首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously reported novel serine proteases isolated from cDNA libraries of the human and mouse central nervous system (CNS) by PCR using degenerate oligodeoxyribonucleotide primers designed on the basis of the serine protease motifs, AAHC and DSGGP. Here we report a newly isolated serine protease from the mouse CNS. This protease is homologous (77.9% identical) to human spinesin type II transmembrane serine protease 5. Mouse spinesin (m-spinesin) is also composed of (from the N-terminus) a short cytoplasmic domain, a transmembrane domain, a stem region containing a scavenger-receptor-like domain, and a serine protease domain, as is h-spinesin. We also isolated type 1, type 2, and type 3 variant cDNAs of m-spinesin. Full-length spinesin (type 4) and type 3 contain all the domains, whereas type 1 and type 2 variants lack the cytoplasmic, transmembrane, and scavenger-receptor-like domains. Subcellular localization of the variant forms was analyzed using enhanced green fluorescent protein (EGFP) fusion proteins. EGFP-type 4 fusion protein was predominantly localized to the ER, Golgi apparatus, and plasma membrane, whereas EGFP-type 1 was localized to the cytoplasm, reflecting differential classification of m-spinesin variants into transmembrane and cytoplasmic types. We analyzed the distribution of m-spinesin variants in mouse tissues, using RT-PCR with variant-specific primer sets. Interestingly, transmembrane-type spinesin, types 3 and 4, was specifically expressed in the spinal cord, whereas cytoplasmic type, type 1, was expressed in multiple tissues, including the cerebrum and cerebellum. Therefore, m-spinesin variants may have distinct biological functions arising from organ-specific variant expression.  相似文献   

2.
Two cDNAs encoding novel mosaic proteins with a serine protease domain and potential regulatory modules, consisting of a protein kinase substrate and a low-density lipoprotein receptor, were cloned from a human lung cDNA library by PCR. One with a transmembrane domain (MSPL) and the other without one (MSPS) comprise 581 and 537 amino acids, respectively. Except for the C-terminal ends, the two isoforms had an identical serine protease domain exhibiting 42, 39 and 43% identity with those of plasma kallikrein, hepsin and transmembrane protease serine 2, respectively. Both genes were predominantly expressed in human lung, placenta, pancreas and prostate.  相似文献   

3.
【目的】丝氨酸蛋白酶(Serine protease,SP)是以丝氨酸为活性中心的重要的蛋白水解酶。在昆虫中,丝氨酸蛋白酶参与消化、发育、先天免疫反应和组织重建等重要的生理过程。本试验以苜蓿夜蛾Heliothis viriplaca为材料,克隆其丝氨酸蛋白酶基因的cDNA序列,再对该基因进行原核表达并对表达产物进行活性测定研究。【方法】从苜蓿夜蛾中肠中提取总RNA,通过RT-PCR和RACE技术,扩增获得丝氨酸蛋白酶基因cDNA全长序列,用大肠杆菌E.coli表达系统进行表达;再对表达的重组蛋白进行变性、纯化与复性,并以BTEE为底物进行活性测定。【结果】克隆得到的苜蓿夜蛾中肠丝氨酸蛋白酶基因命名为Hv SP,该基因已登录Gen Bank,登录号为KT907053。该基因全长1 017 bp,开放阅读框为886 bp,编码295个氨基酸,分子量约为30.8 ku,等电点为8.27,推导的氨基酸序列与其他昆虫丝氨酸蛋白酶氨基酸序列相似性在46%~92%之间。在Tris-HCl缓冲液中,p H为8.5时,复性的重组蛋白活性最高,为28.7 U/m L。荧光定量PCR结果表明,Hv SP基因的m RNA在苜蓿夜蛾的多个组织中特异性表达,且在中肠中表达量最高,但在唾腺中未检测到Hv SP的m RNA表达。【结论】该研究克隆了一个新的苜蓿夜蛾丝氨酸蛋白酶基因的cDNA序列,且原核表达后的重组蛋白经过变性、纯化及复性后具有活性,为进一步探索丝氨酸蛋白酶在昆虫体内的生理生化功能奠定了基础。  相似文献   

