首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Due to their high affinity and specificity, aptamers have been widely used as effective inhibitors in clinical applications. However, the ability to activate protein function through aptamer-protein interaction has not been well-elucidated. To investigate their potential as target-specific agonists, we used SELEX to generate aptamers to the insulin receptor (IR) and identified an agonistic aptamer named IR-A48 that specifically binds to IR, but not to IGF-1 receptor. Despite its capacity to stimulate IR autophosphorylation, similar to insulin, we found that IR-A48 not only binds to an allosteric site distinct from the insulin binding site, but also preferentially induces Y1150 phosphorylation in the IR kinase domain. Moreover, Y1150-biased phosphorylation induced by IR-A48 selectively activates specific signaling pathways downstream of IR. In contrast to insulin-mediated activation of IR, IR-A48 binding has little effect on the MAPK pathway and proliferation of cancer cells. Instead, AKT S473 phosphorylation is highly stimulated by IR-A48, resulting in increased glucose uptake both in vitro and in vivo. Here, we present IR-A48 as a biased agonist able to selectively induce the metabolic activity of IR through allosteric binding. Furthermore, our study also suggests that aptamers can be a promising tool for developing artificial biased agonists to targeted receptors.  相似文献   

2.
Antibody-dependent cellular cytotoxicity plays a pivotal role in antibody-based tumor therapies and is based on the recruitment of natural killer cells to antibody-bound tumor cells via binding of the Fcγ receptor III (CD16). Here we describe the generation of chimeric DNA aptamers that simultaneously bind to CD16α and c-Met, a receptor that is overexpressed in many tumors. By application of the systematic evolution of ligands by exponential enrichment (SELEX) method, CD16α specific DNA aptamers were isolated that bound with high specificity and affinity (91 pm-195 nm) to their respective recombinant and cellularly expressed target proteins. Two optimized CD16α specific aptamers were coupled to each of two c-Met specific aptamers using different linkers. Bi-specific aptamers retained suitable binding properties and displayed simultaneous binding to both antigens. Moreover, they mediated cellular cytotoxicity dependent on aptamer and effector cell concentration. Displacement of a bi-specific aptamer from CD16α by competing antibody 3G8 reduced cytotoxicity and confirmed the proposed mode of action. These results represent the first gain of a tumor-effective function of two distinct oligonucleotides by linkage into a bi-specific aptamer mediating cellular cytotoxicity.  相似文献   

3.
We selected DNA aptamers against insulin and developed an aptameric enzyme subunit (AES) for insulin sensing. The insulin-binding aptamers were identified from a single-strand DNA library which was expected to form various kinds of G-quartet structures. In vitro selection was carried out by means of aptamer blotting, which visualizes the oligonucleotides binding to the target protein at each round. After the 6th round of selection, insulin-binding aptamers were identified. These identified insulin-binding aptamers had a higher binding ability than the insulin-linked polymorphic region (ILPR) oligonucleotide, which can be called a "natural" insulin-binding DNA aptamer. The circular-dichroism (CD) spectrum measurement of the identified insulin-binding DNA aptamers indicated that the aptamers would fold into a G-quartet structure. We also developed an AES by connecting the best identified insulin-binding aptamer with the thrombin-inhibiting aptamer. Using this AES, we were able to detect insulin by measuring the thrombin enzymatic activity without bound/free separation.  相似文献   

