首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apoptosis and necrosis are two forms of cell death that can occur in response to various agents and oxidative damage. In addition to necrosis, apoptosis contributes to muscle fiber loss in various muscular dystrophies as well participates in the exudative diathesis in chicken, pathology caused by dietary deficiency of vitamin E and selenium, which affects muscle tissue. We have used chicken skeletal muscle cells and bovine fibroblasts to study molecular events involved in the cell death induced by oxidative stress and apoptotic agents. The effect of vitamin E on cell death induced by oxidants was also investigated. Treatment of cells with anti-Fas antibody (50 to 400 ng/mL), staurosporine (0.1 to 100 microM) and TNF-alpha (10 and 50 ng/mL) resulted in a little loss of Trypan blue exclusion ability. Those stimuli conducted cells to apoptosis detected by an enhancement in caspase activity upon fluorogenic substrates but this activity was not fully blocked by the caspase inhibitor Z-VAD-fmk. Oxidative stress induced by menadione (10, 100 and 250 muM) promoted a significant reduction in cell viability (10%, 20% and 35% for fibroblasts; 20%, 30% and 75% for muscle cells, respectively) and caused an increase in caspase activity and DNA fragmentation. H2O2 also promoted apoptosis verified by caspase activation and DNA fragmentation, but in higher doses induced necrosis. Vitamin E protected cells from death induced by low doses of oxidants. Although it was ineffective in reducing caspase activity in fibroblasts, this vitamin diminished the enzyme activity in muscle cells. These data suggested that oxidative stress could activate apoptotic mechanisms; however the mode of cell death will depend on the intensity and duration of the stimulus, and on the antioxidant status of the cells.  相似文献   

2.
Malignant mesothelioma is a rare but aggressive form of malignancy, which is difficult to diagnose and is resistant to current chemotherapeutic treatment options. Molecular techniques have been used to investigate the mechanisms of action and the beneficial therapeutic effects of halofuginone (HF) in several cancers but not malignant mesotheliomas. In this study, the antiproliferative and apoptotic effects of HF were investigated through its ability to deregulate EGFR downstream signalling cascade proteins in the pathologically aggressive malignant mesothelioma and non‐small‐cell lung cancer cells. We showed that administration of HF at nanomolar concentrations induced a dose‐dependent reduction in the viability of cancer cells, made cell cycle arrest, inhibited proliferation of cancer cells via STAT3 and ERK1/2 pathways and triggered the apoptotic cascade via p38MAPK. We demonstrated that the apoptotic cell death mechanism was mediated by enhanced activation of caspase‐3 and concomitant PARP cleavage, downregulation of Bcl‐2 and upregulation of Bax in both malignant mesothelioma and lung cancer cells. In particular, we demonstrated that cancer cells were more sensitive to HF treatment than normal mesothelial cells. Taken together, this study suggests that HF exerts its anticancer effects in lung‐derived cancers by targeting signal transduction pathways mainly through deregulation of ERK1/2, STAT3 and p38MAPK to reduce cancer cell viability, induce cell cycle arrest and apoptotic cell death. Thus, HF might be considered as a potential agent against malignant mesothelioma and/or lung cancer cells.  相似文献   

3.
Arsenic toxicity may lead to skin manifestations and arsenic accumulation in keratinised tissue. Thus human keratinocytes has been extensively used to study dermal effects of arsenic exposure. The present study was aimed to investigate time and dose-dependent effects of arsenic using HaCaT cell line. Another major focus of the study was to evaluate if treatment with monoisoamyl dimercaptosuccinic acid (MiADMSA) offers protection against arsenic-induced oxidative stress and apoptotic cell death using HaCaT cells. HaCaT cell lines were incubated to three different concentrations of arsenic (10, 30 and 50 μM) for 24 h to identify the toxic dose by measuring oxidative stress variables. Later, MiADMSA pre-incubation for an hour preceded arsenic exposure (30 μM). We evaluated cell morphology, lactate dehydrogenase, glutathione linked enzyme and antioxidant enzyme activities to measure oxidative stress status, while MTT assay and caspase 9 and 3 levels were determined for cell viability and apoptotic status. The present study suggests arsenic-induced toxicity in a concentration-dependant manner. Arsenic also caused a significant increase in lactate dehydrogenase accompanied by an elevated antioxidant enzyme activities (superoxide dismutase, glutathione peroxidase and caspase activity). Interestingly, pre-treatment of cell with MiADMSA elicited significant protection against arsenic-induced oxidative stress and apoptotic cell death. The present findings are of clinical relevance and suggest MiADMSA to be a promising candidate in protecting skin against arsenic-induced toxic effects, which need further exploration using in vivo experimental models.  相似文献   

