首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Some flax varieties respond to nutrient stress by modifying their genome and these modifications can be inherited through many generations. Also associated with these genomic changes are heritable phenotypic variations 1,2. The flax variety Stormont Cirrus (Pl) when grown under three different nutrient conditions can either remain inducible (under the control conditions), or become stably modified to either the large or small genotroph by growth under high or low nutrient conditions respectively. The lines resulting from the initial growth under each of these conditions appear to grow better when grown under the same conditions in subsequent generations, notably the Pl line grows best under the control treatment indicating that the plants growing under both the high and low nutrients are under stress. One of the genomic changes that are associated with the induction of heritable changes is the appearance of an insertion element (LIS-1) 3, 4 while the plants are growing under the nutrient stress. With respect to this insertion event, the flax variety Stormont Cirrus (Pl) when grown under three different nutrient conditions can either remain unchanged (under the control conditions), have the insertion appear in all the plants (under low nutrients) and have this transmitted to the next generation, or have the insertion (or parts of it) appear but not be transmitted through generations (under high nutrients) 4. The frequency of the appearance of this insertion indicates that it is under positive selection, which is also consistent with the growth response in subsequent generations. Leaves or meristems harvested at various stages of growth are used for DNA and RNA isolation. The RNA is used to identify variation in expression associated with the various growth environments and/or t he presence/absence of LIS-1. The isolated DNA is used to identify those plants in which the insertion has occurred.  相似文献   

6.
Agrobacterium-mediated plant transformation via floral-dip is a widely used technique in the field of plant transformation and has been reported to be successful for many plant species. However, flax (Linum usitatissimum) transformation by floral-dip has not been reported. The goal of this protocol is to establish that Agrobacterium and the floral-dip method can be used to generate transgenic flax. We show that this technique is simple, inexpensive, efficient, and more importantly, gives a higher transformation rate than the current available methods of flax transformation.In summary, inflorescences of flax were dipped in a solution of Agrobacterium carrying a binary vector plasmid (T-DNA fragment plus the Linum Insertion Sequence, LIS-1) for 1 - 2 min. The plants were laid flat on their side for 24 hr. Then, plants were maintained under normal growth conditions until the next treatment. The process of dipping was repeated 2 - 3 times, with approximately 10 - 14 day intervals between dipping. The T1 seeds were collected and germinated on soil. After approximately two weeks, treated progenies were tested by direct PCR; 2 - 3 leaves were used per plant plus the appropriate T-DNA primers. Positive transformants were selected and grown to maturity. The transformation rate was unexpectedly high, with 50 - 60% of the seeds from treated plants being positive transformants. This is a higher transformation rate than those reported for Arabidopsis thaliana and other plant species, using floral-dip transformation. It is also the highest, which has been reported so far, for flax transformation using other methods for transformation.  相似文献   

7.
8.
Genomic imprinting is an epigenetic phenomenon that causes biased expression of maternally and paternally inherited alleles. In flowering plants, genomic imprinting predominantly occurs in the triploid endosperm and plays a vital role in seed development. In this study, we identified 248 candidate imprinted genes including 114 maternally expressed imprinted genes (MEGs) and 134 paternally expressed imprinted genes (PEGs) in flax (Linum usitatissimum L.) endosperm using deep RNA sequencing. These imprinted genes were neither clustered in specific chromosomal regions nor well conserved among flax and other plant species. MEGs tended to be expressed specifically in the endosperm, whereas the expression of PEGs was not tissue-specific. Imprinted single nucleotide polymorphisms differentiated 200 flax cultivars into the oil flax, oil-fiber dual purpose flax and fiber flax subgroups, suggesting that genomic imprinting contributed to intraspecific variation in flax. The nucleotide diversity of imprinted genes in the oil flax subgroup was significantly higher than that in the fiber flax subgroup, indicating that some imprinted genes underwent positive selection during flax domestication from oil flax to fiber flax. Moreover, imprinted genes that underwent positive selection were related to flax functions. Thirteen imprinted genes related to flax seed size and weight were identified using a candidate gene-based association study. Therefore, our study provides information for further exploration of the function and genomic variation of imprinted genes in the flax population.  相似文献   

9.
10.
In the city centre of Modena (Emilia Romagna, Northern Italy) a noteworthy amount of carpological remains attributable to flax and weld came to light dated to the Imperial Age (first half 1st century a.d.). Flax remains, i.e. capsules and extremely small seeds, suggest the presence of either immature seeds and fruits of cultivated flax (Linum usitatissimum L.) or of a wild flax species (Linum bienne Mill.). The quantity of these remains along with the co-presence of seeds of Reseda luteola, an important dye plant, leads to the hypothesis of the cultivation of both flax and weld for textile manufacturing purposes, which are attested as important in the economy of the Roman period.  相似文献   

11.
12.
13.
We developed and characterized primers for 11 variable microsatellite loci present in the genome of the flax rust, Melampsora lini. The microsatellite loci were identified by sequencing clones from a library of EcoRI DNA fragments enriched for four simple sequence repeat motifs (AAG, AAT, TC and TG). All 11 primer pairs successfully amplified DNA fragments from a sample of 102 M. lini isolates (98 isolated from Linum marginale and four from Linum usitatissimum), revealing a total of 32 alleles. Allelic diversity at the 11 loci ranged from 0.030 to 0.449.  相似文献   