4.
5.
ST14 (suppression of tumorigenicity 14) is a transmembrane serine protease that contains a serine protease catalytic (SP) domain, an SEA domain, two complement subcomponent C1r/s (CUB) domains, and four low density lipoprotein receptor class A domains. Glutathione S-transferase fusion proteins with SP, CUB, and low density lipoprotein receptor domains and their corresponding mutants were generated to analyze protein interactions with these domains. Modified glutathione S-transferase pull-down assays demonstrated the interaction between the SP domain and hepatocyte growth factor activator inhibitor-1. With the same method, a CUB domain-interacting protein was isolated and turned out to be the transmembrane protein with epidermal growth factor-like and two follistatin-like domains 1 (TMEFF1). Quantitative real time PCR revealed that the expression of the TMEFF1 gene was dependent on the transfection of the ST14 gene in the RKO cell line. Our results also suggested that ST14 and TMEFF1 were co-expressed in the human breast cancer cell line MCF7, human placenta, kidney, and liver tissues. Interestingly, these two genes were co-up-regulated in kidney tumors versus normal tissues, consistent with our results that showed the dependence of TMEFF1 expression on ST14 in RKO cells. Finally, homology modeling studies suggested that TMEFF1 might form a complex with ST14 by an interaction between epidermal growth factor and CUB domains.  相似文献   

6.
7.
8.
9.
10.
11.
Human gastric carcinoma BGC-823 cells underwent morphological differentiation and cell cycle arrest in vitro when treated with 5mM hexamethylene bisacetamide (HMBA) for 48h. To further understand the mechanism of HMBA-induced differentiation, proteomic methodologies were applied to screen and identify altered proteins involved in the commitment of BGC-823 cells to differentiate. Five distinct altered proteins were acquired by two-dimensional (2-D) PAGE and were consequently identified as ras-related protein rab-35 (Rab-35), splice truncated isoform of transmembrane protease, serine 3 (serine TADG-12), regulator of G-protein signaling 1 (RGS1), ret finger protein-like 1 (RFPL1) and F-actin capping protein alpha-3 subunit (GSG3) by analysis of mass spectrograph. Of the five proteins, serine TADG-12 down-regulated under the detectable level after HMBA treatment, Rab-35, RGS1 and RFPL1 sharply up-regulated within the HMBA-induced BGC-823 cells, and GSG3, appearing in both treated and untreated cells, remarkably increased within BGC-823 cells after HMBA stimulation. Our results implicate that the molecular mechanism of BGC-823 cell differentiation in response to HMBA may involved in complex processes including a signaling network linking vesicle transport, actin cytoskeleton remodeling except for morphology differentiation, cell cycle G1 arrest.  相似文献   

12.
Recombinant clones with cDNA inserts coding for a new serine protease (hepsin) have been isolated from cDNA libraries prepared from human liver and hepatoma cell line mRNA. The total length of the cDNA is approximately 1.8 kilobases and includes a 5' untranslated region, 1251 nucleotides coding for a protein of 417 amino acids, a 3' untranslated region, and a poly(A) tail. The amino acid sequence coded by the cDNA for hepsin shows a high degree of identity to pancreatic trypsin and other serine proteases present in plasma. It also exhibits features characteristic of zymogens to serine proteases in that it contains a cleavage site for protease activation and the highly conserved regions surrounding the His, Asp, and Ser residues that participate in enzyme catalysis. In addition, hepsin lacks a typical amino-terminal signal peptide. Hydropathy analysis of the protein sequence, however, revealed a very hydrophobic region of 27 amino acids starting 18 residues downstream from the apparent initiator Met. This region may serve as an internal signal sequence and a transmembrane domain. This putative transmembrane domain could be involved in anchoring hepsin to the cell membrane and orienting it in such a manner that its carboxyl terminus, containing the catalytic domain, is extracellular.  相似文献   

