首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With high concentrations of pyruvate as substrate for hepatocytes from fasted rats, high rates of cycling between pyruvate and the dicarboxylic acids occur, as shown isotopically. This rate of cycling is adequate to account for the hydrogen translocation from the mitochondria to the cytosol to furnish NADH for lactate formation. Addition of sufficiently high concentrations of mercaptopicolinate to block almost completely glucose formation from pyruvate, depresses isotopic cycling and lactate formation by only about 50-75%. Under some conditions, when the normal phosphoenolpyruvate carboxykinase activity is inhibited, cytosolic oxaloacetate may be decarboxylated directly to pyruvate, possibly via the decarboxylase activity of phosphoenolpyruvate carboxykinase.  相似文献   

2.
1. Neither alloxan-diabetes nor starvation affected the rate of glucose production in hepatocytes incubated with lactate, pyruvate, propionate or fructose as substrates. In contrast, glucose synthesis with either alanine or glutamine was increased nearly 3- and 12-fold respectively, in comparison with that in fed rabbits. 2. The addition of amino-oxyacetate resulted in about a 50% decrease in glucose formation from lactate in hepatocytes isolated from fed, alloxan-diabetic and starved rats, suggesting that both mitochondrial and cytosolic forms of rabbit phosphoenolpyruvate carboxykinase function actively during gluconeogenesis. 3. Alloxan-diabetes resulted in about 2-3-fold stimulation of urea production from either amino acid studied or NH4Cl as NH3 donor, whereas starvation caused a significant increase in the rate of ureogenesis only in the presence of alanine as the source of NH3. 4. As concluded from changes in the [3-hydroxybutyrate]/[acetoacetate] ratio, in hepatocytes from diabetic animals the mitochondrial redox state was shifted toward oxidation in comparison with that observed in liver cells isolated from fed rabbits.  相似文献   

3.
Proline and hepatic lipogenesis   总被引:1,自引:0,他引:1  
The effects of proline on lipogenesis in isolated rat hepatocytes were determined and compared with those of lactate, an established lipogenic precursor. Proline or lactate plus pyruvate increased lipogenesis (measured with 3H2O) in hepatocytes from fed rats depleted of glycogen in vitro and in hepatocytes from starved rats. Lactate plus pyruvate but not proline increased lipogenesis in hepatocytes from starved rats. ( - )-Hydroxycitrate, an inhibitor of ATP-citrate lyase, partially inhibited incorporation into saponifiable fatty acid of 3H from 3H2O and 14C from [U-14C]lactate with hepatocytes from fed rats. Incorporation of 14C from [U-14C]proline was completely inhibited. Similar complete inhibition of incorporation of 14C from [U-14C]proline by ( - )-hydroxycitrate was observed with glycogen-depleted hepatocytes or hepatocytes from starved rats. Inhibition of phosphoenolpyruvate carboxykinase by 3-mercaptopicolinate did not inhibit the incorporation into saponifiable fatty acid of 3H from 3H2O or 14C from [U-14C]proline or [U-14C]lactate. Both 3-mercaptopicolinate and ( - )-hydroxycitrate increased lipogenesis (measured with 3H2O) in the absence or presence of lactate or proline with hepatocytes from starved rats. The results are discussed with reference to the roles of phosphoenolpyruvate carboxykinase, mitochondrial citrate efflux, ATP-citrate lyase and acetyl-CoA carboxylase in proline- or lactate-stimulated lipogenesis.  相似文献   

4.
The characteristics and site of inhibition of gluconeogenesis by endotoxin were investigated in liver cells isolated from control and endotoxin-treated rats. Endotoxin treatment was associated with inhibition (40-50%) of gluconeogenesis from lactate plus pyruvate over a range of concentrations of substrate and of oleate and with or without glucose or glucagon. Similar inhibition was observed with asparagine, proline, glutamine, alanine and a substrate mixture, but not with glycerol, glyceraldehyde, dihydroxyacetone or endogenous substrates. There was no change in cellular ATP content or in the rates of ketogenesis or ureogenesis from asparagine, proline or glutamine. Other effects on isotopic fluxes, metabolite contents, enzyme activities and control coefficients were consistent with the suggestion that the effects of endotoxin on gluconeogenesis are exerted at the level of phosphofructokinase-1, and not at phosphoenolpyruvate carboxykinase, pyruvate kinase, pyruvate carboxylase or glucokinase.  相似文献   