4.
The insulin receptor isoform A (IR-A) binds both insulin and insulin-like growth factor (IGF)-II, although the affinity for IGF-II is 3-10-fold lower than insulin depending on a cell and tissue context. Notably, in mouse embryonic fibroblasts lacking the IGF-IR and expressing solely the IR-A (R-/IR-A), IGF-II is a more potent mitogen than insulin. As receptor endocytosis and degradation provide spatial and temporal regulation of signaling events, we hypothesized that insulin and IGF-II could affect IR-A biological responses by differentially regulating IR-A trafficking. Using R-/IR-A cells, we discovered that insulin evoked significant IR-A internalization, a process modestly affected by IGF-II. However, the differential internalization was not due to IR-A ubiquitination. Notably, prolonged stimulation of R-/IR-A cells with insulin, but not with IGF-II, targeted the receptor to a degradative pathway. Similarly, the docking protein insulin receptor substrate 1 (IRS-1) was down-regulated after prolonged insulin but not IGF-II exposure. Similar results were also obtained in experiments using [NMeTyr(B26)]-insulin, an insulin analog with IR-A binding affinity similar to IGF-II. Finally, we discovered that IR-A was internalized through clathrin-dependent and -independent pathways, which differentially regulated the activation of downstream effectors. Collectively, our results suggest that a lower affinity of IGF-II for the IR-A promotes lower IR-A phosphorylation and activation of early downstream effectors vis à vis insulin but may protect IR-A and IRS-1 from down-regulation thereby evoking sustained and robust mitogenic stimuli.  相似文献   

5.
Phosphorylation at glutamate receptor subunit 1(GluR1) Ser845 residue has been widely accepted to involve in GluR1-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor trafficking, but the in vivo evidence has not yet been established. One of the main obstacles is the lack of effective methodologies to selectively target phosphorylation at single amino acid residue. In this study, the Escherichia  coli -expressed glutathione- S -transferase-tagged intracellular carboxyl-terminal domain of GluR1 (cGluR1) was phosphorylated by protein kinase A for in vitro selection. We have successfully selected aptamers which effectively bind to phospho-Ser845 cGluR1 protein, but without binding to phospho-Ser831 cGluR1 protein. Moreover, pre-binding of the unphospho-cGluR1 protein with these aptamers inhibits protein kinase A-mediated phosphorylation at Ser845 residue. In contrast, the pre-binding of aptamer A2 has no effect on protein kinase C-mediated phosphorylation at Ser831 residue. Importantly, the representative aptamer A2 can effectively bind the mammalian GluR1 that inhibited GluR1/GluR1-containing AMPA receptor trafficking to the cell surface and abrogated forskolin-stimulated phosphorylation at GluR1 Ser845 in both green fluorescent protein–GluR1-transfected human embryonic kidney cells and cultured rat cortical neurons. The strategy to use aptamer to modify single-residue phosphorylation is expected to facilitate evaluation of the potential role of AMPA receptors in various forms of synaptic plasticity including that underlying psychostimulant abuse.  相似文献   

6.
Traditional methods for selecting aptamers require multiple rounds of selection and optimization in order to identify aptamers that bind with high affinity to their targets. Here we describe an assay that requires only one round of positive selection followed by high-throughput DNA sequencing and informatic analysis in order to select high-affinity aptamers. The assay is flexible, requires less hands on time, and can be used by laboratories with minimal expertise in aptamer biology to quickly select high-affinity aptamers to a target of interest. This assay has been utilized to successfully identify aptamers that bind to thrombin with dissociation constants in the nanomolar range.  相似文献   

7.
Peptide aptamers are combinatorial recognition molecules that consist of a constant scaffold protein displaying a doubly constrained variable peptide loop. They bind specifically target proteins and interfere with their function. We have built a peptide aptamer library in a lentiviral expression system to isolate aptamers that inhibit cell proliferation in vitro. Using one of the isolated aptamers (R5G42) as a bait protein, we have performed yeast two-hybrid screening of cDNA libraries and identified calcineurin A as a target protein candidate. R5G42 bound calcineurin A in vitro and stimulated its phosphatase activity. When expressed transiently in human cells, R5G42 induced the dephosphorylation of BAD. We have identified an antiproliferative peptide aptamer that binds calcineurin and stimulates its activity. The use of this ligand may help elucidate the still elusive structural mechanisms of activation and inhibition of calcineurin. Our work illustrates the power of phenotypic screening of combinatorial protein libraries to interrogate the proteome and chart molecular regulatory networks.  相似文献   

