首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Floral resource quantity in agricultural landscapes plays a key role in the persistence of wild pollinators. An equally important, but less investigated factor is how variation in floral resource availability over time, e.g. floral resource pulses, affects pollinator abundances and diversity. Despite the potential importance of late-season resource pulses for bumblebee reproduction, few studies have evaluated the effects of late-season mass-flowering crops on bumblebee abundances and diversity during and after crop bloom. We assessed how bumblebee abundances, diversity and traits associated with species rarity were affected by cultivation of late-season mass-flowering red clover grown for seed production. Bumblebees were surveyed in red clover fields and flower-rich field borders across 20 landscapes with or without a red clover field during and after crop bloom in southern Sweden. Bumblebee worker abundances were higher in clover fields compared to flower-rich borders in the surrounding landscape. There was no relationship between presence of clover fields and the abundance of males of social bumblebees, but more male cuckoo bumblebees were found in flower-rich borders in landscapes with clover following crop bloom. Mass-flowering red clover also had a positive effect on bumblebee species richness and diversity after crop bloom. Overall, clover had positive and lasting effects on less common bumblebees thereby sustaining higher bumblebee species richness after bloom. Cultivation of red clover has the potential, in combination with the management of flower-rich habitats, to benefit less common bumblebee species in temperate agroecosystems.  相似文献   

2.
The crop species within the genus Brassica have highly replicated genomes. Three base 'diploid' species, Brassica oleracea , B. nigra and B. rapa , are likely ancient polyploids, and three derived allopolyploid species, B. carinata , B. juncea and B. napus , are created from the interspecific hybridization of these base genomes. The base Brassica genome is thought to have hexaploid ancestry, and both recent and ancient polyploidization events have been proposed to generate a large number of genome rearrangements and novel genetic variation for important traits. Here, we revisit and refine these hypotheses. We have examined the B. oleracea linkage map using the Arabidopsis thaliana genome sequence as a template and suggest that there is strong evidence for genome replication and rearrangement within the base Brassicas, but less evidence for genome triplication. We show that novel phenotypic variation within the base Brassicas can be achieved by replication of a single gene, BrFLC , that acts additively to influence flowering time. Within the derived allopolyploids, intergenomic heterozygosity is associated with higher seed yields. Some studies have reported that de novo genomic variation occurs within derived polyploid genomes, whereas other studies have not detected these changes. We discuss reasons for these different findings. Large translocations and tetrasomic inheritance can explain some but not all genomic changes within the polyploids. Transpositions and other small-scale sequence changes probably also have contributed to genomic novelty. Our results have shown that the Brassica genomes are remarkably plastic, and that polyploidy generates novel genetic variation through gene duplication, intergenomic heterozygosity and perhaps epigenetic change.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 82 , 665–674.  相似文献   

3.
At the genome level, microorganisms are highly adaptable both in terms of allele and gene composition. Such heritable traits emerge in response to different environmental niches and can have a profound influence on microbial community dynamics. As a consequence, any individual genome or population will contain merely a fraction of the total genetic diversity of any operationally defined “species”, whose ecological potential can thus be only fully understood by studying all of their genomes and the genes therein. This concept, known as the pangenome, is valuable for studying microbial ecology and evolution, as it partitions genomes into core (present in all the genomes from a species, and responsible for housekeeping and species-level niche adaptation among others) and accessory regions (present only in some, and responsible for intra-species differentiation). Here we present SuperPang, an algorithm producing pangenome assemblies from a set of input genomes of varying quality, including metagenome-assembled genomes (MAGs). SuperPang runs in linear time and its results are complete, non-redundant, preserve gene ordering and contain both coding and non-coding regions. Our approach provides a modular view of the pangenome, identifying operons and genomic islands, and allowing to track their prevalence in different populations. We illustrate this by analysing intra-species diversity in Polynucleobacter, a bacterial genus ubiquitous in freshwater ecosystems, characterized by their streamlined genomes and their ecological versatility. We show how SuperPang facilitates the simultaneous analysis of allelic and gene content variation under different environmental pressures, allowing us to study the drivers of microbial diversification at unprecedented resolution.  相似文献   

