首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims: Plasmids are critical for the pathogenicity of Yersinia pestis. In order to carry out a systematic investigation of their role in pathogenesis, we cured plasmids from Y. pestis. Methods and Results: Each plasmid’s replicon of Y. pestis was cloned into plasmid pEX18Gm containing a counter‐selectable sacB gene, and was then introduced into Y. pestis strain 201 by electroporation. Strains containing recombinant plasmids were cultivated under antibiotic selection. The resultant plasmid‐curing colonies, identified by specific polymerase chain reactions, were then cured off pEX18Gm under sucrose pressure. This method was used to successfully cure all four plasmids of Y. pestis, singly or in different combinations. Conclusions: Naturally evolving plasmids in Y. pestis are difficult to remove by conventional curing methods. We employed a method based on plasmid incompatibility to cure the plasmids from Y. pestis, which confirmed the efficacy of this method for curing plasmids with different types of replicons from one bacterium. Significance and Impact of the Study: There have been no reports on the curing of multiple plasmids by using replication mechanisms from one bacterium with this technique. In the present study, we were able to successfully apply this methodology to cure four plasmids from Y. pestis, confirming its feasibility.  相似文献   

2.
Genome editing based on CRISPR (clustered regularly interspaced short palindromic repeats)-associated nuclease (Cas9) has been successfully applied in dozens of diverse plant and animal species, including the nematode Caenorhabditis elegans. The rapid life cycle and easy access to the ovary by micro-injection make C. elegans an ideal organism both for applying CRISPR-Cas9 genome editing technology and for optimizing genome-editing protocols. Here we report efficient and straightforward CRISPR-Cas9 genome-editing methods for C. elegans, including a Co-CRISPR strategy that facilitates detection of genome-editing events. We describe methods for detecting homologous recombination (HR) events, including direct screening methods as well as new selection/counterselection strategies. Our findings reveal a surprisingly high frequency of HR-mediated gene conversion, making it possible to rapidly and precisely edit the C. elegans genome both with and without the use of co-inserted marker genes.  相似文献   

3.
Plant trait engineering requires efficient targeted genome-editing technologies. Clustered regularly interspaced palindromic repeats (CRISPRs)/ CRISPR associated (Cas) type II system is used for targeted genome-editing applications across eukaryotic species including plants. Delivery of genome engineering reagents and recovery of mutants remain challenging tasks for in planta applications. Recently, we reported the development of Tobacco rattle virus (TRV)-mediated genome editing in Nicotiana benthamiana. TRV infects the growing points and possesses small genome size; which facilitate cloning, multiplexing, and agroinfections. Here, we report on the persistent activity and specificity of the TRV-mediated CRISPR/Cas9 system for targeted modification of the Nicotiana benthamiana genome. Our data reveal the persistence of the TRV- mediated Cas9 activity for up to 30 d post-agroinefection. Further, our data indicate that TRV-mediated genome editing exhibited no off-target activities at potential off-targets indicating the precision of the system for plant genome engineering. Taken together, our data establish the feasibility and exciting possibilities of using virus-mediated CRISPR/Cas9 for targeted engineering of plant genomes.  相似文献   

4.
The CRISPR-Cas9 system is a powerful and revolutionary genome-editing tool for eukaryotic genomes, but its use in bacterial genomes is very limited. Here, we investigated the use of the Streptococcus pyogenes CRISPR-Cas9 system in editing the genome of Clostridium cellulolyticum, a model microorganism for bioenergy research. Wild-type Cas9-induced double-strand breaks were lethal to C. cellulolyticum due to the minimal expression of nonhomologous end joining (NHEJ) components in this strain. To circumvent this lethality, Cas9 nickase was applied to develop a single-nick-triggered homologous recombination strategy, which allows precise one-step editing at intended genomic loci by transforming a single vector. This strategy has a high editing efficiency (>95%) even using short homologous arms (0.2 kb), is able to deliver foreign genes into the genome in a single step without a marker, enables precise editing even at two very similar target sites differing by two bases preceding the seed region, and has a very high target site density (median interval distance of 9 bp and 95.7% gene coverage in C. cellulolyticum). Together, these results establish a simple and robust methodology for genome editing in NHEJ-ineffective prokaryotes.  相似文献   