8.
G-protein-coupled receptors (GPCRs) are integral membrane proteins involved in signal transduction and constitute major drug targets for disease therapy. Aptamers, which are globular RNA or DNA molecules evolved to specifically bind a target, could represent a valuable tool with which to probe the role of such receptors in normal tissue and disease pathology and for cocrystallization with receptors for structure determination by X-ray crystallography. Using the bacterially expressed rat neurotensin receptor NTS-1 as an example, we describe a strategy for the generation of GPCR-specific RNA aptamers. Seven rounds of a "subtractive," paramagnetic bead-based selection protocol were used to enrich for neurotensin receptor-specific aptamers, while circumventing the evolution of aptamers reactive to minor protein contaminants. Representatives of each aptamer family were analyzed in Escherichia coli membrane nitrocellulose filter binding assays. Eight aptamers demonstrated specificity for the neurotensin receptor. One aptamer, P19, was characterized in detail and shown to bind to both the rat receptor and the human receptor with nanomolar affinity. P19 was also shown to interact with rat neurotensin receptor expressed in CHO cells, in both membrane preparations and intact cells. P19 represents the first example of a GPCR-specific RNA aptamer.  相似文献   

9.
The proteoglycan decorin, a key component of the tumor stroma, regulates the action of several tyrosine-kinase receptors, including the EGFR, Met and the IGF-IR. Notably, the action of decorin in regulating the IGF-I system differs between normal and transformed cells. In normal cells, decorin binds with high affinity to both the natural ligand IGF-I and the IGF-I receptor (IGF-IR) and positively regulates IGF-IR activation and downstream signaling. In contrast, in transformed cells, decorin negatively regulates ligand-induced IGF-IR activation, downstream signaling and IGF-IR-dependent biological responses. Whether decorin may bind another member of the IGF-I system, the insulin receptor A isoform (IR-A) and its cognate ligands, insulin, IGF-II and proinsulin, have not been established. Here we show that decorin bound with high affinity insulin and IGF-II and, to a lesser extent, proinsulin and IR-A. We utilized as a cell model system mouse embryonic fibroblasts homozygous for a targeted disruption of the Igf1r gene (designated R cells) which were stably transfected with a human construct harboring the IR-A isoform of the receptor. Using these R/IR-A cells, we demonstrate that decorin did not affect ligand-induced phosphorylation of the IR-A but enhanced IR-A downregulation after prolonged IGF-II stimulation without affecting insulin and proinsulin-dependent effects on IR-A stability. In addition, decorin significantly inhibited IGF-II-mediated activation of the Akt pathways, without affecting insulin and proinsulin-dependent signaling. Notably, decorin significantly inhibited IGF-II-mediated cell proliferation of R/IR-A cells but affected neither insulin- nor proinsulin-dependent mitogenesis. Collectively, these results suggest that decorin differentially regulates the action of IR-A ligands. Decorin preferentially inhibits IGF-II-mediated biological responses but does not affect insulin- or proinsulin-dependent signaling. Thus, decorin loss may contribute to tumor initiation and progression in malignant neoplasms which depend on an IGF-II/IR-A autocrine loop.  相似文献   

10.
Shi H  Fan X  Ni Z  Lis JT 《RNA (New York, N.Y.)》2002,8(11):1461-1470
Iterative cycles of in vitro selection and amplification allow rare functional nucleic acid molecules, aptamers, to be isolated from large sequence pools. Here we present an analysis of the progression of a selection experiment that simultaneously yielded two families of RNA aptamers against two disparate targets: the intended target protein (B52/SRp55) and the partitioning matrix. We tracked the sequence abundance and binding activity to reveal the enrichment of the aptamers through successive generations of selected pools. The two aptamer families showed distinct trajectories of evolution, as did members within a single family. We also developed a method to control the relative abundance of an aptamer family in selected pools. This method, involving specific ribonuclease digestion, can be used to reduce the background selection for aptamers that bind the matrix. Additionally, it can be used to isolate a full spectrum of aptamers in a sequential and exhaustive manner for all the different targets in a mixture.  相似文献   

