首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiple sensory-motor maps located in the brainstem and the cortex are involved in spatial orientation. Guiding movements of eyes, head, neck and arms they provide an approximately linear relation between target distance and motor response. This involves especially the superior colliculus in the brainstem and the parietal cortex. There, the natural frame of reference follows from the retinal representation of the environment. A model of navigation is presented that is based on the modulation of activity in those sensory-motor maps. The actual mechanism chosen was gain-field modulation, a process of multimodal integration that has been demonstrated in the parietal cortex and superior colliculus, and was implemented as attraction to visual cues (colour). Dependent on the metric of the sensory-motor map, the relative attraction to these cues implemented as gain field modulation and their position define a fixed point attractor on the plane for locomotive behaviour. The actual implementation used Kohonen-networks in a variant of reinforcement learning that are well suited to generate such topographically organized sensory-motor maps with roughly linear visuo-motor response characteristics. In the following, it was investigated how such an implicit coding of target positions by gain-field parameters might be represented in the hippocampus formation and under what conditions a direction-invariant space representation can arise from such retinotopic representations of multiple cues. Information about the orientation in the plane—as could be provided by head direction cells—appeared to be necessary for unambiguous space representation in our model in agreement with physiological experiments. With this information, Gauss-shaped “place-cells” could be generated, however, the representation of the spatial environment was repetitive and clustered and single cells were always tuned to the gain-field parameters as well  相似文献   

2.
The data obtained in behavioural, neurophysiological, and bioacoustic experiments revealed plasticity of functional organisation of the auditory input in the cat sensory-motor cortex and are reviewed from A.A. Ukhtomsky's "Dominanta" principle's standpoint.  相似文献   

3.
The main problem of ecological data modeling is their interpretation and its correct understanding. This problem cannot be solved solely by a big data collection. To sufficiently understand ecosystems we need to know how these processes behave and how they respond to internal and external factors. Similarly, we need to know the behavior of processes that are involved in the climate system and the biosphere of the earth. In order to characterize precisely the behavior of individual elements and ecosystems we need to use deterministic, stochastic and chaotic behavior. Unfortunately, the chaotic part of systems is typically completely ignored in almost all approaches. Ignoring of chaotical part leads to many biased outcomes. To overcome this gap we model chaotic system behavior by random iterated function system which provides a generic guideline for such data management. This also allows to replicate a complexity and chaos of ecosystem.  相似文献   

4.
The righting maneuver of a freely falling cat was filmed at 1000 pictures per second, and the head position about the roll axis was digitized from each film frame using a graphics input tablet. The head angular velocity and acceleration were computed from the roll axis position trajectory. Head acceleration trajectories approximated two periods of a damped sinusoid at a frequency of 26 Hz. Head acceleration peak amplitudes exceeded 120,000 deg/s2. These trajectories were used as stimuli for the horizontal semicircular canals in a computer simulation of first-order afferent responses during the fall. Linear system afferent response dynamics, characterized in a previous study of the cat horizontal canal using pseudorandom rotations, provided the basis for linear predictions of falling cat afferent responses. Results showed predicted single afferent firing rates that exceeded physiological values; and variations in afferent sensitivities and phase were predicted among different neurons. Fast head movement information could be carried by ensemble populations of vestibular neurons, and a phase-locking encoding hypothesis is proposed which accomplishes this. Implications for central program versus peripheral vestibular feedback strategies for motor control during falling are presented and discussed.  相似文献   

5.
In this article results of several published studies are synthesized in order to address the neural system for the determination of eye and head movement amplitudes of horizontal eye/head gaze shifts with arbitrary initial head and eye positions. Target position, initial head position, and initial eye position span the space of physical parameters for a planned eye/head gaze saccade. The principal result is that a functional mechanism for determining the amplitudes of the component eye and head movements must use the entire space of variables. Moreover, it is shown that amplitudes cannot be determined additively by summing contributions from single variables. Many earlier models calculate amplitudes as a function of one or two variables and/or restrict consideration to best-fit linear formulae. Our analysis systematically eliminates such models as candidates for a system that can generate appropriate movements for all possible initial conditions. The results of this study are stated in terms of properties of the response system. Certain axiom sets for the intrinsic organization of the response system obey these properties. We briefly provide one example of such an axiomatic model. The results presented in this article help to characterize the actual neural system for the control of rapid eye/head gaze shifts by showing that, in order to account for behavioral data, certain physical quantities must be represented in and used by the neural system. Our theoretical analysis generates predictions and identifies gaps in the data. We suggest needed experiments.  相似文献   