5.
《Trends in genetics : TIG》2023,39(3):208-216
There is wide interest in applying genome-editing tools to prevent, treat, and cure a variety of diseases. Since the discovery of the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) systems, these techniques have been used in combination with different delivery systems to create highly efficacious treatment options. Each delivery system has its own advantages and disadvantages and is being used for various applications. With the large number of gene-editing applications being studied but very few being brought into the clinic, we review current progress in the field, specifically where genome editing has been applied in vivo and in the clinic, and identify current challenges and areas of future growth.  相似文献   

6.
Plasmids in Rhizobium spp. are relatively large, numerous, and difficult to cure. Except for the symbiotic plasmid, little is known about their functions. The primary objective of our investigation was to obtain plasmid-cured derivatives of Rhizobium leguminosarum bv. trifolii by using a direct selection system and to determine changes in the phenotype of the cured strains. Three strains of rhizobia were utilized that contained three, four, and five plasmids. Phenotypic effects observed after curing of plasmids indicated that the plasmids were involved in the utilization of adonitol, arabinose, catechol, glycerol, inositol, lactose, malate, rhamnose, and sorbitol and also influenced motility, lipopolysaccharide production, and utilization of nitrate. Specific staining of 26 enzymes electrophoretically separated on starch gels indicated that superoxide dismutase, hexokinase, and carbamate kinase activities were affected by curing of plasmids. Curing of cryptic plasmids also influenced nodulation and growth of plants on nitrogen-deficient media. The alteration in the ability to utilize various substrates after curing of plasmids suggests that the plasmids may encode genes that contribute significantly to the saprophytic competence of rhizobia in soil.  相似文献   

7.
Pseudomonas putida is a promising bacterial host for producing natural products, such as polyketides and nonribosomal peptides. In these types of projects, researchers need a genetic toolbox consisting of plasmids, characterized promoters, and techniques for rapidly editing the genome. Past reports described constitutive promoter libraries, a suite of broad host range plasmids that replicate in P. putida, and genome-editing methods. To augment those tools, we have characterized a set of inducible promoters and discovered that IPTG-inducible promoter systems have poor dynamic range due to overexpression of the LacI repressor. By replacing the promoter driving lacI expression with weaker promoters, we increased the fold induction of an IPTG-inducible promoter in P. putida KT2440 to 80-fold. Upon discovering that gene expression from a plasmid was unpredictable when using a high-copy mutant of the BBR1 origin, we determined the copy numbers of several broad host range origins and found that plasmid copy numbers are significantly higher in P. putida KT2440 than in the synthetic biology workhorse, Escherichia coli. Lastly, we developed a λRed/Cas9 recombineering method in P. putida KT2440 using the genetic tools that we characterized. This method enabled the creation of scarless mutations without the need for performing classic two-step integration and marker removal protocols that depend on selection and counterselection genes. With the method, we generated four scarless deletions, three of which we were unable to create using a previously established genome-editing technique.  相似文献   

8.
Genome editing, which is an unprecedented technological breakthrough, has provided a valuable means of creating targeted mutations in plant genomes. In this study, we developed a genomic web tool to identify all gRNA target sequences in the coffee genome, along with potential off-targets. In all, 8,145,748 CRISPR guides were identified in the draft genome of Coffea canephora corresponding to 5,338,568 different sequences and, of these, 4,655,458 were single, and 514,591 were covering exons. The proof of concept was established by targeting the phytoene desaturase gene (CcPDS) using the Agrobacterium tumefaciens transformation technique and somatic embryogenesis as the plant regeneration method. An analysis of the RNA-guided genome-editing events showed that 22.8% of the regenerated plants were heterozygous mutants and 7.6% were homozygous mutants. Mutation efficiency at the target site was estimated to be 30.4%. We demonstrated that genome editing by the CRISPR/Cas9 method is an efficient and reliable way of knocking out genes of agronomic interest in the coffee tree, opening up the way for coffee molecular breeding. Our results also showed that the use of somatic embryogenesis, as the method for regenerating genome-edited plants, could restrict the choice of targeted genes to those that are not essential to the embryo development and germination steps.  相似文献   