5.
The effects of glucagon and the alpha-adrenergic agonist, phenylephrine, on the rate of 14CO2 production and gluconeogenesis from [1-14C]lactate and [1-14C]pyruvate were investigated in isolated perfused livers of 24-h-fasted rats. Both glucagon and phenylephrine stimulated the rate of 14CO2 production from [1-14C]lactate but not from [1-14C]pyruvate. Neither glucagon nor phenylephrine affected the activation state of the pyruvate dehydrogenase complex in perfused livers derived from 24-h-fasted rats. 3-Mercaptopicolinate, an inhibitor of the phosphoenolpyruvate carboxykinase reaction, inhibited the rates of 14CO2 production and glucose production from [1-14C]lactate by 50% and 100%, respectively. Furthermore, 3-mercaptopicolinate blocked the glucagon- and phenylephrine-stimulated 14CO2 production from [1-14C]lactate. Additionally, measurements of the specific radioactivity of glucose synthesized from [1-14C]lactate, [1-14C]pyruvate and [2-14C]pyruvate indicated that the 14C-labeled carboxyl groups of oxaloacetate synthesized from 1-14C-labeled precursors were completely randomized and pyruvate----oxaloacetate----pyruvate substrate cycle activity was minimal. The present study also demonstrates that glucagon and phenylephrine stimulation of the rate of 14CO2 production from [1-14C]lactate is a result of increased metabolic flux through the phosphoenolpyruvate carboxykinase reaction, and phenylephrine-stimulated gluconeogenesis from pyruvate is regulated at step(s) between phosphoenolpyruvate and glucose.  相似文献   

6.
1. Glucose production from L-lactate was completely inhibited 24h after carbon tetrachloride treatment in liver from 48h-starved rats. The activities of phosphoenolpyruvate carboxykinase, fructose diphosphatase and glucose 6-phosphatase were decreased by this treatment in fed and starved rats, whereas lactate dehydrogenase activity was only decreased in fed animals. 2. The production of glucose by renal cortical slices from fed rats previously treated with carbon tetrachloride was enhanced when L-lactate, pyruvate and glutamine but not fructose were used as glucose precursors. Renal phosphoenolpyruvate carboxykinase activity was increased in this condition. 3. This increase was counteracted by cycloheximide or actinomycin D, suggesting that the effect was due to the synthesis de novo of the enzyme. 4. The pattern of hepatic gluconeogenic metabolites in treated animals was characterized by an increase in lactate, pyruvate, malate and citrate as well as a decrease in glucose 6-phosphate, suggesting an impairment of liver gluconeogenesis in vivo. 5. In contrast, the profile of renal metabolites suggested that gluconeogenesis was operative in the treated rats, as indicated by the marked increase in the content of phosphoenolpyruvate, 2-phosphoglycerate, 3-phosphoglycerate and glucose 6-phosphate. 6. It is postulated that renal gluconeogenesis could contribute to the maintenance of glycaemia in carbon tetrachloride-treated rats.  相似文献   

7.
2,5-Anhydro-D-mannitol inhibited glucose synthesis, increased the pyruvate/phosphoenolpyruvate ratio and altered adenine nucleotide concentrations in hepatocytes isolated from fasted rats. The accumulations of 2,5-anhydro-D-mannitol 1,6-diphosphate, an allosteric activator of pyruvate kinase, and of ADP in treated hepatocytes can account for the increase in pyruvate/phosphoenolpyruvate ratio and the inhibition of glucose synthesis from lactate.  相似文献   

8.
3-Mercaptopicolinic acid (3-MPA) is reportedly a specific inhibitor of phosphoenolpyruvate (PEP) carboxykinase and has hitherto been used accordingly to elucidate the metabolic role of PEP carboxykinase in vitro and in vivo. We show that 3-MPA has multiple effects on intermediary metabolism in hemidiaphragms from 40 h-starved rats. It decreases the release of lactate + pyruvate and alanine in hemidiaphragms provided with no added substrate or with valine, leucine or isoleucine. Moreover, irrespective of the substrate provided (none, valine, leucine, isoleucine, glucose, acetate, oleate), 3-MPA decreases the [lactate]/[pyruvate] ratio. 3-MPA is without effect on 14CO2 production from [U-14C]valine, [1-14C]valine, [1-14C]leucine, [U-14C]isoleucine or [1-14C]oleate, but stimulates 14CO2 production from [U-14C]glucose and [1-14C]pyruvate and inhibits 14CO2 production from [1-14C]acetate. Glycolytic flux (measured as 3H2O formation from [5-3H]glucose) is stimulated by 3-MPA. It is concluded that 3-MPA has site(s) of actions other than PEP carboxykinase and that the putative role of PEP carboxykinase in alanine synthesis de novo in skeletal muscle from tricarboxylic acid-cycle intermediates and related amino acids requires reappraisal.  相似文献   