4.
Zingerone (ZO), an active phenolic agent derived from Zingiber officinale (Ginger), has many pharmacological properties such as antioxidant, antiangiogenic, and antitumor. However, its potential value in cancer and the mechanism by which ZO wields its therapeutic effects remain obscure. Therefore, in this current study, we explored the effects of ZO on suppressing cell proliferation and enhancing apoptosis in colon cancer cells (HCT116). Our results indicated that ZO significantly enhances the production of reactive oxygen species, lipid peroxidation (thiobarbituric acid reactive substance [TBARS]), and loss of cell viability; and reduces mitochondrial membrane potential and antioxidant levels (SOD, CAT, and GSH) in ZO‐treated HCT116 cells in a dose‐dependent (2.5, 5, and 10 µM) manner. Furthermore, ZO induces oxidative stress‐mediated apoptosis as evidenced by apoptotic morphological changes predicted by AO/EtBr, Hoechst staining and further confirmed by comet assay. Moreover, immunoblotting techniques showed that ZO treatment effectively enhances Bax, caspase‐9, and caspase‐3 expressions and decreases the expression of Bcl‐2 in colon cancer cells. Together, our results evidenced that the antitumor effects of ZO reduce cell proliferation and stimulate apoptosis through modulating pro‐ and antiapoptotic molecular events in HCT116 colon cancer cells. Therefore, based on our findings, ZO may be used as a therapeutic agent for the treatment of colon cancer.  相似文献   

5.
Oxidative stress can cause significant cell death by apoptosis. We performed studies in L-cells to explore whether prior exposure to oxidative stress ("oxidative preconditioning") can protect the cell against the apoptotic consequences of subsequent oxidative insults and to establish the mediators in the preconditioning signaling cascade. Cells were preconditioned with three 5-min exposures to H(2)O(2), followed by 10-h recovery and subsequent exposure to 600 microm H(2)O(2) for 10 h. A single 10-h exposure to H(2)O(2) induced substantial apoptotic cell death (approximately 90%), as determined by enzyme-linked immunosorbent assay, TUNEL (terminal deoxyribonucleotide transferase-mediated dUTP nick end labeling), and Annexin V methods, but apoptosis was largely prevented in preconditioned cells. The degree of cytoprotection depended on the strength of preconditioning or H(2)O(2) concentration (20 approximately 600 microm). Transient increases in mitogen-activated protein kinase (MAPK), p38, and JNK/SAPK activities and sustained protein kinase B (Akt) activation, accompanied by drastically reduced caspase 3 activity, were seen after preconditioning. The expression levels of these kinases were unaltered. Inhibitors of p38 (SB203580) and phosphoinositide 3-kinase (PI3K, LY294002) pathways abolished the protection provided by preconditioning. We conclude that oxidative preconditioning protects cells against apoptosis and that this effect involves MAPK and PI3K/Akt pathways. This system may be important in regulating apoptotic cell death in development and disease states.  相似文献   