9.
CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) systems are widespread in archaea and bacteria, and research on their molecular mechanisms has led to the development of genome-editing techniques based on a few Type II systems. However, there has not been any report on harnessing a Type I or Type III system for genome editing. Here, a method was developed to repurpose both CRISPR-Cas systems for genetic manipulation in Sulfolobus islandicus, a thermophilic archaeon. A novel type of genome-editing plasmid (pGE) was constructed, carrying an artificial mini-CRISPR array and a donor DNA containing a non-target sequence. Transformation of a pGE plasmid would yield two alternative fates to transformed cells: wild-type cells are to be targeted for chromosomal DNA degradation, leading to cell death, whereas those carrying the mutant gene would survive the cell killing and selectively retained as transformants. Using this strategy, different types of mutation were generated, including deletion, insertion and point mutations. We envision this method is readily applicable to different bacteria and archaea that carry an active CRISPR-Cas system of DNA interference provided the protospacer adjacent motif (PAM) of an uncharacterized PAM-dependent CRISPR-Cas system can be predicted by bioinformatic analysis.  相似文献   

10.
细菌质粒的消除   总被引:18,自引:0,他引:18  
利用化学消除剂或改变生长条件可以消除细菌中的质粒,除宿主菌的特性及其所含质粒分子量大小之外,消除率还与消除剂浓度,作用时间有关,嵌合染料适用于消除大肠杆菌中的质粒,十二烷基硫酸钠对具有性纤毛的细菌作用效果较好,适当提高培养温度可消除一些细菌中的质粒,胸腺嘧啶限量法仅适用于其营养缺陷菌株的质粒消除,利用原生质体的形成与再生及反复冻融菌体均可消除细菌中的质粒。  相似文献   

11.
Genome editing holds remarkable promise to transform human medicine as new therapies that can directly address the genetic causes of disease. However, concerns remain about possible undesired biological consequences of genome editors, particularly the introduction of unintended ‘off-target’ mutations. Here, we discuss both important considerations for therapeutic genome editing and our understanding of the functional impact of undesired off-target mutations. An important challenge for the future will be the development of new approaches for predicting and defining the probable function of unintended genome-editing mutations, which will inspire confidence in the next generation of promising genome-editing therapies.  相似文献   

12.
E. coli Nissle 1917 (EcN) has long been used as an over‐the‐counter probiotic and has shown potential to be used as a live biotherapeutic. It contains two stably replicating cryptic plasmids, pMUT1, and pMUT2, the function of which is unclear but the presence of which may increase the metabolic burden on the cell, particularly in the context of added recombinant plasmids. In this work, we present a clustered regularly interspaced short palindromic repeats‐Cas9‐based method of curing cryptic plasmids, producing strains cured of one or both plasmids. We then assayed heterologous protein production from three different recombinant plasmids in wild‐type and cured EcN derivatives and found that production of reporter proteins was not significantly different across strains. In addition, we replaced pMUT2 with an engineered version containing an inserted antibiotic resistance reporter gene and demonstrated that the engineered plasmid was stable over 90 generations without selection. These findings have broad implications for the curing of cryptic plasmids and for stable heterologous expression of proteins in this host. Specifically, curing of cryptic plasmids may not be necessary for optimal heterologous expression in this host.  相似文献   