11.
Many nucleic acid enzymes and aptamers have modular architectures that allow them to retain their functions when combined with other nucleotide sequences. This modular function facilitates the engineering of RNAs and DNAs that have more complex functions. We sought to create new DNA aptamers that bind cellulose to provide a module for immobilizing DNAs. Cellulose has been used in a variety of applications ranging from coatings and films to pharmaceutical preparations, and therefore DNA aptamers that bind cellulose might enable new applications. We used in vitro selection to isolate aptamers from a pool of random-sequence DNAs and subjected two distinct clones to additional rounds of mutagenesis and selection. One aptamer (CELAPT 14) was chosen for sequence minimization and more detailed biochemical analysis. CELAPT 14 aptamer variants exhibit robust binding both to cellulose powder and paper. Also, an allosteric aptamer construct was engineered that exhibits ATP-mediated cellulose binding during paper chromatography.  相似文献   

12.
We developed a method for aptamer identification without in vitro selection. We have previously obtained several aptamers, which may fold into the G-quadruplex (G4) structure, against target proteins; therefore, we hypothesized that the G4 structure would be an excellent scaffold for aptamers to recognize the target protein. Moreover, the G4-forming sequence contained in the promoter region of insulin can reportedly bind to insulin. We thus expected that G4 DNAs, which are contained in promoter regions, could act as DNA aptamers against their gene products. We designated this aptamer identification method as “G4 promoter-derived aptamer selection (G4PAS).” Using G4PAS, we identified vascular endothelial growth factor (VEGF)165, platelet-derived growth factor-AA (PDGF)-AA, and RB1 DNA aptamers. Surface plasmon resonance (SPR) analysis revealed that the dissociation constant (K d) values of VEGF165, PDGF-AA, and RB1 DNA aptamers were 1.7 × 10−7 M, 6.3 × 10−9 M, and 4.4 × 10−7 M, respectively. G4PAS is a simple and rapid method of aptamer identification because it involves only binding analysis of G4 DNAs to the target protein. In the human genome, over 40% of promoters contain one or more potential G4 DNAs. G4PAS could therefore be applied to identify aptamers against target proteins that contain G4 DNAs on their promoters.  相似文献   

13.
This experimental design presents a single molecule approach based on fluorescence correlation spectroscopy (FCS) for the quantification of outer membrane proteins which are receptors to an aptamer specifically designed to target the surface receptors of live Salmonella typhimurium. By using correlation analysis, we also show that it is possible to determine the associated binding kinetics of these aptamers on live single cells. Aptamers are specific oligonucleotides designed to recognize conserved sequences that bind to receptors with high affinity, and therefore can be integrated into selective biosensor platforms. In our experiments, aptamers were constructed to bind to outer membrane proteins of S. typhimurium and were assessed for specificity against Escherichia coli. By fluorescently labeling aptamer probes and applying FCS, we were able to study the diffusion dynamics of bound and unbound aptamers and compare them to determine the dissociation constants and receptor densities of the bacteria for each aptamer at single molecule sensitivity. The dissociation constants for these aptamer probes calculated from autocorrelation data were 0.1285 and 0.3772 nM and the respective receptor densities were 42.27 receptors per µm2 and 49.82 receptors per µm2. This study provides ample evidence that the number of surface receptors is sufficient for binding and that both aptamers have a high‐binding affinity and can therefore be used in detection processes. The methods developed here are unique and can be generalized to examine surface binding kinetics and receptor quantification in live bacteria at single molecule sensitivity levels. The impact of this study is broad because our approach can provide a methodology for biosensor construction and calculation of live single cell receptor‐ligand kinetics in a variety of environmental and biological applications. Bioeng. 2011; 108:1222–1227. © 2010 Wiley Periodicals, Inc.  相似文献   

