulum (TER) cell lines were established from thymuses of a young healthy AKR mouse (A2T), a preleukemic AKR mouse (A6T), and two lymphoma-bearing AKR/Ms mice (ASLT-1 and ASLT-2). Numerous type-C virus particles with occasional budding forms were observed in all cell lines. Expression of XC-detectable, N-tropic, ecotropic virus was observed in every cell line, whereas the presence of xenotropic and mink cell focus-inducing (MCF) viruses could be detected only in TER cells derived from preleukemic and leukemic mice. Expression of xenotropic virus in various cells of newborn and young AKR mice could readily be induced by IUdR treatment, whereas MCF virus was never detected in these cells, with the exception of the A2T cell line after more than 20 passages, in which MCF virus with dual-tropic infectivity emerged in addition to ecotropic and xenotropic viruses. These spontaneous and induced MCF viruses were purified, and their virological properties were characterized. The cloned MCF viruses (MCFs AT1, AT2, AT3, and AT4-IU) showed dual tropism and produced cytopathic effect-like foci in mink lung cells. Preinfection with either ecotropic or xenotropic virus interfered with the infectivity of MCF viruses. Spontaneous leukemogenesis in AKR mice was accelerated by the inoculation of MCF viruses. These findings indicate that TER cells could serve as the host cells for the genetic recombination of the endogenous MuLV; the recombinant MuLV, MCF virus, appears to be most closely associated with leukemogenesis in AKR mice.  相似文献   

20.
Certain glycosaminoglycans (GAGs), including heparin, inhibit infection by murine leukemia virus (MLV). We now show that this is due to inhibition of virus attachment independent of the interaction between viral envelope proteins (Env) and their cellular receptors. Heparin blocked the binding of both Env-deficient and amphotropic MLV (MLV-A) particles to NIH 3T3 fibroblasts, CHO cells which lack the amphotropic retroviral receptor Pit-2, and CHO cells transfected with Pit-2 (CHO-Pit-2). Heparin also inhibited the transduction of NIH 3T3 cells by MLV-A over a similar concentration range. This effect was observed within 15 min of exposure to retrovirus. Preloading target cells with heparin had no effect on transduction and both MLV-A and Env-deficient retrovirus bound efficiently to heparin-coated agarose beads, suggesting that heparin interacts with the virus rather than the target cell. This requires both a strong negative charge and a specific structure since GAGs with different charge and carbohydrate composition inhibited virus infection variably. The specificity of GAG-virus interaction also depends on the producer cells, since virus packaged by murine GP+EnvAM12 cells was 1,000-fold more sensitive to inhibition by chondroitin sulfate A than was virus packaged by human FLYA13 packaging cells. No evidence for an interaction between MLV and cell surface proteoglycans was found, however, since the attachment of MLV-A and envelope-defective virus to proteoglycan-deficient CHOpgsA-745 cells was similar to that seen with both wild-type and CHO-Pit-2 cells. Although the molecular mechanism is unclear, this study presents evidence that Env receptor-independent attachment is an important step in MLV infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号