13.
Genome-editing technologies consisting of targeted mutagenesis and gene targeting enable us to modify genes of interest rapidly and precisely. The discovery in 2012 of CRISPR/Cas9 systems and their development as sequence-specific nucleases has brought about a paradigm shift in biology. Initially, CRISPR/Cas9 was applied in targeted mutagenesis to knock out a target gene. Thereafter, advances in genome-editing technologies using CRISPR/Cas9 developed rapidly, with base editing systems for transition substitution using a combination of Cas9 nickase and either cytidine or adenosine deaminase being reported in 2016 and 2017, respectively, and later in 2021 bringing reports of transversion substitution using Cas9 nickase, cytidine deaminase and uracil DNA glycosylase. Moreover, technologies for gene targeting and prime editing systems using DNA or RNA as donors have also been developed in recent years. Besides these precise genome-editing strategies, reports of successful chromosome engineering using CRISPR/Cas9 have been published recently. The application of genome editing to crop breeding has advanced in parallel with the development of these technologies. Genome-editing enzymes can be introduced into plant cells, and there are now many examples of crop breeding using genome-editing technologies. At present, it is no exaggeration to say that we are now in a position to be able to modify a gene precisely and rearrange genomes and chromosomes in a predicted way. In this review, we introduce and discuss recent highlights in the field of precise gene editing, chromosome engineering and genome engineering technology in plants.  相似文献   

14.
CRISPR/Cas9基因组编辑技术是一项对基因组进行精准修饰的技术, 可实现对靶标基因的碱基插入、缺失或DNA片段替换。随着人们对CRISPR/Cas9系统的了解逐渐加深, 其在科研、农业和医疗等领域的应用也越来越广泛。该文简要介绍了CRISPR/Cas9基因组编辑技术的发展以及工作原理, 总结了近几年对该技术进行优化与改进的研究进展, 包括基因组编辑效率的提升、基因组编辑范围的扩展、单碱基精准编辑以及多基因同时编辑、基因组编辑安全性的提升以及基因片段替换与基因靶向转录调控, 以期为深入开展这一领域的研究提供参考。  相似文献   

15.
Plasmid curing of Oenococcus oeni   总被引:3,自引:0,他引:3  
Two strains of Oenococcus oeni, RS1 (which carries the plasmid pRS1) and RS2 (which carries the plasmids pRS2 and pRS3), were grown in the presence of different curing agents and at different temperatures. Sublethal temperature together with acriflavine generated all possible types of cured strains, i.e., lacking pRS1 (from strain RS1), and lacking pRS2, pRS3, or both (from strain RS2). Sublethal temperature together with acridine orange only generated cured strains lacking pRS3. These results suggest that acriflavine is a better curing agent than acridine orange for O. oeni, and that pRS3 is the most sensitive to these curing agents. We also observed spontaneous loss of pRS2 or both pRS2 and pRS3 by electroporation. The ability to cure O. oeni strains of plasmids provides a critical new tool for the genetic analysis and engineering of this commercially important bacterium.  相似文献   

16.
CRISPR/Cas9基因组编辑技术是一项对基因组进行精准修饰的技术,可实现对靶标基因的碱基插入、缺失或DNA片段替换。随着人们对CRISPR/Cas9系统的了解逐渐加深,其在科研、农业和医疗等领域的应用也越来越广泛。该文简要介绍了CRISPR/Cas9基因组编辑技术的发展以及工作原理,总结了近几年对该技术进行优化与改进的研究进展,包括基因组编辑效率的提升、基因组编辑范围的扩展、单碱基精准编辑以及多基因同时编辑、基因组编辑安全性的提升以及基因片段替换与基因靶向转录调控,以期为深入开展这一领域的研究提供参考。  相似文献   

