首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The canonical model of sex‐chromosome evolution assigns a key role to sexually antagonistic (SA) genes on the arrest of recombination and ensuing degeneration of Y chromosomes. This assumption cannot be tested in organisms with highly differentiated sex chromosomes, such as mammals or birds, owing to the lack of polymorphism. Fixation of SA alleles, furthermore, might be the consequence rather than the cause of recombination arrest. Here we focus on a population of common frogs (Rana temporaria) where XY males with genetically differentiated Y chromosomes (nonrecombinant Y haplotypes) coexist with both XY° males with proto‐Y chromosomes (only differentiated from X chromosomes in the immediate vicinity of the candidate sex‐determining locus Dmrt1) and XX males with undifferentiated sex chromosomes (genetically identical to XX females). Our study finds no effect of sex‐chromosome differentiation on male phenotype, mating success or fathering success. Our conclusions rejoin genomic studies that found no differences in gene expression between XY, XY° and XX males. Sexual dimorphism in common frogs might result more from the differential expression of autosomal genes than from sex‐linked SA genes. Among‐male variance in sex‐chromosome differentiation seems better explained by a polymorphism in the penetrance of alleles at the sex locus, resulting in variable levels of sex reversal (and thus of X‐Y recombination in XY females), independent of sex‐linked SA genes.  相似文献   

2.
In vertebrates, sex differences in the brain have been attributed to differences in gonadal hormone secretion; however, recent evidence in mammals and birds shows that sex chromosome-linked genes, independent of gonadal hormones, also mediate sex differences in the brain. In this study, we searched for genes that were differentially expressed between the sexes in the brain of a teleost fish, medaka (Oryzias latipes), and identified two sex chromosome genes with male-biased expression, cntfa (encoding ciliary neurotrophic factor a) and pdlim3a (encoding PDZ and LIM domain 3 a). These genes were found to be located 3–4 Mb from and on opposite sides of the Y chromosome-specific region containing the sex-determining gene (the medaka X and Y chromosomes are genetically identical, differing only in this region). The male-biased expression of both genes was evident prior to the onset of sexual maturity. Sex-reversed XY females, as well as wild-type XY males, had more pronounced expression of these genes than XX males and XX females, indicating that the Y allele confers higher expression than the X allele for both genes. In addition, their expression was affected to some extent by sex steroid hormones, thereby possibly serving as focal points of the crosstalk between the genetic and hormonal pathways underlying brain sex differences. Given that sex chromosomes of lower vertebrates, including teleost fish, have evolved independently in different genera or species, sex chromosome genes with sexually dimorphic expression in the brain may contribute to genus- or species-specific sex differences in a variety of traits.  相似文献   

3.
Dioecious white campion Silene latifolia has sex chromosomal sex determination, with homogametic (XX) females and heterogametic (XY) males. This species has become popular in studies of sex chromosome evolution. However, the lack of genes isolated from the X and Y chromosomes of this species is a major obstacle for such studies. Here, I report the isolation of a new sex-linked gene, Slss, with strong homology to spermidine synthase genes of other species. The new gene has homologous intact copies on the X and Y chromosomes (SlssX and SlssY, respectively). Synonymous divergence between the SlssX and SlssY genes is 4.7%, and nonsynonymous divergence is 1.4%. Isolation of a homologous gene from nondioecious S. vulgaris provided a root to the gene tree and allowed the estimation of the silent and replacement substitution rates along the SlssX and SlssY lineages. Interestingly, the Y-linked gene has higher synonymous and nonsynonymous substitution rates. The elevated synonymous rate in the SlssY gene, compared with SlssX, confirms our previous suggestion that the S. latifolia Y chromosome has a higher mutation rate, compared with the X chromosome. When differences in silent substitution rate are taken into account, the Y-linked gene still demonstrates significantly faster accumulation of nonsynonymous substitutions, which is consistent with the theoretical prediction of relaxed purifying selection in Y-linked genes, leading to the accumulation of nonsynonymous substitutions and genetic degeneration of the Y-linked genes.  相似文献   