14.
The isoform A of the insulin receptor (IR) (IR-A) is a bifunctional receptor, because it binds both insulin and IGF-II. IR-A activation by IGF-II plays a role in development, but its physiological role in adults is unknown. IGF-II signaling through IR-A is deregulated in cancer and favors tumor progression. We hypothesized that IGF-II binding to the IR-A elicits a unique signaling pathway. In order to obtain an unbiased evaluation of IR-A substrates differentially involved after IGF-II and insulin stimulation, we performed quantitative proteomics of IR-A substrates recruited to tyrosine-phosphorylated protein complexes using stable isotope labeling with amino acids in cell culture in combination with antiphosphotyrosine antibody pull down and mass spectrometry. Using cells expressing only the human IR-A and lacking the IGF-I receptor, we identified 38 IR-A substrates. Only 10 were known IR mediators, whereas 28 substrates were not previously related to IR signaling. Eleven substrates were recruited by stimulation with both ligands: two equally recruited by IGF-II and insulin, three more strongly recruited by IGF-II, and six more strongly recruited by insulin. Moreover, 14 substrates were recruited solely by IGF-II and 13 solely by insulin stimulation. Interestingly, discoidin domain receptors, involved in cell migration and tumor metastasis, and ephrin receptor B4, involved in bidirectional signaling upon cell-cell contact, were predominantly activated by IGF-II. These findings indicate that IR-A activation by IGF-II elicits a unique signaling pathway that may play a distinct role in physiology and in disease.  相似文献   

15.
The insulin receptor (IR) lacking the alternatively spliced exon 11 (IR-A) is preferentially expressed in fetal and cancer cells. The IR-A has been identified as a high-affinity receptor for insulin and IGF-II but not IGF-I, which it binds with substantially lower affinity. Several cancer cell types that express the IR-A also overexpress IGF-II, suggesting a possible autocrine proliferative loop. To determine the regions of IGF-I and IGF-II responsible for this differential affinity, chimeras were made where the C and D domains were exchanged between IGF-I and IGF-II either singly or together. The abilities of these chimeras to bind to, and activate, the IR-A were investigated. We also investigated the ability of these chimeras to bind and activate the IR exon 11+ isoform (IR-B) and as a positive control, the IGF-I receptor (IGF-1R). We show that the C domain and, to a lesser extent, the D domains represent the principal determinants of the binding differences between IGF-I and IGF-II to IR-A. The C and D domains of IGF-II promote higher affinity binding to the IR-A than the equivalent domains of IGF-I, resulting in an affinity close to that of insulin for the IR-A. The C and D domains also regulate the IR-B binding specificity of the IGFs in a similar manner, although the level of binding for all IGF ligands to IR-B is lower than to IR-A. In contrast, the C and D domains of IGF-I allow higher affinity binding to the IGF-1R than the analogous domains of IGF-II. Activation of IGF-1R by the chimeras reflected their binding affinities whereas the phosphorylation of the two IR isoforms was more complex.  相似文献   

16.
RIG-I is a cytosolic receptor for non-self RNA that mediates immune responses against viral infections through IFNα/β production. In an attempt to identify novel tools that modulate IFNα/β production, we used SELEX technology to screen RNA aptamers that specifically target RIG-I protein. Most of the selected RIG-I aptamers contained polyU motifs in the second half regions that played critical roles in the activation of RIG-I-mediated IFNβ production. Unlike other known ligands, RIG-I aptamer bound and activated RIG-I in a 5'-triphosphate-independent manner. The helicase and RD domain of RIG-I were used for aptamer binding, but intact RIG-I protein was required to exert aptamer-mediated signaling activation. Furthermore, replication of NDV, VSV and influenza virus in infected host cells was efficiently blocked by pre- or post-treatment with RIG-I aptamer. Based on these data, we propose that RIG-I aptamer has strong potential to be an antiviral agent that specifically boosts the RIG-I-dependent signaling cascade.  相似文献   