14.
【目的】从北海涠洲岛海域腐烂的马尾藻中分离得到的海洋弧菌(Vibrio X511)具有较强的利用褐藻胶能力,本文利用转录组测序的方法以研究弧菌X511的褐藻胶代谢途径。【方法】采用Illumina Hi Seq2500测序平台对菌株在褐藻胶及葡萄糖培养下的转录组进行测序;比较和分析差异转录本,利用荧光定量PCR验证测序结果;采用GO(Gene Ontology)和KEGG(Kyoto Encyclopedia of Genes and Genomes)对差异转录本进行功能和Pathway注释。【结果】经比较发现,菌株在褐藻胶培养下相对于葡萄糖的培养共有2024个差异表达基因,其中1066个基因上调,958个基因下调;某些普遍存在于代谢途径中的基因在不同培养条件下也存在差异表达;海洋弧菌X511中涉及褐藻胶利用的所有基因以及合成乙醇的关键基因其转录量均有一定程度的上调;此外,通过分析发现该菌株具有独特的褐藻胶利用方式,其中的一个代谢过程尚未在弧菌中被报道。【结论】成功解析了海洋弧菌X511的褐藻胶代谢途径,丰富了生物方法降解褐藻胶的研究,为大型海藻生物质能源的研究提供有价值的数据支持。  相似文献   

15.
16.
【背景】细菌性果斑病是一种严重的种传细菌病害,其病原菌为西瓜食酸菌。截至目前对该病病原菌与寄主的互作机制认识极为有限。葫芦科的模式植物黄瓜易被西瓜食酸菌侵染发病,对西瓜食酸菌-黄瓜互作体系进行转录组分析,可以为探究西瓜食酸菌与寄主互作机制奠定重要基础。【目的】解析西瓜食酸菌-黄瓜互作时的相互响应规律。【方法】以细菌悬液注射接种6d黄瓜子叶,处理48 h的子叶作为转录组测序样本。利用RNA-Seq技术分析西瓜食酸菌FC440菌株与黄瓜9930品种互作时基因的表达特征。【结果】测序数据质量分析发现,各样品不同重复间相关性较强,与参考基因组比对率达95%以上,聚类分析发现对照组与处理组表达模式相反,样品处理达到一定效果,表明数据整体质量较高。选取6个差异表达基因进行RT-qPCR验证,结果显示6个基因的表达模式与转录组结果基本一致,表明转录组测序结果比较可靠。西瓜食酸菌和黄瓜互作48 h后,在转录组水平分别检测到1 618个和8 698个差异表达基因。Gene Ontology (GO)功能注释显示,细菌的差异基因显著富集在细胞组分中的细胞膜(37.5%)和膜部分(27.0%),生物过程中的氧化还原过程(66.7%)以及分子功能中的水解酶活性(66.5%);黄瓜的差异基因显著富集在细胞组分中的质体(22.2%)和叶绿体(21.3%),分子功能中的催化活性(70.0%)以及生物过程中的碳水化合物衍生物代谢(32.2%)。Kyoto Encyclopedia of Genes and Genomes (KEGG)分析显示,细菌中致病相关基因显著富集在群体感应及细菌趋化性途径,而且群体感应系统基因下调更显著。黄瓜中调控钙依赖蛋白激酶(Calcium-Dependent Protein Kinase,CDPK)、钙调素和类钙调素(Calmodulin and Calmodulin-Like,CaMCML)及呼吸氧暴发激酶(Respiratory Burst Oxidase Homologne,Rboh)的基因总体上调,调控苯丙氨酸裂解酶(Phenylalanine Ammonia-Lyase,PAL)的基因和谷胱甘肽S-转移酶(Glutathione S-Transferase,GST)的基因在相应代谢途径中数量最多且上调程度明显。【结论】获得较高质量的西瓜食酸菌与黄瓜互作的转录组测序结果。群体感应与西瓜食酸菌FC440菌株致病力密切相关;寄主黄瓜应对西瓜食酸菌侵染以Ca~(2+)信号激活的防御反应为主。PAL和GST在黄瓜抵抗西瓜食酸菌侵染中发挥重要作用。本研究为进一步深入解析西瓜食酸菌与寄主互作的机制奠定了基础。  相似文献   

17.
18.
[目的]探究盐适应条件下坎帕尼亚盐单胞菌(Halomonas campaniensis)的差异基因表达水平,挖掘四氢嘧啶(ectoine)合成代谢相关联的差异基因.[方法]设置无盐组NS(0 mol/LNaCl)、中盐组 MS(1.5 mol/L NaCl)和高盐组 HS(2.5 mol/L NaCl),培养H.cam...  相似文献   

19.
【目的】通过对杜氏盐藻的转录组进行测序和基因功能分析,阐明不同浓度盐胁迫对杜氏盐藻生长发育以及不同信号途径的影响。【方法】分别获取9%NaCl浓度和24%NaCl浓度培养下的杜氏盐藻转录组并通过Illumina平台进行测序。将所得的序列进行拼接、去冗余处理。【结果】获得40682个unigenes,其中注释到NR数据库的10905个,注释到NT数据库的2768个,注释到SWISS-PROT数据库的7261个,注释到COG/KOG数据库的6499个。受到高盐胁迫的杜氏盐藻细胞相比低盐环境下,有717个基因表达上调,1012个基因表达下调。进一步对60个显著差异基因进行了功能聚类,发现盐胁迫诱导了光合作用途径的基因表达。【结论】杜氏盐藻通过提高光合作用基因表达增强耐盐性。该研究最大范围上挖掘了杜氏盐藻在高盐和低盐环境的基因转录水平,为深入揭示杜氏盐藻盐胁迫下基因差异表达提供了平台,并为进一步研究杜氏盐藻耐盐机理提供理论依据。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号