17.
Zinc finger nuclease (ZFN) technology can mediate targeted genome modification to produce transgenic animals in a high-efficient and biological-safe way. Modular assembly is a rapid, convenient and open-source method for the synthesis of ZFNs. However, this biotechnology is hampered by multistep construction, low-efficiency editing and off-target cleavage. Here we synthesized and tested six pairs of three- or four-finger ZFNs to target one site in goat beta-lactoglobulin (BLG, a dominant allergen in goat milk) gene. Homology modeling was applied to build the structure model of ZFNs to predict their editing activities targeting at goat BLG gene. Goat fibroblast cells were transfected with plasmids that encoded ZFN pairs, and genomic DNA was isolated 72 h later for genome editing efficiency assay. The results of editing efficiency assay demonstrated that ZFNs with optimal interaction modes can edit goat BLG gene more efficiently, whereas ZFNs with unexpected interaction modes showed lower activities in editing BLG gene. We concluded that modular-assembly ZFNs can provide a rapid, public-available, and easy-to-practice platform for transgenic animal research and molecular modeling would help as a useful tool for ZFNs activity prediction.  相似文献   

18.
The discovery that mature cells can be reprogrammed to become pluripotent and the development of engineered endonucleases for enhancing genome editing are two of the most exciting and impactful technology advances in modern medicine and science. Human pluripotent stem cells have the potential to establish new model systems for studying human developmental biology and disease mechanisms. Gene correction in patient-specific iPSCs can also provide a novel source for autologous cell therapy. Although historically challenging, precise genome editing in human iPSCs is becoming more feasible with the development of new genome-editing tools, including ZFNs, TALENs, and CRISPR. iPSCs derived from patients of a variety of diseases have been edited to correct disease-associated mutations and to generate isogenic cell lines. After directed differentiation, many of the corrected iPSCs showed restored functionality and demonstrated their potential in cell replacement therapy. Genome-wide analyses of gene-corrected iPSCs have collectively demonstrated a high fidelity of the engineered endonucleases. Remaining challenges in clinical translation of these technologies include maintaining genome integrity of the iPSC clones and the differentiated cells. Given the rapid advances in genome-editing technologies, gene correction is no longer the bottleneck in developing iPSC-based gene and cell therapies; generating functional and transplantable cell types from iPSCs remains the biggest challenge needing to be addressed by the research field.  相似文献   

19.
【目的】利用亚硝基胍(NTG)消除链霉菌FR-008线性质粒以简化其基因组,获得背景清晰的菌株,作为抗生素异源生物合成的底盘细胞。【方法】NTG溶液处理链霉菌FR-008孢子悬液,从存活的诱变株中筛选砷敏感的突变株,再通过脉冲场凝胶电泳(PFGE)检测线性质粒是否被消除;用生测实验定性检测各个线性质粒消除突变株杀念菌素合成的能力,最后通过HPLC定量比较突变株和野生型产生杀念菌素的差异。【结果】从103个诱变株中筛选到3株砷敏感的突变株(10#、59#、115#)。PFGE检测发现它们均丢失了大线性质粒p SSFR1,此外,42#突变株的小线性质粒p SSFR2被消除,在此基础上,第二轮NTG诱变获得了双质粒消除的突变株。大线性质粒p SSFR1消除率约为3%,小线性质粒p SSFR2消除率约为1%。发酵结果显示:10#、115#突变株杀念菌素有效组分III产量分别提高了40%和30%。【结论】首次发现NTG是一种有效消除链霉菌线性质粒的诱变剂,2株大线性质粒消除的突变株杀念菌素的产量得到提高。此方法可以用来消除特定链霉菌菌株中的巨型线性质粒以高效简化其基因组,因而是一种有效的抗生素遗传育种的方法。  相似文献   

20.
All four plasmids from Rhizobium leguminosarum bv. trifolii W14-2 were sequentially labelled with Tn 5 -Mob- sac , which codes for resistance to kanamycin and sensitivity to sucrose, and cured by exposing rhizobia to supra-optimal temperatures. This is the first report where a plasmid-less derivative of Rhizobium was obtained. No relationship was found between plasmid size and elimination. The efficiency of Hynes' selection system decreased when used to cure plasmids from rhizobial derivatives already lacking one plasmid or more. The authors' results suggest that previous reports of failure in curing Tn 5 -Mob- sac labelled plasmids may only be due to an insufficient number of colonies being screened.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号