4.
Both mouse and man have the common XX/XY sex chromosome mechanism. The X chromosome is of original size (5-6% of female haploid set) and the Y is one of the smallest chromosomes of the complement. But there are species, belonging to a variety of orders, with composite sex chromosomes and multiple sex chromosome systems: XX/XY1Y2 and X1X1X2X2/X1X2Y. The original X or the Y, respectively, have been translocated on to an autosome. The sex chromosomes of these species segregate regularly at meiosis; two kinds of sperm and one kind of egg are produced and the sex ratio is the normal 1:1. Individuals with deviating sex chromosome constitutions (XXY, XYY, XO or XXX) have been found in at least 16 mammalian species other than man. The phenotypic manifestations of these deviating constitutions are briefly discussed. In the dog, pig, goat and mouse exceptional XX males and in the horse XY females attract attention. Certain rodents have complicated mechanisms for sex determination: Ellobius lutescens and Tokudaia osimensis have XO males and females. Both sexes of Microtus oregoni are gonosomic mosaics (male OY/XY, female XX/XO). The wood lemming, Myopus schisticolor, the collared lemming, Dirostonyx torquatus, and perhaps also one or two species of the genus Akodon have XX and XY females and XY males. The XX, X*X and X*Y females of Myopus and Dicrostonyx are discussed in some detail. The wood lemming has proved to be a favourable natural model for studies in sex determination, because a large variety of sex chromosome aneuploids are born relatively frequently. The dosage model for sex determination is not supported by the wood lemming data. For male development, genes on both the X and the Y chromosomes are necessary.  相似文献   

5.
6.
Silene latifolia is a dioecious plant with heteromorphic sex chromosomes that have originated only ~10 million years ago and is a promising model organism to study sex chromosome evolution in plants. Previous work suggests that S. latifolia XY chromosomes have gradually stopped recombining and the Y chromosome is undergoing degeneration as in animal sex chromosomes. However, this work has been limited by the paucity of sex-linked genes available. Here, we used 35 Gb of RNA-seq data from multiple males (XY) and females (XX) of an S. latifolia inbred line to detect sex-linked SNPs and identified more than 1,700 sex-linked contigs (with X-linked and Y-linked alleles). Analyses using known sex-linked and autosomal genes, together with simulations indicate that these newly identified sex-linked contigs are reliable. Using read numbers, we then estimated expression levels of X-linked and Y-linked alleles in males and found an overall trend of reduced expression of Y-linked alleles, consistent with a widespread ongoing degeneration of the S. latifolia Y chromosome. By comparing expression intensities of X-linked alleles in males and females, we found that X-linked allele expression increases as Y-linked allele expression decreases in males, which makes expression of sex-linked contigs similar in both sexes. This phenomenon is known as dosage compensation and has so far only been observed in evolutionary old animal sex chromosome systems. Our results suggest that dosage compensation has evolved in plants and that it can quickly evolve de novo after the origin of sex chromosomes.  相似文献   

7.
Accidental recombination between the differential segments of the X and Y chromosomes in man occasionally allows transfer of Y-linked sequences to the X chromosome leading to testis differentiation in so-called XX males. Loss of the same sequences by X-Y interchange allows female differentiation in a small proportion of individuals with XY gonadal dysgenesis. A candidate gene responsible for primary sex determination has recently been cloned from within this part of the Y chromosome by Page and his colleagues. The observation that a homologue of this gene is present on the short arm of the X chromosome and is subject to X-inactivation, raises the intriguing possibility that sex determination in man is a quantitative trait. Males have two active doses of the gonad determining gene, and females have one dose. This hypothesis has been tested in a series of XX males, XY females and XX true hermaphrodites by using a genomic probe, CMPXY1, obtained by probing a Y-specific DNA library with synthetic oligonucleotides based on the predicted amino-acid sequence of the sex-determining protein. The findings in most cases are consistent with the hypothesis of homologous gonad-determining genes, GDX and GDY, carried by the X and Y chromosomes respectively. It is postulated that in sporadic or familial XX true hermaphrodites one of the GDX loci escapes X-inactivation because of mutation or chromosomal rearrangement, resulting in mosaicism for testis and ovary-determining cell lines in somatic cells. Y-negative XX males belong to the same clinical spectrum as XX true hermaphrodites, and gonadal dysgenesis in some XY females may be due to sporadic or familial mutations of GDX.  相似文献   