4.
Ants of genus Formica demonstrate variation in social organization and represent model species for ecological, behavioral, evolutionary studies and testing theoretical implications of the kin selection theory. Subgeneric division of the Formica ants based on morphology has been questioned and remained unclear after an allozyme study on genetic differentiation between 13 species representing all subgenera was conducted. In the present study, the phylogenetic relationships within the genus were examined using mitochondrial DNA sequences of the cytochrome b and a part of the NADH dehydrogenase subunit 6. All 23 Formica species sampled in the Palaearctic clustered according to the subgeneric affiliation except F. uralensis that formed a separate phylogenetic group. Unlike Coptoformica and Formica s. str., the subgenus Serviformica did not form a tight cluster but more likely consisted of a few small clades. The genetic distances between the subgenera were around 10%, implying approximate divergence time of 5 Myr if we used the conventional insect divergence rate of 2% per Myr. Within-subgenus divergence estimates were 6.69% in Serviformica, 3.61% in Coptoformica, 1.18% in Formica s. str., which supported our previous results on relatively rapid speciation in the latter subgenus. The phylogeny inferred from DNA sequences provides a necessary framework against which the evolution of social traits can be compared. We discuss implications of inferred phylogeny for the evolution of social traits.  相似文献   

5.
中国熊蜂多样性、人工利用与保护策略   总被引:2,自引:0,他引:2  
熊蜂是众多野生植物和农作物的重要传粉者, 在维持自然和农业生态系统平衡中发挥着十分重要的作用。中国地形多样、植被丰富, 是全球熊蜂多样性的热点地区, 但过去缺乏系统调查研究, 中国熊蜂多样性现状及其利用特性不详。本文介绍了近20年在中国熊蜂资源系统调查及其人工利用方面取得的主要研究结果: (1) 2002-2017年采集熊蜂标本5万余号, 先后揭示了一系列疑难类群的分类地位, 确认中国已知熊蜂125种, 占全球熊蜂已知物种总数的50%, 表明中国是全球熊蜂物种资源最丰富的国家; (2)首次报道了中国熊蜂物种名录, 其中22种为中国特有种。我国青藏高原东部向黄土高原、秦岭山地和四川盆地过渡的地带, 是全球熊蜂多样性分布中心; (3) 1998-2017年, 明亮熊蜂(Bombus lucorum)、密林熊蜂(B. patagiatus)、红光熊蜂(B. ignitus)、火红熊蜂(B. pyrosoma)、重黄熊蜂(B. picipes)和兰州熊蜂(B. lantschouensis) 6种本土熊蜂先后被驯养成功, 其中密林熊蜂和兰州熊蜂的繁殖性状优良, 已应用于我国设施作物传粉服务。同时, 我们从栖息地、食物资源、外来物种、农药使用等方面提出了保护中国熊蜂资源的策略, 以期为野生传粉昆虫特别是熊蜂资源的保护与可持续利用提供参考资料。  相似文献   

6.
Background and AimsThe dynamics of genome evolution caused by whole genome duplications and other processes are hypothesized to shape the diversification of plants and thus contribute to the astonishing variation in species richness among the main lineages of land plants. Ferns, the second most species-rich lineage of land plants, are highly suitable to test this hypothesis because of several unique features that distinguish fern genomes from those of seed plants. In this study, we tested the hypothesis that genome diversity and disparity shape fern species diversity by recording several parameters related to genome size and chromosome number.MethodsWe conducted de novo measurement of DNA C-values across the fern phylogeny to reconstruct the phylogenetic history of the genome space occupation in ferns by integrating genomic parameters such as genome size, chromosome number and average DNA amount per chromosome into a time-scaled phylogenetic framework. Using phylogenetic generalized least square methods, we determined correlations between chromosome number and genome size, species diversity and evolutionary rates of their transformation.Key ResultsThe measurements of DNA C-values for 233 species more than doubled the taxon coverage from ~2.2 % in previous studies to 5.3 % of extant diversity. The dataset not only documented substantial differences in the accumulation of genomic diversity and disparity among the major lineages of ferns but also supported the predicted correlation between species diversity and the dynamics of genome evolution.ConclusionsOur results demonstrated substantial genome disparity among different groups of ferns and supported the prediction that alterations of reproductive modes alter trends of genome evolution. Finally, we recovered evidence for a close link between the dynamics of genome evolution and species diversity in ferns for the first time.  相似文献   