6.
Human mesothelial cells (HMC), the progenitor cells of asbestos-induced mesothelioma, are particularly sensitive to the genotoxic effects of asbestos, although the molecular mechanisms by which asbestos induces injury in HMC are not well known. The high susceptibility of HMC to simian virus 40 (SV40)-mediated transformation is assumed to play a causative role in the pathogenesis of mesothelioma. The aim of this study was to investigate the asbestos-induced DNA damage in cultured HMC and SV40-transformed HMC (MeT-5A) compared with their malignant counterparts, i.e. human mesothelioma cells (MSTO). The time-dependent initiation of DNA-strand breaks as well as the induction of oxidative DNA base modifications were key factors for investigation. HMC, MeT-5A and MSTO cells were exposed to chrysotile and crocidolite asbestos (3 microg/cm2) during different time periods (1-72 h). DNA damage was investigated by use of the Comet assay and alkaline unwinding, the latter in combination with the Fpg protein. The P53 level was analyzed by immunofluorescence, and measurement of apoptosis was conducted by flow cytometry. We found a significant induction of DNA damage in asbestos-treated HMC already after an exposure time of 1.5 h. This effect could not be observed in treated MeT-5A and MSTO cells. Also, a time-dependent significant increase in DNA-strand breaks was observed by alkaline unwinding in asbestos-treated HMC, but not in treated MeT-5A and MSTO cells. In none of the three cell lines we could detect oxidative DNA damage recognized by the Fpg protein (e.g. 8-oxo-guanine), up to 24 h after exposure to asbestos. In contrast to what was found in HMC, P53 was over-expressed in untreated MeT-5A and MSTO. The induction of apoptosis by asbestos fibers was suppressed in MeT-5A and MSTO cells. Crocidolite fibers induced the higher genotoxic effects and chrysotile the more pronounced apoptotic effects. We conclude that asbestos induces DNA damage in HMC already after a very short exposure time in the absence of 8-oxo-guanine formation. The presence of SV40-Tag in MeT-5A and MSTO cells results in an increased expression of P53, but not in additive genotoxic effects after exposure to asbestos. The deregulation of the apoptotic pathway may lead to proliferation of genomically damaged cells and finally to the development of mesothelioma.  相似文献   

7.
8.
Sarcophine-diol (SD), a structural modifications of sarcophine, has shown chemopreventive effects on 7,12-dimethylbenz(a)anthracene-initiated and 12-O-tetradecanoylphorbol-13-acetate-promoted skin tumor developments in mice. Tumorigenesis is associated with uncontrolled cell growth and loss of apoptosis. In the present study, the effects of SD on cell growth and apoptosis in human epidermoid carcinoma A431 cells were determined to assess whether SD could inhibit cell growth and/or induce apoptosis, thus elucidating possible mechanism of action. MTT assay was used for cell viability; bromodeoxyuridine incorporation assay was used for cell proliferation; fluorescence-activated cell sorting analysis of annexin V/propidium iodide staining and TUNEL assay were used for determining apoptotic cells; Western blot analysis was used for determining the expression of caspase-3 and colorimetric caspase activity assays were used for determination of caspase-3, -8, and -9 activity. The results showed that SD treatment at concentration of 200 to 600 µM resulted in a concentration-dependent decrease in cell viability and cell proliferation in A431 cells, which largely inhibited cell growth. Sarcophine-diol treatment induced a strong apoptosis and significantly (P < .05) increased DNA fragmentation in A431 cells. Furthermore, SD treatment significantly (P < .05) increased the activity and expression of caspase-3 through activation of upstream caspase-8 in A431 cells rather than the activation of caspase 9. Sarcophine-diol treatment is relatively much less cytotoxic in monkey kidney normal CV-1 cells. These results suggest that SD decreases cell growth and induces apoptosis through caspase-dependent extrinsic pathway in A431 cells, and this may contribute to its overall chemopreventive effects in mouse skin cancer models.  相似文献   

9.
Cell death induced by oxidative insult targeted to mitochondrial interior of A431 cells was investigated. For stimulated production of ROS in the inner space of mitochondria, safranin-mediated photodynamic treatment (PDT) was employed. Another photosensitizer, mTHPC, which diffusely localizes to cellular membranes, was used for comparison. Cell response to the oxidative insult in mitochondrial interior was different from the response to the photodamage produced in cellular membranes. Autophagy and apoptotic features of cell death in response to mTHPC-PDT was observed in a wide range of PDT doses. Cell response to the oxidative stress in mitochondrial interior was dose-dependent. Damage up to CD50 did not reveal hallmarks of dead cells. At intermediate damage (CD50), cells manifested enhanced autophagy and reduced population of S-phase, but not apoptosis. Severe damage (beyond CD70) induced apoptosis following release of cytochrome c and caspase activation, in addition to autophagy and cell cycle arrest.  相似文献   