9.
The effect of oleate, palmitate, and octanoate on glucose formation was studied with lactate or pyruvate as substrate. Octanoate was much more quickly oxidized and utilized for ketone body production than were oleate and palmitate. Among fatty acids studied, only octanoate resulted in a marked increase of the 3-hydroxybutyrate/acetoacetate (3-OHBAcAc) ratio. Each of the fatty acids studied stimulated glucose synthesis from pyruvate. The enhancement of gluconeogenesis by long-chain fatty acids was abolished after the addition of ammonia. As concluded from the “crossover” plot, the stimulatory effect of fatty acids was due to: (i) a stimulation of pyruvate carboxylation, (ii) a provision of reducing equivalents for glyceraldehyde phosphate dehydrogenase, and (iii) an acceleration of flux through hexose diphosphatase. Moreover, palmitate and oleate resulted in an increased generation of mitochondrial phosphpenolpyruvate, while in the presence of octanoate, the activity of mitochondrial phosphoenolpyruvate carboxykinase was diminished. When lactate was used as the glucose precursor, palmitate and oleate increased glucose production by about 50% but did not affect the contribution of mitochondrial phosphoenolpyruvate carboxykinase to gluconeogenesis. In contrast, in spite of the stimulation of both pyruvate carboxylase and hexose diphosphatase, as judged from the crossover plot, the addition of octanoate resulted in a marked inhibition of both glucose formation and mitochondrial generation of phosphoenolpyruvate. The inhibitory effect of octanoate was reversed by ammonia. Results indicate that fatty acids and ammonia are potent regulatory factors of both the rate of glucose formation and the contribution of mitochondrial phosphoenolpyruvate carboxykinase to gluconeogenesis in hepatocytes of the fasted rabbit.  相似文献   

10.
The activities of selected enzymes in the branched metabolic pathway to succinate or lactate were determined in cytosol and mitochondrial fractions. The enzymes of lowest activity in the cytosol, and thus possibly regulatory, are phosphofructokinase and pyruvate kinase. Malic enzyme activity could scarcely be detected in either compartment; phosphoenolpyruvate carboxykinase and malate dehydrogenase occur in both. The end products of metabolism are succinate and lactate; under anaerobic conditions lactate production increases whereas succinate production shows a small decrease. The presence of glucose in the medium does not influence the change, but causes an increase in total endproduct accumulation. Levels of metabolic intermediates in worms incubated aerobically and anaerobically are presented, and ‘cross-over’ plots and calculations of apparent equilibrium constants identify hexokinase, phosphofructokinase and pyruvate kinase as regulatory. Under aerobic conditions a large increase in the size of the malate pool is observed suggesting that the depression of lactate production is produced by its inhibitory effect on pyruvate kinase. Adenine nucleotide levels are maintained whether or not the worm is incubated under anaerobic conditions.  相似文献   

11.
Cell suspensions of Bacteroides fragilis were allowed to ferment glucose and lactate labeled with (14)C in different positions. The fermentation products, propionate and acetate, were isolated, and the distribution of radioactivity was determined. An analysis of key enzymes of possible pathways was also made. The results of the labeling experiments showed that: (i) B. fragilis ferments glucose via the Embden-Meyerhof pathway; and (ii) there was a randomization of carbons 1, 2, and 6 of glucose during conversion to propionate, which is in accordance with propionate formation via fumarate and succinate. The enzymes 6-phosphofrucktokinase (pyrophosphate-dependent), fructose-1,6-diphosphate aldolase, phosphoenolpyruvate carboxykinase, malate dehydrogenase, fumarate reductase, and methylmalonyl-coenzyme A mutase could be demonstrated in cell extracts. Their presence supported the labeling results and suggested that propionate is formed from succinate via succinyl-, methylmalonyl-, and propionyl-coenzyme A. From the results it also is clear that CO(2) is necessary for growth because it is needed for the formation of C4 acids. There was also a randomization of carbons 1, 2, and 6 of glucose during conversion to acetate, which indicated that pyruvate kinase played a minor role in pyruvate formation from phosphoenolpyruvate. Phosphoenolpyruvate carboxykinase, oxaloacetate decarboxylase, and malic enzyme (nicotinamide adenine dinucleotide phosphate-dependent) were present in cell extracts of B. fragilis, and the results of the labeling experiments agreed with pyruvate synthesis via oxaloacetate and malate if these acids are in equilibrium with fumarate. The conversion of [2-(14)C]- and [3-(14)C]lactate to acetate was not associated with a randomization of radioactivity.  相似文献   