7.
Although much progress has been achieved in understanding the genetic basis of adaptation, the drivers of genome evolution remain obscure. For instance, extensive variation among reptilian genomes continues largely unexplained, yet reptiles hold critical clues about vertebrate evolution. Turtles posses diverse chromosome numbers (2N = 28-66) derived from extensive genomic rearrangements, plus varied sex-determining mechanisms (genotypic and temperature-dependent). Here, we show that rates of evolution in turtle chromosome number are ~20-fold higher along phylogenetic branches where transitions between sex-determining mechanisms also occur, revealing a strong coevolution of these traits and making drift a less likely driver. Directional tests indicate that both traits evolved effectively in synchrony. These events occurred near global extremes in temperature shifts over the last 200 million years, although the role of climate change remains unknown at this point. Two alternative testable explanations for these patterns are proposed. First, selection for sex determination turnover may co-opt mechanisms (e.g., chromatin remodeling) favoring genomic rearrangements. Alternatively, chromosomal rearrangements underlying diploid number evolution may alter gene regulation enabling transitions in sex-determining mechanisms. Our data indicate that the evolution of sex determination is intimately linked to profound genomic changes underlying diploid number evolution, the ecological context of which remains intriguing.  相似文献   

8.
Identifying the traits that determine spatial distributions can be challenging when studying organisms, like bacteria, for which phenotypic information is limited or non‐existent. However, genomic data provide another means to infer traits and determine the ecological attributes that account for differences in distributions. We determined the spatial distributions of ~124 000 soil bacterial taxa across a 3.41 km2 area to determine whether we could use phylogeny and/or genomic traits to explain differences in habitat breadth. We found that occupancy was strongly correlated with environmental range; taxa that were more ubiquitous were found across a broader range of soil conditions. Across the ~500 taxa for which genomic information was available, genomic traits were more useful than phylogeny alone in explaining the variation in habitat breadth; bacteria with larger genomes and more metabolic versatility were more likely to have larger environmental and geographical distributions. Just as trait‐based approaches have proven to be so useful for understanding the distributions of animals and plants, we demonstrate that we can use genomic information to infer microbial traits that are difficult to measure directly and build trait‐based predictions of the biogeographical patterns exhibited by microbes.  相似文献   

9.
水稻所在的稻属(Oryza)共有24个左右的物种。由于野生稻含有大量的优良农艺性状基因, 在水稻遗传学研究中日益受到重视。随着国际稻属基因组计划的开展, 越来越多的稻属基因组序列被测定, 稻属成为进行比较、功能和进化基因组学研究的模式系统。近期开展的一系列研究对稻属不同基因组区段以及全基因组序列的比较分析, 揭示了稻属在基因组大小、基因移动、多倍体进化、常染色质到异染色质的转化以及着丝粒区域的进化等方面的分子机制。转座子的活性以及转座子因非均等重组或非法重组而造成的删除, 对稻属基因组的扩增和收缩具有重要作用。DNA双链断裂修复介导的基因移动, 特别是非同源末端连接, 是稻属基因组非共线性基因形成的主要来源。稻属基因组从常染色质到异染色质的转换过程, 伴随着转座子的大量扩增、基因片段的区段性和串联重复以及从基因组其他位置不断捕获异染色质基因。对稻属不同物种间基因拷贝数、特异基因和重要农艺性状基因的进化等研究, 可揭示稻属不同物种间表型和适应性差异的分子基础, 将加速水稻的育种和改良。  相似文献   