10.
Natural substances have been attracted several researchers in the recent years, because of its potential antioxidant, anti‐inflammatory and anti‐cancer properties. We have investigated the effect of carnosine on cell viability, apoptosis, DNA damage, reactive oxygen species (ROS) and caspase 3 enzyme expression in human cervical carcinoma and Madin‐Darby Kidney Cells (MDCK) cells . Carnosine inhibited cancer cell growth up to 23%. ROS level was increased up to 30 and 31% in MDCK and HeLa cells respectively. Tunnel assay showed 42 and 14% of positive apoptotic cells in cancer and normal cells respectively. The alteration in mitochondrial and nuclear morphology was determined. The extended lace‐like network of normal mitochondria found in control cells. Carnosine treatment significantly altered the mitochondrial morphology of normal cervical carcinoma cell. Mitochondria were condensed clump structures in carnosine treated cancer cells. Carnosine reduced the number of colonies of cervical carcinoma cells. Caspase 3 expression was corresponded to the appearance of immunofluorescence in the cytoplasm. Caspase 3 expression was gradually increased in cervical carcinoma cells. In Silico, docking study was performed to recognize the binding activity of carnosine against a subunit of the caspase 3 , and carnosine was able to bind to the drug binding pocket of caspase 3. The glide energy is ?5.2 kcal/mol, suggesting the high binding affinity of carnosine to caspase 3. Taking all these data together, the natural dipeptide L‐carnosine could be a suitable antiproliferative agent in cervical carcinoma cells. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
In this study, we investigated the in vitro effect of tomentosin on cell proliferation by 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay, reactive oxygen species by 2′,7′‐dichlorofluorescein diacetate staining assay, apoptosis (AO/EtBr, propidium iodide, and 4′,6‐diamidino‐2‐phenylindole staining, mitochondrial membrane potential), cell adherent, cell migration, inflammation, apoptosis, and oxidative stress from gastric cancer cells (GCCs) AGS. Upon their relative cell proliferative, inflammatory, and apoptotic molecular markers were analyzed by using the enzyme‐linked immunosorbent assay and Western blot analysis method. Treatment with tomentosin (IC50 = 20 µM) significantly inhibited cell proliferation and oxidative stress‐induced anti‐cell proliferative (proliferating cell nuclear antigen and cyclin‐D1) also regulated expression, drastically diminished tumor necrosis factor‐α, nuclear factor‐κB, interleukin‐6, and interleukin‐1β expression levels, significantly upregulated Bcl‐2 and Bax expression. Thus, this tomentosin can significantly reduce GCC proliferation via cytotoxicity which is stimulated apoptosis markers via morphology staining changes and inhibitory inflammatory markers. The tomentosin‐induced oxidative stress may be involved to stimulate apoptotic mechanisms via mitochondria‐mediated signaling by the inhibition of inflammation. Taken together, our findings suggest a possible future use of chemotherapeutic agents for pharmacological benefits and as an anti‐cancer treatment option.  相似文献   