13.
Proclotting enzyme is an intracellular serine protease zymogen closely associated with an endotoxin-sensitive hemolymph coagulation system in limulus. Its active form, clotting enzyme, catalyzes conversion of coagulogen to insoluble coagulin gel. We present here the cDNA and amino acid sequences, disulfide locations, and subcellular localization of proclotting enzyme. The isolated cDNA for proclotting enzyme consists of 1,501 base pairs. The open reading frame of 1,125 base pairs encodes a sequence comprising 29 amino acid residues of prepro-sequence and 346 residues of the mature protein with a molecular mass of 38,194 Da. Three potential glycosylation sites for N-linked carbohydrate chains were confirmed to be glycosylated. Moreover, the zymogen contains six O-linked carbohydrate chains in the amino-terminal light chain generated after activation. The cleavage site that accompanies activation catalyzed by trypsin-like active factor B, proved to be an Arg-Ile bond. The resulting carboxyl-terminal heavy chain is composed of a typical serine protease domain, with a sequence similar to that of human coagulation factor XIa (34.5%) or factor Xa (34.1%). The light chain has a unique disulfide-knotted domain which shows no significant homology with any other known proteins. Thus, this proclotting enzyme has a mammalian serine protease domain and a structural domain not heretofore identified in coagulation and complement factors. Immunohistochemical studies showed that the proclotting enzyme is localized in large granules of hemocytes.  相似文献   

14.
Type II transmembrane serine proteases (TTSPs) are structurally defined by the presence of a transmembrane domain located near the N-terminus and a C-terminal extracellular serine protease domain. The human TTSP family consists of 17 members. Some members of the family have pivotal functions in development and homeostasis, and are involved in tumorigenesis and viral infections. The activities of TTSPs are regulated by endogenous protease inhibitors. However, protease inhibitors of most TTSPs have not yet been identified. In this study, we investigated the inhibitory effect of hepatocyte growth factor activator inhibitor type 1 (HAI-1), a Kunitz-type serine protease inhibitor, on several members of the TTSP family. We found that the protease activity of a member, TMPRSS13, was inhibited by HAI-1. A detailed analysis revealed that a soluble form of HAI-1 with one Kunitz domain (NK1) more strongly inhibited TMPRSS13 than another soluble form of HAI-1 with two Kunitz domains (NK1LK2). In addition, an in vitro protein binding assay showed that NK1 formed complexes with TMPRSS13, but NK1LK2 did not. TMPRSS13 converted single-chain pro-hepatocyte growth factor (pro-HGF) to a two-chain form in vitro, and the pro-HGF converting activity of TMPRSS13 was inhibited by NK1. The two-chain form of HGF exhibited biological activity, assessed by phosphorylation of the HGF receptor (c-Met) and extracellular signal-regulated kinase, and scattered morphology in human hepatocellular carcinoma cell line HepG2. These results suggest that TMPRSS13 functions as an HGF-converting protease, the activity of which may be regulated by HAI-1.  相似文献   

15.
BACKGROUND: Using differential display (DD), we discovered a new member of the serine protease family of protein-cleaving enzymes, named protease M. The gene is most closely related by sequence to the kallikreins, to prostate-specific antigen (PSA), and to trypsin. The diagnostic use of PSA in prostate cancer suggested that a related molecule might be a predictor for breast or ovarian cancer. This, in turn, led to studies designed to characterize the protein and to screen for its expression in cancer. MATERIALS AND METHODS: The isolation of protease M by DD, the cloning and sequencing of the cDNA, and the comparison of the predicted protein structure with related proteins are described, as are methods to produce recombinant proteins and polyclonal antibody preparations. Protease M expression was examined in mammary, prostate, and ovarian cancer, as well as normal, cells and tissues. Stable transfectants expressing the protease M gene were produced in mammary carcinoma cells. RESULTS: Protease M was localized by fluorescent in situ hybridization analysis to chromosome 19q13.3, in a region to which other kallikreins and PSA also map. The gene is expressed in the primary mammary carcinoma lines tested but not in the corresponding cell lines of metastatic origin. It is strongly expressed in ovarian cancer tissues and cell lines. The enzyme activity could not be established, because of difficulties in producing sufficient recombinant protein, a common problem with proteases. Transfectants were selected that overexpress the mRNA, but the protein levels remained very low. CONCLUSIONS: Protease M expression (mRNA) may be a useful marker in the detection of primary mammary carcinomas, as well as primary ovarian cancers. Other medical applications are also likely, based on sequence relatedness to trypsin and PSA.  相似文献   