10.
Genomic traits reflect the evolutionary processes that have led to ecological variation among extant organisms, including variation in how they acquire and use resources. Soil fungi have diverse nutritional strategies and exhibit extensive variation in fitness along resource gradients. We tested for trade-offs in genomic traits with mycelial nutritional traits and hypothesize that such trade-offs differ among fungal guilds as they reflect contrasting resource exploitation and habitat preferences. We found species with large genomes exhibited nutrient-poor mycelium and low GC content. These patterns were observed across fungal guilds but with varying explanatory power. We then matched trait data to fungal species observed in 463 Australian grassland, woodland and forest soil samples. Fungi with large genomes and lower GC content dominated in nutrient-poor soils, associated with shifts in guild composition and with species turnover within guilds. These findings highlight fundamental mechanisms that underpin successful ecological strategies for soil fungi.  相似文献   

11.
By analysing patterns of phenotypic integration and multivariate covariance structure of five metric floral traits in nine Iberian populations of bumblebee‐pollinated Helleborus foetidus (Ranunculaceae), this paper attempts to test the general hypothesis that pollinators enhance floral integration and selectively modify phenotypic correlations between functionally linked floral traits. The five floral traits examined exhibited significant phenotypic integration at all populations, and both the magnitude and the pattern of integration differed widely among populations. Variation in extent and pattern of integration was neither distance‐dependent nor significantly related to between‐population variation in taxonomical composition and morphological diversity of the pollinator assemblage. Patterns of floral integration were closer to expectations derived from consideration of developmental affinities between floral whorls than to expectations based on a pollinator‐mediated adaptive hypothesis. Taken together, results of this study suggest that between‐population differences in magnitude and pattern of floral integration in H. foetidus are probably best explained as a consequence of random genetic sampling in the characteristically small and ephemeral populations of this species, rather than reflecting the selective action of current pollinators.  相似文献   

12.
Many pollinator populations are declining, with large economic and ecological implications. Parasites are known to be an important factor in the some of the population declines of honey bees and bumblebees, but little is known about the parasites afflicting most other pollinators, or the extent of interspecific transmission or vectoring of parasites. Here we carry out a preliminary screening of pollinators (honey bees, five species of bumblebee, three species of wasp, four species of hoverfly and three genera of other bees) in the UK for parasites. We used molecular methods to screen for six honey bee viruses, Ascosphaera fungi, Microsporidia, and Wolbachia intracellular bacteria. We aimed simply to detect the presence of the parasites, encompassing vectoring as well as actual infections. Many pollinators of all types were positive for Ascosphaera fungi, while Microsporidia were rarer, being most frequently found in bumblebees. We also detected that most pollinators were positive for Wolbachia, most probably indicating infection with this intracellular symbiont, and raising the possibility that it may be an important factor in influencing host sex ratios or fitness in a diversity of pollinators. Importantly, we found that about a third of bumblebees (Bombus pascuorum and Bombus terrestris) and a third of wasps (Vespula vulgaris), as well as all honey bees, were positive for deformed wing virus, but that this virus was not present in other pollinators. Deformed wing virus therefore does not appear to be a general parasite of pollinators, but does interact significantly with at least three species of bumblebee and wasp. Further work is needed to establish the identity of some of the parasites, their spatiotemporal variation, and whether they are infecting the various pollinator species or being vectored. However, these results provide a first insight into the diversity, and potential exchange, of parasites in pollinator communities.  相似文献   

13.
Genomic data are important for understanding the origin and evolution of traits. Under the context of rapidly developing of sequencing technologies and more widely available genome sequences, researchers are able to study evolutionary mechanisms of traits via comparative genomic methods. Compared with other vertebrates, bird genomes are relatively small and exhibit conserved synteny with few repetitive elements, which makes them suitable for evolutionary studies. Increasing genomic progress has been reported on the evolution of powered flight, body size variation, beak morphology, plumage colouration, high-elevation colonization, migration, and vocalization. By summarizing previous studies, we demonstrate the genetic bases of trait evolution, highlighting the roles of small-scale sequence variation, genomic structural variation, and changes in gene interaction networks. We suggest that future studies should focus on improving the quality of reference genomes, exploring the evolution of regulatory elements and networks, and combining genomic data with morphological, ecological, behavioural, and developmental biology data.  相似文献   