17.
Theranostics cover emerging technologies for cell biomarking for disease diagnosis and targeted introduction of drug ingredients to specific malignant sites. Theranostics development has become a significant biomedical research endeavor for effective diagnosis and treatment of diseases, especially cancer. An efficient biomarking and targeted delivery strategy for theranostic applications requires effective molecular coupling of binding ligands with high affinities to specific receptors on the cancer cell surface. Bioaffinity offers a unique mechanism to bind specific target and receptor molecules from a range of non‐targets. The binding efficacy depends on the specificity of the affinity ligand toward the target molecule even at low concentrations. Aptamers are fragments of genetic materials, peptides, or oligonucleotides which possess enhanced specificity in targeting desired cell surface receptor molecules. Aptamer–target binding results from several inter‐molecular interactions including hydrogen bond formation, aromatic stacking of flat moieties, hydrophobic interaction, electrostatic, and van der Waals interactions. Advancements in Systematic Evolution of Ligands by Exponential Enrichment (SELEX) assay has created the opportunity to artificially generate aptamers that specifically bind to desired cancer and tumor surface receptors with high affinities. This article discusses the potential application of molecular dynamics (MD) simulation to advance aptamer‐mediated receptor targeting in targeted cancer therapy. MD simulation offers real‐time analysis of the molecular drivers of the aptamer‐receptor binding and generate optimal receptor binding conditions for theranostic applications. The article also provides an overview of different cancer types with focus on receptor biomarking and targeted treatment approaches, conventional molecular probes, and aptamers that have been explored for cancer cells targeting.  相似文献   

18.
Nucleic Acid Aptamers (NAAs) are a class of synthetic DNA or RNA molecules that bind specifically to their target. We recently introduced an aptamer termed R1.2 against membrane Immunoglobulin M (mIgM) expressing B-cell neoplasms using Ligand Guided Selection (LIGS). While LIGS-generated aptamers are highly specific, their lower affinity prevents aptamers from being used for translational applications. Highly specific aptamers with higher affinity can increase targetability, boosting the application of aptamers as diagnostic and therapeutic molecules. Herein, we report that dimerization of R1.2, an aptamer generated from LIGS, leads to high affinity variants without compromising the specificity. Three dimeric aptamer analogues with variable linker lengths were designed to evaluate the effect of linker length in affinity. The optimized dimeric R1.2 against cultured B-cell neoplasms, four donor B-cell samples and mIgM-positive Waldenström's Macroglobulinemia (WM) showed specificity. Furthermore, confocal imaging of dimeric aptamer and anti-IgM antibody in purified B-cells suggests co-localization. Binding assays against IgM knockout Burkitt's Lymphoma cells utilizing CRISPR/Cas9 further validated specificity of dimeric R1.2. Collectively, our findings show that LIGS-generated aptamers can be re-engineered into dimeric aptamers with high specificity and affinity, demonstrating wide-range of applicability of LIGS in developing clinically practical diagnostic and therapeutic aptamers.  相似文献   

19.
Two DNA aptamers against a tumor marker protein, human vascular endothelial growth factor (VEGF165) were identified. In the screening process, another protein was used as the competitor to isolate those aptamers that have high specificity for the target. In addition, we evaluated the affinities of the enriched library by means of aptamer blotting. The isolated aptamers bound to VEGF165 with a K d value in the range of a few hundred nanomoles, and did not bind to the competitor. This selection method enabled us to efficiently select the specific aptamers against the target protein. These specific aptamers would be useful sensor elements for cancer diagnosis.  相似文献   

20.
Li N  Nguyen HH  Byrom M  Ellington AD 《PloS one》2011,6(6):e20299
Aptamers continue to receive interest as potential therapeutic agents for the treatment of diseases, including cancer. In order to determine whether aptamers might eventually prove to be as useful as other clinical biopolymers, such as antibodies, we selected aptamers against an important clinical target, human epidermal growth factor receptor (hEGFR). The initial selection yielded only a single clone that could bind to hEGFR, but further mutation and optimization yielded a family of tight-binding aptamers. One of the selected aptamers, E07, bound tightly to the wild-type receptor (Kd = 2.4 nM). This aptamer can compete with EGF for binding, binds to a novel epitope on EGFR, and also binds a deletion mutant, EGFRvIII, that is commonly found in breast and lung cancers, and especially in grade IV glioblastoma multiforme, a cancer which has for the most part proved unresponsive to current therapies. The aptamer binds to cells expressing EGFR, blocks receptor autophosphorylation, and prevents proliferation of tumor cells in three-dimensional matrices. In short, the aptamer is a promising candidate for further development as an anti-tumor therapeutic. In addition, Aptamer E07 is readily internalized into EGFR-expressing cells, raising the possibility that it might be used to escort other anti-tumor or contrast agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号