12.
Adult rat hepatocytes were kept in primary culture for 48 h under different hormonal conditions to induce an enzyme pattern which with respect to carbohydrate metabolism approximated that of periportal and perivenous hepatocytes in vivo. 1. Glucagon-treated cells compared with control cells possessed a lower activity of glucokinase, a 4.5-fold higher activity of phosphoenolpyruvate carboxykinase and unchanged levels of glucose-6-phosphatase, phosphofructokinase, fructose-bisphosphatase and pyruvate kinase; they resembled in a first approximation the periportal cell type and are called for simplicity 'periportal'. Inversely, insulin-treated cells compared with control cells contained a 2.2-fold higher activity of glucokinase, a slightly decreased activity of phosphoenolpyruvate carboxykinase, increased activities of phosphofructokinase and pyruvate kinase and unaltered levels of glucose-6-phosphatase and fructose-bisphosphatase; they resembled perivenous cells and are called simply 'perivenous'. Gluconeogenesis and glycolysis were studied under various substrate and hormone concentrations. 2. Physiological concentrations of glucose (5 mM) and lactate (2 mM) gave about 80% saturation of gluconeogenesis from lactate and less than 15% saturation of glycolysis at a simultaneous 40% inhibition of the glycolytic rate by lactate. 3. Comparison of the two cell types showed that under identical assay conditions (5 mM glucose, 2 mM lactate, 0.5 nM insulin, 0.1 muM dexamethasone) gluconeogenesis was 1.5-fold faster in the 'periportal' cells and glycolysis was 2.4-fold faster in the 'perivenous' cells. 4. Metabolic rates were under short-term hormonal control. Insulin increased glycolysis three fold in both cell types with a half-maximal effect at about 0.4 nM, but did not influence the gluconeogenic rate. Glucagon inhibited glycolysis by 70% with a half-maximal effect at about 0.1 nM. Gluconeogenesis was stimulated by glucagon (half-maximal dose: 0.5 nM) 1.8-fold only in 'periportal' cells containing high phosphoenolpyruvate carboxykinase activity, not in the 'perivenous' cells with a low level of this enzyme. 5. A comparison of the two cell types showed that with maximally stimulating hormone concentrations gluconeogenesis was threefold faster in 'periportal' cells and glycolysis was eightfold faster in 'perivenous' cells. The results support the view that periportal and perivenous hepatocytes in vivo catalyse gluconeogenesis and glycolysis at inverse rates.  相似文献   

13.
With high concentrations of pyruvate as substrate for hepatocytes from fasted rats, high rates of cycling between pyruvate and the dicarboxylic acids occur, as shown isotopically. This rate of cycling is adequate to account for the hydrogen translocation from the mitochondria to the cytosol to furnish NADH for lactate formation. Addition of sufficiently high concentrations of mercaptopicolinate to block almost completely glucose formation from pyruvate, depresses isotopic cycling and lactate formation by only about 50–75%. Under some conditions, when the normal phosphoenolpyruvate carboxykinase activity is inhibited, cytosolic oxaloacetate may be decarboxylated directly to pyruvate, possibly via the decarboxylase activity of phosphoenolpyruvate carboxykinase.  相似文献   