14.
熊蜂是膜翅目蜜蜂科熊蜂属内物种的统称,全球约有250种,中国已知125种,是全球熊蜂资源最丰富的国家。该类昆虫是众多野生植物和农作物的重要传粉者,对维持自然生态系统和农业粮食生产极为重要。一些群势强、易于人工饲养的熊蜂物种被开发利用,为多种目标作物授粉。本文介绍了熊蜂的生物学特性和授粉应用现状,综述了栖息地丧失、气候变化、病原体传播、外来物种入侵及化学农药等多重因素对熊蜂种群的影响,并从熊蜂的应用基础研究、资源保护及授粉经济价值评估等多方面作了展望,旨在为中国本土熊蜂的保护、应用和生态功能研究提供参考。  相似文献   

15.
Pinus L. is the largest genus of conifers and provides a classical model for studying species divergence and phylogenetic evolution by gymnosperms. However, our poor understanding of sequence divergence in the whole plastid genomes of Pinus species severely hinders studies of their evolution and phylogeny. Thus, we analyzed the sequences of 97 Pinus plastid genomes, including four newly sequenced genomes and 93 previously published plastomes, to explore the evolution and phylogenetic relationships in the genus Pinus. The complete chloroplast genomes of Pinus species ranged in size from 109 640 bp (P. cembra L.) to 121 976 bp (P. glabra Walter), and these genomes comprised circular DNA molecules in a similar manner to those of most gymnosperms. We identified 9108 repeats where most of the repeats comprised the dispersed type with 3983 (44%), followed by tandem repeats with 2999 (33%), and then palindromic repeats with 2126 (23%). Sixteen divergence hotspot regions were identified in Pinus plastid genomes, which could be useful molecular markers for future population genetics studies. Phylogenetic analysis showed that Pinus species could be divided into two diverged clades comprising the subgenera Strobus (single needle section) and Pinus (double needles section). Molecular dating suggested that the genus Pinus originated approximately 130.38 Mya during the late Cretaceous. The two subgenera subsequently split 85.86 Mya, which was largely consistent with the other molecular results based on partial DNA markers. These findings provide important insights into the sequence variations and phylogenetic evolution of Pinus plastid genomes.  相似文献   

16.
Mounting evidence suggests that climate change, agricultural intensification and disease are impacting bumblebee health and contributing to species’ declines. Identifying how these factors impact insect communities at large spatial and temporal scales is difficult, partly because species may respond in different ways. Further, the necessary data must span large spatial and temporal scales, which usually means they comprise aggregated, presence-only records collected using numerous methods (e.g. diversity surveys, educational collections, citizen-science projects, standardized ecological surveys). Here, we use occupancy models, which explicitly correct for biases in the species observation process, to quantify the effect of changes in temperature, precipitation and floral resources on bumblebee site occupancy over the past 12 decades in North America. We find no evidence of genus-wide declines in site occupancy, but do find that occupancy is strongly related to temperature, and is only weakly related to precipitation or floral resources. We also find that more species are likely to be climate change ‘losers’ than ‘winners’ and that this effect is primarily associated with changing temperature. Importantly, all trends were highly species-specific, highlighting that genus or community-wide measures may not reflect diverse species-specific patterns that are critical in guiding allocation of conservation resources.  相似文献   

17.
The generalization–specialization continuum exhibited in pollination interactions currently receives much attention. It is well-known that the pollinator assemblage of particular species varies temporally and spatially, and therefore the ecological generalization on pollinators may be a contextual attribute. However, the factors causing such variation and its ecological and evolutionary consequences are still poorly understood. This variation can be caused by spatial or temporal variation in the pollinator community, but also by variation in the plant community. Here, we examined how the floral neighbourhood influenced the generalization on pollinators and the composition of pollinators of six plant species differing in generalization levels and main pollinators. The diversity, identity and density of floral species affected both the level of generalization on pollinators and the composition of visitors of particular plant species. Although the relationships to floral neighbourhood varied considerably among species, generalization level and visitation by uncommon pollinators generally increased with floral diversity and richness. The generalization level of the neighbourhood was negatively related to the generalization level of the focal species in two species. The number of flowers of the pollinator-sharing species and the number of flowers of the focal species had different effects on the composition of visits in different species; attributable to differences in facilitation/competition for pollinator attraction. We propose that an important ecological implication of our results is that variation in species interactions caused by the pollination context may result in increased community stability. The main evolutionary implication of our results is that selection on flower and pollinator traits may depend, to an unknown extent, on the composition of the co-flowering plant community.  相似文献   