16.
LeMosy EK  Leclerc CL  Hashimoto C 《Genetics》2000,154(1):247-257
The nudel gene of Drosophila is maternally required both for structural integrity of the egg and for dorsoventral patterning of the embryo. It encodes a structurally modular protein that is secreted by ovarian follicle cells. Genetic and molecular studies have suggested that the Nudel protein is also functionally modular, with a serine protease domain that is specifically required for ventral development. Here we describe biochemical and immunolocalization studies that provide insight into the molecular basis for the distinct phenotypes produced by nudel mutations and for the interactions between these alleles. Mutations causing loss of embryonic dorsoventral polarity result in a failure to activate the protease domain of Nudel. Our analyses support previous findings that catalytic activity of the protease domain is required for dorsoventral patterning and that the Nudel protease is auto-activated and reveal an important role for a region adjacent to the protease domain in Nudel protease function. Mutations causing egg fragility and early embryonic arrest result in a significant decrease in extracellular Nudel protein, due to defects in post-translational processing, stability, or secretion. On the basis of these and other studies of serine proteases, we suggest potential mechanisms for the complementary and antagonistic interactions between the nudel alleles.  相似文献   

17.
18.
Human kallikrein 14 (KLK14) is a member of the human kallikrein gene family of serine proteases, and its protein, hK14, has recently been suggested to serve as a new ovarian and breast cancer marker. To gain insights into hK14's physiological functions, the active recombinant enzyme was obtained in an enzymatically pure state for biochemical and enzymatic characterizations. We studied its substrate specificity and behavior to various protease inhibitors, and identified candidate physiological substrates. hK14 had trypsin-like activity with a strong preference for Arg over Lys in the P1 position, and its activity was inhibited by typical serine protease inhibitors. The protease degraded casein, fibronectin, gelatin, collagen type I, collagen type IV, fibrinogen, and high-molecular-weight kininogen. Furthermore, it rapidly hydrolyzed insulin-like growth factor binding protein-3 (IGFBP-3). These findings suggest that hK14 may be implicated in tumor progression in ovarian carcinoma.  相似文献   

19.
csp, a gene encoding a protein with high sequence identity to trypsinlike serine protease and CUB domains, was identified from a cDNA library from the olfactory organ (antennular lateral flagellum) of the spiny lobster Panulirus argus. The full‐length cDNA sequence of csp is 1801 bp, encoding a protein of 50.25 kD, with three domains: signal peptide, trypsinlike serine protease, and CUB (named for a class of compounds including C omplement subcomponents Clr/Cls, U egf, and B one morphogenic protein‐1). RT‐PCR, Northern blots, and immunoblots showed that csp is predominantly expressed in the lateral flagellum and eyestalk. Immunocytochemistry showed that Csp is present in olfactory (aesthetasc) sensilla around auxiliary cells (glia that surround the inner dendrites of olfactory receptor neurons, ORNs) and ORN outer dendrites. We propose that Csp is expressed and secreted by auxiliary cells, associates with ORN cell membranes or extracellular matrix via the CUB domain, and has trypsinlike activity. In the eyestalk, Csp is associated with cells surrounding axons between neuropils of the eyestalk ganglia. Possible functions in the olfactory organ and eyestalk are discussed. To our knowledge, this is the first report from any olfactory system of a gene encoding a protein with serine protease and CUB domains. © 2001 John Wiley & Sons, Inc. J Neurobiol 49: 277–302, 2001  相似文献   

20.
Crystallographic studies have previously suggested that Lys290 forms a salt bridge with Glu342 in the serine protease inhibitor alpha 1-antitrypsin. Disruption of the formation of this structural feature by a Glu to Lys substitution at residue 342 in the PiZ variant has been implicated in causing the defective secretion of this mutant protein from hepatocytes (10-15% of normal). To test the validity of this hypothesis, mutant human alpha 1-antitrypsin cDNA constructs coding for specific amino acid substitutions at residues 290 and 342 were generated and the corresponding mutant proteins were expressed in mouse hepatoma cells. When the potential to form the salt bridge was reestablished by a Lys290 to Glu290 substitution in the PiZ variant, its secretion was increased to only 38% of normal. Furthermore, disruption of this structural feature by a Lys290 to Glu290 substitution in the normal inhibitor failed to reduce the secretion of alpha 1-antitrypsin to the extent observed for the PiZ variant (73% of normal). Finally, substitution of the neutral amino acid Gln at residue 342 only reduced the secretion of alpha 1-antitrypsin to 55% of normal. Of all mutant proteins tested, those bearing Lys at position 342 were secreted at the lowest levels. These findings demonstrate that although disruption of the 290-342 salt bridge does affect the secretion of alpha 1-antitrypsin, it is the substitution of Lys at residue 342 that causes the dramatic secretory defect of the PiZ variant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号