14.
By using very low concentrations of cells to minimize alterations in substrate concentrations, we demonstrated that the lactate/pyruvate ratio of the incubation medium, which determines the cytosolic NADH/NAD+ ratio, affects gluconeogenic flux in suspensions of isolated hepatocytes from fasted rats. At a fixed extracellular pyruvate concentration of 1 mM and with the lactate/pyruvate ratio varied from 0.6 to 10 and to 50, glucose production rates increased from 2.5 to 5.5 and then decreased to 1.8 nmol/mg of cell protein/min. This finding paralleled the observation of Sugano et al. (Sugano, T., Shiota, M., Tanaka, T., Miyamae, Y., Shimada, M., and Oshino, N. (1980) J. Biochem. (Tokyo) 87, 153-166) who noted a similar biphasic response in the perfused liver system when lactate was held constant and pyruvate varied. The biphasic relationship can be explained by the influence of the NADH/NAD+ ratio on the near-equilibrium reactions catalyzed by glyceraldehyde-3-phosphate dehydrogenase and malate dehydrogenase in the hepatocyte cytosol. By shifting the equilibrium of the glyceraldehyde-3-phosphate dehydrogenase reaction, a rise in the NADH/NAD+ ratio decreases the concentration of 3-phosphoglycerate which, because of the linkage of 3-phosphoglycerate to phosphoenolpyruvate through two near-equilibrium reactions, reduces the concentration of phosphoenolpyruvate and therefore causes a decline in flux through pyruvate kinase. This decrease in pyruvate kinase flux results in an enhanced gluconeogenic flux. At higher NADH/NAD+ ratios, however, the oxalacetate concentration drops to such an extent that the consequent decreased flux through phosphoenolpyruvate carboxykinase exceeds the decline in flux through pyruvate kinase, producing a decrease in gluconeogenic flux. The lactate/pyruvate ratio was found to influence the actions of three hormones thought to stimulate gluconeogenesis by different mechanisms. Except for an inhibition by glucagon seen at the lowest lactate/pyruvate ratio tested, the stimulations by this hormone were relatively insensitive to lactate/pyruvate ratios, while angiotensin II produced greater stimulations of gluconeogenesis as the lactate/pyruvate ratio was increased. Dexamethasone, added in vitro, stimulated gluconeogenesis significantly only at very low and very high lactate/pyruvate ratios.  相似文献   

15.
The rates of glucose production from various substrates entering gluconeogenesis at different steps were investigated in hepatocytes isolated from term-fetus and newborn rabbits fasted during the first 2 days of life. The data were compared to the rate of glucose production measured in hepatocytes from young rabbits (50-60 days) starved for 48 h. The net production of glucose from substrates (lactate, pyruvate, propionate, alanine) entering gluconeogenesis below phosphoenolpyruvate was very low at birth and increased during the first day of life, in relation with an increased cytosolic phosphoenolpyruvate carboxykinase activity. The net production of glucose from precursors entering gluconeogenesis at the level of triose phosphates (dihydroxyacetone, fructose) was low at birth but a maximal capacity for gluconeogenesis was reached within 6 h after birth. This enhanced gluconeogenic capacity was associated with a fall in hepatic fructose 2,6-bisphosphate concentration and a reduced glycolytic flux. In contrast, a high glucose production from galactose was already present at birth and did not rise at 24 or 48 h after delivery. These results suggest that the development of gluconeogenic capacity in hepatocytes isolated from newborn rabbit is dependent upon two factors, a decrease in the F2,6-P2 concentration which reduces the glycolytic flux and an increase in the activity of cytosolic phosphoenolpyruvate carboxykinase.  相似文献   

16.
Glucagon induced a rapid (within 3 min) increase in glucose radioactivity and a decrease in the labeling of ketone bodies when isolated hepatocytes were incubated in the presence of [1-14C]palmitate. Simultaneously, the hormone induced a decrease in the levels of pyruvate and Krebs cycle intermediates and an increase in the level of phosphoenolpyruvate (PEP). The glucagon-induced increase in glucose radioactivity was much larger than the simultaneous decrease in lactate labeling. A comparison of the incorporation of labeled carbon from [1-14C]palmitate and [U-14C]palmitate into glucose and CO2 indicates a selective stimulatory action of glucagon on the flux through the phosphoenolpyruvate carboxykinase (PEPCK) reaction.  相似文献   

17.
In lymphocytes of the rat, pyruvate kinase, phosphoenolpyruvate carboxykinase and NADP+-linked malate dehydrogenase (decarboxylating) are distributed almost exclusively in the cytosol whereas pyruvate carboxylase is distributed almost entirely in the mitochondria. For NAD+-linked malate dehydrogenase and aspartate aminotransferase approximately 80% and 40%, respectively, are in the cytosolic compartment. Since glutaminase is present in the mitochondria, glutamine is converted to malate within the mitochondria but further metabolism of the malate is likely to occur in the cytosol. Hence pyruvate produced from this malate, via oxaloacetate and phosphoenolpyruvate carboxykinase, may be rapidly converted to lactate, so restricting the entry of pyruvate into the mitochondria and explaining why very little glutamine is completely oxidised in these cells despite a high capacity of the Krebs cycle.  相似文献   