8.
Dioecious Silene latifolia evolved heteromorphic sex chromosomes within the last ten million years, making it a species of choice for studies of the early stages of sex chromosome evolution in plants. About a dozen genes have been isolated from its sex chromosomes and basic genetic and deletion maps exist for the X and Y chromosomes. However, discrepancies between Y chromosome maps led to the proposal that individual Y chromosomes may differ in gene order. Here, we use an alternative approach, with fluorescence in situ hybridization (FISH), to locate individual genes on S. latifolia sex chromosomes. We demonstrate that gene order on the Y chromosome differs between plants from two populations. We suggest that dynamic gene order may be a general property of Y chromosomes in species with XY systems, in view of recent work demonstrating that the gene order on the Y chromosomes of humans and chimpanzees are dramatically different.  相似文献   

9.
In the Nile tilapia, Oreochromis niloticus, sex determination is primarily genetic, with XX females and XY males. While the X and Y chromosomes (the largest pair) cannot be distinguished in mitotic chromosome spreads, analysis of comparative hybridization of X and Y chromosome derived probes (produced, by microdissection and DOP-PCR, from XX and YY genotypes, respectively) to different genotypes (XX, XY and YY) has demonstrated that sequence differences exist between the sex chromosomes. Here we report the characterization of these probes, showing that a significant proportion of the amplified sequences represent various transposable elements. We further demonstrate that concentrations of a number of these individual elements are found on the sex chromosomes and that the distribution of two such elements differs between the X and Y chromosomes. These findings are discussed in relation to sex chromosome differentiation in O. niloticus and to the changes expected during the early stages of sex chromosome evolution.  相似文献   

10.
X inactivation is a fundamental mechanism in eutherian mammals to restore a balance of X-linked gene products between XY males and XX females. However, it has never been extensively studied in a eutherian species with a sex determination system that deviates from the ubiquitous XX/XY. In this study, we explore the X inactivation process in the African pygmy mouse Mus minutoides, that harbours a polygenic sex determination with three sex chromosomes: Y, X, and a feminizing mutant X, named X*; females can thus be XX, XX*, or X*Y, and all males are XY. Using immunofluorescence, we investigated histone modification patterns between the two X chromosome types. We found that the X and X* chromosomes are randomly inactivated in XX* females, while no histone modifications were detected in X*Y females. Furthermore, in M. minutoides, X and X* chromosomes are fused to different autosomes, and we were able to show that the X inactivation never spreads into the autosomal segments. Evaluation of X inactivation by immunofluorescence is an excellent quantitative procedure, but it is only applicable when there is a structural difference between the two chromosomes that allows them to be distinguished.  相似文献   

11.
Sex chromosomes are advantageous to mammals, allowing them to adopt a genetic rather than environmental sex determination system. However, sex chromosome evolution also carries a burden, because it results in an imbalance in gene dosage between females (XX) and males (XY). This imbalance is resolved by X dosage compensation, which comprises both X chromosome inactivation and X chromosome upregulation. X dosage compensation has been well characterized in the soma, but not in the germ line. Germ cells face a special challenge, because genome wide reprogramming erases epigenetic marks responsible for maintaining the X dosage compensated state. Here we explain how evolution has influenced the gene content and germ line specialization of the mammalian sex chromosomes. We discuss new research uncovering unusual X dosage compensation states in germ cells, which we postulate influence sexual dimorphisms in germ line development and cause infertility in individuals with sex chromosome aneuploidy.  相似文献   

12.
The mitotic and meiotic chromosomes of the marsupial frog Gastrotheca riobambae were analysed with various banding techniques. The karyotype of this species is distinguished by considerable amounts of constitutive heterochromatin and unusual, heteromorphic XY sex chromosomes. The Y chromosome is considerably larger than the X chromosome and almost completely heterochromatic. The analysis of the banding patterns obtained with GC- and AT-base-pair-specific fluorochromes shows that the constitutive heterochromatin in the Y chromosome consists of at least three different structural categories. The only nucleolus organizer region (NOR) of the karyotype is localized in the short arm of the X chromosome. This causes a sex-specific difference in the number of NOR: female animals have two NORs in diploid cells, male animals one. No cytological indications were found for the inactivation of one of the two X chromosomes in the female cells. In male meiosis, the heteromorphic sex chromosomes form a characteristic sex-bivalent by pairing their telomeres in an end-to-end arrangement. The significance of the XY/XX sex chromosomes of G. riobambae for the study of X-linked genes in Amphibia, the evolution of sex chromosomes and their specific DNA sequences, and the significance of the meiotic process of sex chromosomes are discussed.  相似文献   