12.
Oxidative stress is an important molecular mechanism underlying lung fibrosis. The mitochondrion is a major organelle for oxidative stress in cells. Therefore, blocking the mitochondrial signalling pathway may be the best therapeutic manoeuver to ameliorate lung fibrosis. Astaxanthin (AST) is an excellent antioxidant, but no study has addressed the pathway of AST against pulmonary oxidative stress and free radicals by the mitochondrion‐mediated signalling pathway. In this study, we investigated the antioxidative effects of AST against H2O2‐ or bleomycin (BLM)‐induced mitochondrial dysfunction and reactive oxygen species (ROS) production in alveolar epithelial cells type II (AECs‐II) in vivo and in vitro. Our data show that AST blocks H2O2‐ or BLM‐induced ROS generation and dose‐dependent apoptosis in AECs‐II, as characterized by changes in cell and mitochondria morphology, translocation of apoptotic proteins, inhibition of cytochrome c (Cyt c) release, and the activation of caspase‐9, caspase‐3, Nrf‐2 and other cytoprotective genes. These data suggest that AST inhibits apoptosis in AECs‐II cells through the ROS‐dependent mitochondrial signalling pathway and may be of potential therapeutic value in lung fibrosis treatment.  相似文献   

13.

The present study was initiated to examine the anticancer effects of Anhuienoside C (AC) against ovarian cancer and postulates the possible molecular mechanism of its action. 3-[4,5-Dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay was implemented for determination of the effects of AC on cell viability of the ovarian cancer OVACAR-3 cell line. To study cellular morphology, phase contrast microscopy was performed. Apoptosis was examined via acridine orange/ethidium bromide used staining assays. Flow cytometry was used to check the different phases of the cell cycle. Cell migration and invasion assays were performed via transwell chamber assay. The effects of AC on expression of phosphoinositide 3-kinases (PI3K), protein kinase B (AKT), and mammalian target of rapamycin (mTOR) protein in ovarian cell were assessed using western blotting assay. The results indicated that the cell proliferation rate lowered in AC-treated OVACAR-3 cells as compared to the untreated controls in a dose-dependent manner. Cell morphology changed substantially by the exposure to AC and remained dose dependent. These morphological changes were indicative of apoptotic cell death. Apoptosis analysis showed dose-dependent increase of apoptosis. The cell migration and invasion of OVACAR-3 cells was reduced to a minimum by AC in a dose-dependent manner. Finally, western blotting assay showed blocking of PI3K/AKT/mTOR signaling pathway with increasing AC doses. Taking all together, AC is a potential ovarian cancer inhibitor. It induces its anti-ovarian cancer effects via induction of apoptosis, delaying cell migration and invasion, and blocking PI3K/AKT/mTOR signaling pathway.

  相似文献   

14.
Woo DH  Han IS  Jung G 《Life sciences》2004,75(20):2439-2449
Non-steroidal anti-inflammatory drugs (NSAIDs) have anti-proliferative effects and induce apoptosis in colon and other cancers. In the present study, we report that mefenamic acid (MEF), a member of NSAIDs, has an inhibitory effect on a proliferation of liver cancer cells. We used Chang and Huh-7 cells as human liver cancer cells. MEF-treated Huh-7 and Chang cells displayed apoptotic morphological changes and the portion of cells in sub G1 was increased 3-fold and 6-fold, respectively, at a 200 microM concentration. We also show an MEF-enhanced binding of annexin V to cells and an increased activity of caspase-3 to cleave PARP-1 and caspase itself. The inhibitor of caspase-3 blocked PARP-1 cleavage activity and protected against MEF-induced apoptotic cell death. These results indicate that MEF induces apoptosis in human liver cancer cells.  相似文献   

15.
This study aimed to investigate the effect of madecassoside against oxidative stress‐induced injury of endothelial cells. Hydrogen peroxide (H2O2, 500 µmol/L) was employed as an inducer of oxidative stress in human umbilical vein endothelial cells (HUVECs). Cell apoptosis was detected by Hoechst 33258 staining and flow cytometry. Caspase‐3 activity and mitochondria membrane potential were further examined. As a result, madecassoside (10, 30, 100 µmol/L) could reverse morphological changes, elevate cell viability, increase glutathione levels, and decrease lactate dehydrogenase and malondialdehyde levels caused by H2O2 in a concentration‐dependent manner. It attenuated apoptosis, preventing the activation of caspase‐3 and the loss of mitochondria membrane potential, as well as the phosphorylation of p38 mitogen‐activated protein kinase (MAPK) in HUVECs. These data suggested that madecassoside could protect HUVECs from oxidative injury, which was probably achieved by inhibiting cell apoptosis via protection of mitochondria membranes and downregulation of the activation of caspase‐3 and p38 MAPK. © 2012 Wiley Periodicals, Inc. J Biochem Mol Toxicol 26:399–406, 2012; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.21434  相似文献   