18.
Abstract: In selected foraging habitats of an agricultural landscape flower visits of bumblebees and community structure of foraging bumblebees were studied, with special regard to the role of crops as super-abundant resources. Most crops represent temporal foraging habitats with high abundance of bumblebees but mainly with low diversity in the bumblebee forage community, in contrast to permanent foraging habitats such as, for example, a hedgerow. The high numbers of bumblebees in the monoculture of crop plantations consisted mainly of short-tongued bumblebee species. The role of foraging distances for the visitation rate of foraging habitats was studied by performing capture–recapture experiments with natural nests of Bombus terrestris , Bombus lapidarius and Bombus muscorum . Differences were found on the species as well as the individual level. The foraging distances of B. muscorum were more restricted to the neighbourhood of the nesting habitat than the foraging activity of B. terrestris and B. lapidarius . High percentages of B. terrestris workers were recaptured while foraging on super-abundant resources in distances up to 1750 m from the nest. Isolated patches of highly rewarding forage crops, in agricultural landscapes, are probably only accessed by bumblebee species with large mean foraging distances, such as the short-tongued B. terrestris . Species like the rare, long-tongued B. muscorum depend on a close connection between nesting and foraging habitat. A restricted foraging radius might be one important factor of bumblebee species loss and potential pollinator limitation in modern agricultural landscapes. Furthermore, long-distance flights of bumblebee pollinators have to be considered in the present discussion on gene flow from transgenic plant species on a landscape scale.  相似文献   

19.
The question of how phenotypic and genomic complexity are inter‐related and how they are shaped through evolution is a central question in biology that historically has been approached from the perspective of animals and plants. In recent years, however, fungi have emerged as a promising alternative system to address such questions. Key to their ecological success, fungi present a broad and diverse range of phenotypic traits. Fungal cells can adopt many different shapes, often within a single species, providing them with great adaptive potential. Fungal cellular organizations span from unicellular forms to complex, macroscopic multicellularity, with multiple transitions to higher or lower levels of cellular complexity occurring throughout the evolutionary history of fungi. Similarly, fungal genomes are very diverse in their architecture. Deep changes in genome organization can occur very quickly, and these phenomena are known to mediate rapid adaptations to environmental changes. Finally, the biochemical complexity of fungi is huge, particularly with regard to their secondary metabolites, chemical products that mediate many aspects of fungal biology, including ecological interactions. Herein, we explore how the interplay of these cellular, genomic and metabolic traits mediates the emergence of complex phenotypes, and how this complexity is shaped throughout the evolutionary history of Fungi.  相似文献   

20.
The genus Drosophila has been the subject of intense comparative phylogenomics characterization to provide insights into genome evolution under diverse biological and ecological contexts and to functionally annotate the Drosophila melanogaster genome, a model system for animal and insect genetics. Recent sequencing of 11 additional Drosophila species from various divergence points of the genus is a first step in this direction. However, to fully reap the benefits of this resource, the Drosophila community is faced with two critical needs: i.e., the expansion of genomic resources from a much broader range of phylogenetic diversity and the development of additional resources to aid in finishing the existing draft genomes. To address these needs, we report the first synthesis of a comprehensive set of bacterial artificial chromosome (BAC) resources for 19 Drosophila species from all three subgenera. Ten libraries were derived from the exact source used to generate 10 of the 12 draft genomes, while the rest were generated from a strategically selected set of species on the basis of salient ecological and life history features and their phylogenetic positions. The majority of the new species have at least one sequenced reference genome for immediate comparative benefit. This 19-BAC library set was rigorously characterized and shown to have large insert sizes (125-168 kb), low nonrecombinant clone content (0.3-5.3%), and deep coverage (9.1-42.9×). Further, we demonstrated the utility of this BAC resource for generating physical maps of targeted loci, refining draft sequence assemblies and identifying potential genomic rearrangements across the phylogeny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号