13.
Sex chromosomes of the Japanese frog Rana rugosa are heteromorphic in the male (XX/XY) or in the female (ZZ/ZW) in two geographic forms, whereas they are still homomorphic in both sexes in two other forms (Hiroshima and Isehara types). To make clear the origin and differentiation mechanisms of the heteromorphic sex chromosomes, we isolated a sex-linked gene, ADP/ATP translocase, and constructed a phylogenetic tree of the genes derived from the sex chromosomes. The tree shows that the Hiroshima gene diverges first, and the rest form two clusters: one includes the Y and Z genes and the other includes the X, W, and Isehara genes. The Hiroshima gene shares more sequence similarity with the Y and Z genes than with the X, W, and Isehara genes. This suggests that the Y and Z sex chromosomes originate from the Hiroshima type, whereas the X and W chromosomes originate from the Isehara-type sex chromosome. Thus, we infer that hybridization between two ancestral forms, with the Hiroshima-type sex chromosome in one and the Isehara-type sex chromosome in the other, was the primary event causing differentiation of the heteromorphic sex chromosomes.   相似文献   

14.
Evolutionary theory predicts that sexually antagonistic mutations accumulate differentially on the X chromosome and autosomes in species with an XY sex-determination system, with effects (masculinization or feminization of the X) depending on the dominance of mutations. Organisms with alternative modes of inheritance of sex chromosomes offer interesting opportunities for studying sexual conflicts and their resolution, because expectations for the preferred genomic location of sexually antagonistic alleles may differ from standard systems. Aphids display an XX/X0 system and combine an unusual inheritance of the X chromosome with the alternation of sexual and asexual reproduction. In this study, we first investigated theoretically the accumulation of sexually antagonistic mutations on the aphid X chromosome. Our results show that i) the X is always more favourable to the spread of male-beneficial alleles than autosomes, and should thus be enriched in sexually antagonistic alleles beneficial for males, ii) sexually antagonistic mutations beneficial for asexual females accumulate preferentially on autosomes, iii) in contrast to predictions for standard systems, these qualitative results are not affected by the dominance of mutations. Under the assumption that sex-biased gene expression evolves to solve conflicts raised by the spread of sexually antagonistic alleles, one expects that male-biased genes should be enriched on the X while asexual female-biased genes should be enriched on autosomes. Using gene expression data (RNA-Seq) in males, sexual females and asexual females of the pea aphid, we confirm these theoretical predictions. Although other mechanisms than the resolution of sexual antagonism may lead to sex-biased gene expression, we argue that they could hardly explain the observed difference between X and autosomes. On top of reporting a strong masculinization of the aphid X chromosome, our study highlights the relevance of organisms displaying an alternative mode of sex chromosome inheritance to understanding the forces shaping chromosome evolution.  相似文献   

15.
Sex chromosomes turn over rapidly in some taxonomic groups, where closely related species have different sex chromosomes. Although there are many examples of sex chromosome turnover, we know little about the functional roles of sex chromosome turnover in phenotypic diversification and genomic evolution. The sympatric pair of Japanese threespine stickleback (Gasterosteus aculeatus) provides an excellent system to address these questions: the Japan Sea species has a neo-sex chromosome system resulting from a fusion between an ancestral Y chromosome and an autosome, while the sympatric Pacific Ocean species has a simple XY sex chromosome system. Furthermore, previous quantitative trait locus (QTL) mapping demonstrated that the Japan Sea neo-X chromosome contributes to phenotypic divergence and reproductive isolation between these sympatric species. To investigate the genomic basis for the accumulation of genes important for speciation on the neo-X chromosome, we conducted whole genome sequencing of males and females of both the Japan Sea and the Pacific Ocean species. No substantial degeneration has yet occurred on the neo-Y chromosome, but the nucleotide sequence of the neo-X and the neo-Y has started to diverge, particularly at regions near the fusion. The neo-sex chromosomes also harbor an excess of genes with sex-biased expression. Furthermore, genes on the neo-X chromosome showed higher non-synonymous substitution rates than autosomal genes in the Japan Sea lineage. Genomic regions of higher sequence divergence between species, genes with divergent expression between species, and QTL for inter-species phenotypic differences were found not only at the regions near the fusion site, but also at other regions along the neo-X chromosome. Neo-sex chromosomes can therefore accumulate substitutions causing species differences even in the absence of substantial neo-Y degeneration.  相似文献   