18.
Effects of glutathione depletion on gluconeogenesis in isolated hepatocytes   总被引:1,自引:0,他引:1  
Glutathione-depleted hepatocytes, by incubation with diethylmaleate (DEM) or phorone (2,6-dimethyl-2,5-heptadiene-4-one), i.e., substrates of the GSH S-transferases (EC 2.5.1.18), showed rates of gluconeogenesis from various precursors significantly lower than controls; however the rate of glucose synthesis from fructose was similar to that of controls. Isolated hepatocytes from rats pretreated with those substrates 1 h before isolation to deplete hepatic glutathione (GSH) also showed a decrease of the rate of gluconeogenesis from lactate plus pyruvate. Incubation of hepatocytes with L-buthionine sulfoximine, a specific inhibitor of gamma-glutamyl-cysteine synthetase (EC 6.3.2.2), resulted in a decreased rate of gluconeogenesis from lactate plus pyruvate only when GSH values were lower than 1 mumol/g cells. Freeze-clamped livers from GSH-depleted rats showed a higher concentration of malate and glycerol 3-phosphate, indicating that GSH depletion probably affects phosphoenolpyruvate carboxykinase and glycerol-3-phosphate dehydrogenase activities. Several indicators of cell viability, such as lactate dehydrogenase leakage, malondialdehyde accumulation, ATP concentration, or urea synthesis from different precursors, were not affected by GSH depletion under the experimental conditions used here. Besides, the GSH/GSSG ratio remained unchanged in all cases.  相似文献   

19.
Control properties of the gluconeogenic pathway in hepatocytes isolated from starved rats were studied in the presence of glucose. The following observations were made. (1) Glucose stimulated the rate of glucose production from 20 mM-glycerol, from a mixture of 20 mM-lactate and 2 mM-pyruvate, or from pyruvate alone; no stimulation was observed with 20 mM-alanine or 20 mM-dihydroxyacetone. Maximal stimulation was obtained between 2 and 5 mM-glucose, depending on the conditions. At concentrations above 6 mM, gluconeogenesis declined again, so that at 10 mM-glucose the glucose production rate became equal to that in its absence. (2) With glycerol, stimulation of gluconeogenesis by glucose was accompanied by oxidation of cytosolic NADH and reduction of mitochondrial NAD+ and was insensitive to the transaminase inhibitor amino-oxyacetate; this indicated that glucose accelerated the rate of transport of cytosolic reducing equivalents to the mitochondria via the glycerol 1-phosphate shuttle. (3) With lactate plus pyruvate (10:1) as substrates, stimulation of gluconeogenesis by glucose was almost additive to that obtained with glucagon. From an analysis of the effect of glucose on the curves relating gluconeogenic flux and the steady-state intracellular concentrations of gluconeogenic intermediates under various conditions, in the absence and presence of glucagon, it was concluded that addition of glucose stimulated both phosphoenolpyruvate carboxykinase and pyruvate carboxylase activity.  相似文献   

20.
1. In confirmation of previous work, administration of d(+)-galactosamine (0.5-0.75g/kg body wt.) to rats caused a hepatitis with histological evidence of liver damage and a 9-fold rise in aspartate aminotransferase activity in serum. 2. There was a significant elevation of blood lactate and pyruvate concentrations in 24h-starved rats treated with galactosamine but no change in the [lactate]/[pyruvate] ratio. 3-Hydroxybutyrate and acetoacetate concentrations in blood were decreased. 3. The changes in the concentrations of lactate, pyruvate and ketone bodies in the freeze-clamped liver were parallel to those observed in the blood. 4. In the livers of 24h-starved galactosamine-treated rats there were large increases in the concentrations of alanine (3-fold), citrate (5-fold), 2-oxoglutarate (4-fold), with smaller increases in malate, glutamate and aspartate. There was a 4-fold rise in the value of the mass-action ratio of the alanine aminotransferase system in the livers of galactosamine-treated rats when compared to controls. 5. There was a significant decrease in the activities of aspartate and alanine aminotransferases in the cytoplasm and the soluble fraction of sonicated homogenates of the livers of rats treated with galactosamine. The activity of phosphoenolpyruvate carboxylase was decreased by 75% of the control value. 6. Glucose synthesis from lactate in perfused livers from galactosamine-treated rats was inhibited 39% when compared with controls. 7. The results indicate that the conversion of lactate into glucose is decreased in the livers of galactosamine-treated rats and that this decrease may be due to the loss of phosphoenolpyruvate carboxylase from damaged hepatocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号