16.
Advances in cytochemical methods for detection of apoptosis.   总被引:8,自引:0,他引:8  
In an earlier article from this laboratory, the current methods developed to detect apoptosis in cells and tissues were highlighted, along with the challenges in their interpretation. Recent discoveries concerning the underlying biochemical mechanisms of apoptotic effector pathways have made possible further assays that allow a more direct measure of the activation of the apoptotic machinery in cells. This article summarizes some of these newer methods and extends the interpretation of the more classical assays of apoptosis in a defined cell system. We present data in KB and PC3 cell model culture systems induced to undergo apoptosis by the plant toxin ricin. Using a modified in situ nick translation assay (ISNT) with either Bodipy or BUdR labeling, we confirm that most cells showing altered nuclear morphology do not show reactivity with this assay until very late in the apoptotic process. We also show that only a minority of cells label with fluorescent annexin V during apoptosis but that apoptotic cells continue to internalize material from the cell surface through endocytosis after becoming reactive with annexin V. In addition, we describe the utility of a prototype of new assays for caspase substrate cleavage products, the detection of cleaved cytokeratin 18. It is these newer cleavage product assays that perhaps hold the greatest promise for specific detection of apoptosis in cells either in cell culture or in intact tissues. (J Histochem Cytochem 49:821-832, 2001)  相似文献   

17.
Colon cancer (CC) is among the most frequent human cancers. Although, there is improvement in diagnostic techniques and existing treatment possibilities. Still, there is an unmet need for a novel treatment regimen that will improve the patient's quality of life. Here, the role of lycopene as an adjuvant therapy with 5-fluorouracil (5-FU) was explored in Caco2 colon cancer cells. Cells were exposed to a dose (3 µg/ml) of 5-FU and three doses (60, 90, 120 µg/ml) of lycopene either alone or as a mixture with 5-FU. Cytotoxicity, genotoxicity, oxidative stress, gene expression, and apoptotic parameters were investigated in this study. Findings showed that 5-FU or lycopene alone induced a dose-dependent increase in cytotoxicity which was slightly reduced in lycopene mixtures. Apoptotic assays showed that 5-FU induced a significant level of apoptosis but not necrosis. However, a lycopene mixture with 5-FU enhanced 5-FU triggered apoptosis and promoted necrosis. The mixtures were also shown to suppress mitochondrial membrane potential while gene expression analyses showed the induction of Bax expression upon exposure to mix 90 exhibited the highest Bax to Bcl-2 ratio and caspase 3 and 9 gene expression. Furthermore, the mixture treatment also inhibited cell migration in the wound healing assay compared to 5-FU alone. In conclusion, lycopene was found to sensitize Caco 2 cell lines to 5-FU treatment by inducing the expression of apoptotic genes. This, coupled with lycopene suppression of cytotoxicity and cell migration, indicates lycopene may be a promising candidate for adjuvant therapy involving 5-FU in CC.  相似文献   