16.
To shed light on the biological origins of sex differences in neural tube defects (NTDs), we examined Trp53-null C57BL/6 mouse embryos and neonates at 10.5 and 18.5 days post coitus (dpc) and at birth. We confirmed that female embryos show more NTDs than males. We also examined mice in which the testis-determining gene Sry is deleted from the Y chromosome but inserted onto an autosome as a transgene, producing XX and XY gonadal females and XX and XY gonadal males. At birth, Trp53 nullizygous mice were predominantly XY rather than XX, irrespective of gonadal type, showing that the sex difference in the lethal effect of Trp53 nullizygosity by postnatal day 1 is caused by differences in sex chromosome complement. At 10.5 dpc, the incidence of NTDs in Trp53-null progeny of XY* mice, among which the number of the X chromosomes varies independently of the presence or absence of a Y chromosome, was higher in mice with two copies of the X chromosome than in mice with a single copy. The presence of a Y chromosome had no protective effect, suggesting that sex differences in NTDs are caused by sex differences in the number of X chromosomes.  相似文献   

17.
To achieve a balanced gene expression dosage between males (XY) and females (XX), mammals have evolved a compensatory mechanism to randomly inactivate one of the female X chromosomes. Despite this chromosome-wide silencing, a number of genes escape X inactivation: in women about 15% of X-linked genes are bi-allelically expressed and in mice, about 3%. Expression from the inactive X allele varies from a few percent of that from the active allele to near equal expression. While most genes have a stable inactivation pattern, a subset of genes exhibit tissue-specific differences in escape from X inactivation. Escape genes appear to be protected from the repressive chromatin modifications associated with X inactivation. Differences in the identity and distribution of escape genes between species and tissues suggest a role for these genes in the evolution of sex differences in specific phenotypes. The higher expression of escape genes in females than in males implies that they may have female-specific roles and may be responsible for some of the phenotypes observed in X aneuploidy.  相似文献   

18.
Summary G- and R-banded chromosome preparations from eight of twelve 46,XX males, with no evidence of mosaicism or a free Y chromosome, were distinguished in blind trials from preparations from normal 46,XX females by virtue of heteromorphism of the short arm of one X chromosome. Photographic measurements on X chromosomes and on chromosome pair 7 in cells from twelve 46,XX males, eight 46,XX females, and four 46,XY males revealed a significant increase in the size of the p arm of one X chromosome in the group of XX males, independently characterised as being heteromorphic for Xp. No such differences were observed between X chromosomes of normal males and females or between homologues of chromosome pair 7 in all groups. The heteromorphism in XX males is a consequence of an alteration in shape (banding profile) and length of the tip of the short arm of one X chromosome, and the difference in size of the two Xp arms in these 46,XXp+ males ranged from 0.4% to 22.9%. From various considerations, including the demonstration of a Y-specific DNA fragment in DNA digests from nuclei of one of three XX males tested, it is concluded that the Xp+ chromosome is a product of Xp-Yp exchange. These exchanges are assumed to originate at meiosis in the male parent and may involve an exchange of different amounts of material. The consequences of such unequal exchange are considered in terms of the inheritance of genes located on Yp and distal Xp. No obvious phenotypic difference was associated with the presence or absence of Xp+. Thus, some males diagnosed as 46,XX are mosaic for a cryptic Y-containing cell line, and there is now excellent evidence that maleness in others may be a consequence of an autosomal recessive gene. The present data imply that in around 70% of 46,XX males, maleness is a consequence of the inheritance of a paternal X-Y interchange product.  相似文献   

19.
20.
In the wood lemming (Myopus schisticolor) three genetic types of sex chromosome constitution in females are postulated: XX, X*X and X*Y (X*=X with a mutation inactivating the male determining effect of the Y chromosome). Males are all XY. It is shown in the present paper that the two types of X chromosomes, X and X*, exhibit differences in the G-band patterns of their short arms. In addition, it was demonstrated in unbanded chromosomes that the short arm in X* is shorter than in X. The origin of these differences is still obscure; but they allow to identify and to distinguish the individual types of sex chromosome constitution, as of XX versus X*X females and of X*Y females versus XY males, on the basis of G-banded chromosome preparations from somatic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号