18.
Methamphetamine (METH)-induced cell death contributes to the pathogenesis of neurotoxicity; however, the relative roles of oxidative stress, apoptosis, and autophagy remain unclear. L-Ascorbate, also called vitamin (Vit.) C, confers partial protection against METH neurotoxicity via induction of heme oxygenase-1. We further investigated the role of Vit. C in METH-induced oxidative stress, apoptosis, and autophagy in cortical cells. Exposure to lower concentrations (0.1, 0.5, 1 mM) of METH had insignificant effects on ROS production, whereas cells exposed to 5 mM METH exhibited ROS production in a time-dependent manner. We confirmed METH-induced apoptosis (by nuclear morphology revealed by Hoechst 33258 staining and Western blot showing the protein levels of pro-caspase 3 and cleaved caspase 3) and autophagy (by Western blot showing the protein levels of Belin-1 and conversion of microtubule-associated light chain (LC)3-I to LC3-II and autophagosome staining by monodansylcadaverine). The apoptosis as revealed by cleaved caspase-3 expression marked an increase at 18 h after METH exposure while both autophagic markers, Beclin 1 and LC3-II, marked an increase in cells exposed to METH for 6 and 24 h, respectively. Treating cells with Vit. C 30 min before METH exposure time-dependently attenuated the production of ROS. Vitamin C also attenuated METH-induced Beclin 1 and LC3-II expression and METH toxicity. Treatment of cells with Vit. C before METH exposure attenuated the expression of cleaved caspase-3 and reduced the number of METH-induced apoptotic cells. We suggest that the protective effect of Vit. C against METH toxicity might be through attenuation of ROS production, autophagy, and apoptosis.  相似文献   

19.
Cadmium, a well-known environmental hazard, has caused serious health problems in humans and animals. Accumulating evidence suggests the cadmium toxicity is mediated by oxidative stress-induced cell death. However, the molecular signaling underlying cadmium-induced apoptosis remains unclear. In this study, we demonstrate here that cadmium induced mixed types of cell death including primary apoptosis (early apoptosis), secondary necrosis (late apoptosis), and necrosis in normal human lung cells, MRC-5, as revealed by chromatin condensation, phosphatidylserine (PS) externalization, and hypodiploid DNA content. The total apoptotic cells reached a plateau of around 40.0% after 24 h exposure of 100 microM cadmium. Pretreatment with Z-Val-Ala-Asp-fluoromethylketone (Z-VAD-fmk), a broad spectrum of caspase inhibitor, could not rescue apoptotic cells from cadmium toxicity. Coincidently, we failed to detect the activation of pro-caspase-3 and cleavage of PARP by immunoblot, which implies the apoptogenic activity of cadmium in MRC-5 cells is caspase-independent. JC-1 staining also indicated that mitochondrial depolarization is a prelude to cadmium-induced apoptosis, which was accompanied by a translocation of caspase-independent pro-apoptotic factor apoptosis-inducing factor (AIF) into the nucleus as revealed by the immunofluorescence assay. In summary, this study demonstrated for the first time that cadmium induced a caspase-independent apoptotic pathway through mitochondria-mediated AIF translocation into the nucleus.  相似文献   

20.
We previously reported that cells harboring the hepatitis C virus (HCV) RNA replicon as well as those expressing HCV NS3/4A exhibited increased sensitivity to suboptimal doses of apoptotic stimuli to undergo mitochondrion-mediated apoptosis (Y. Nomura-Takigawa, et al., J. Gen. Virol. 87:1935-1945, 2006). Little is known, however, about whether or not HCV infection induces apoptosis of the virus-infected cells. In this study, by using the chimeric J6/JFH1 strain of HCV genotype 2a, we demonstrated that HCV infection induced cell death in Huh7.5 cells. The cell death was associated with activation of caspase 3, nuclear translocation of activated caspase 3, and cleavage of DNA repair enzyme poly(ADP-ribose) polymerase, which is known to be an important substrate for activated caspase 3. These results suggest that HCV-induced cell death is, in fact, apoptosis. Moreover, HCV infection activated Bax, a proapoptotic member of the Bcl-2 family, as revealed by its conformational change and its increased accumulation on mitochondrial membranes. Concomitantly, HCV infection induced disruption of mitochondrial transmembrane potential, followed by mitochondrial swelling and release of cytochrome c from mitochondria. HCV infection also caused oxidative stress via increased production of mitochondrial superoxide. On the other hand, HCV infection did not mediate increased expression of glucose-regulated protein 78 (GRP78) or GRP94, which are known as endoplasmic reticulum (ER) stress-induced proteins; this result suggests that ER stress is not primarily involved in HCV-induced apoptosis in our experimental system. Taken together, our present results suggest that HCV infection induces apoptosis of the host cell through a Bax-triggered, mitochondrion-mediated, caspase 3-dependent pathway(s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号