6.
Rosner R  Warzecha AK 《PloS one》2011,6(10):e26886
Behavioral responses of an animal vary even when they are elicited by the same stimulus. This variability is due to stochastic processes within the nervous system and to the changing internal states of the animal. To what extent does the variability of neuronal responses account for the overall variability at the behavioral level? To address this question we evaluate the neuronal variability at the output stage of the blowfly''s (Calliphora vicina) visual system by recording from motion-sensitive interneurons mediating head optomotor responses. By means of a simple modelling approach representing the sensory-motor transformation, we predict head movements on the basis of the recorded responses of motion-sensitive neurons and compare the variability of the predicted head movements with that of the observed ones. Large gain changes of optomotor head movements have previously been shown to go along with changes in the animals'' activity state. Our modelling approach substantiates that these gain changes are imposed downstream of the motion-sensitive neurons of the visual system. Moreover, since predicted head movements are clearly more reliable than those actually observed, we conclude that substantial variability is introduced downstream of the visual system.  相似文献   

7.
To investigate to time course of sensory-motor adaptation to microgravity, we tested spatially-directed voluntary head movements before, during and after short spaceflight. We also tested the re-adaptation of postural responses to sensory stimulation after space flight. The cosmonaut performed in microgravity six cycles of voluntary head rotation in pitch, roll and yaw directions. During the first days of weightlessness the angular velocity of head movements increased. Over the next days of microgravity the velocity of head movements gradually decreased. On landing day a significant decrease of head rotation velocity was observed compared to the head movement velocity before spaceflight. Re-adaptation to Earth condition measured by body sway on soft support showed similar time course, but re-adaptation measured by postural responses to vestibular galvanic stimulation was prolonged. These results showed that the angular velocity of aimed head movements of cosmonauts is a good indicator of sensory-motor adaptation in altered gravity conditions.  相似文献   

8.
The maintenance of stable vision is a primary function of the neurovestibular and sensory-motor systems. There is, however, strong evidence suggesting that space flight results in a modification of the central nervous system and subsequent control of ocular-motor responses. These changes effect those neural mechanisms which are responsible for holding images steady on the retina during brief, self-initiated, head rotations or during the voluntary pursuit of moving targets. Recent studies have shown significant saccadic intrusions in both of these experimental paradigms, including an inability to null the vestibulo-ocular reflex (VOR) during the head/eye pursuit task. The maintenance of vision, while not entirely stable, both inflight and immediately postflight is now believed to be due to neural strategies that evolve for the purpose of assisting in directing the moving target onto the retina.  相似文献   

9.
10.
The origin of the brain remains a challenging problem in evolutionary studies. To understand when and how the structural brain emerged, we analyzed the central nervous system (CNS) of a lower invertebrate, planarian. We conducted a large-scale screening of the head part-specific genes in the planarian by constructing a cDNA microarray. Competitive hybridization of cDNAs between a head portion and the other body portion of planarians revealed 205 genes with head part-specific spikes, including essential genes in the vertebrate nervous system. The expression patterns of the top 30 genes showing the strongest spikes implied that the planarian brain has undergone functional regionalization. We demonstrate the complex cytoarchitecture of the planarian brain, despite its simple superficiality of the morphology.  相似文献   

11.
Cell adhesion molecules belonging to the immunoglobulin superfamily (IgSF) control synaptic specificity through hetero- or homophilic interactions in different regions of the nervous system. In the developing spinal cord, monosynaptic connections of exquisite specificity form between proprioceptive sensory neurons and motor neurons, however, it is not known whether IgSF molecules participate in regulating this process. To determine whether IgSF molecules influence the establishment of synaptic specificity in sensory-motor circuits, we examined the expression of 157 IgSF genes in the developing dorsal root ganglion (DRG) and spinal cord by in situ hybridization assays. We find that many IgSF genes are expressed by sensory and motor neurons in the mouse developing DRG and spinal cord. For instance, Alcam, Mcam, and Ocam are expressed by a subset of motor neurons in the ventral spinal cord. Further analyses show that Ocam is expressed by obturator but not quadriceps motor neurons, suggesting that Ocam may regulate sensory-motor specificity in these sensory-motor reflex arcs. Electrophysiological analysis shows no obvious defects in synaptic specificity of monosynaptic sensory-motor connections involving obturator and quadriceps motor neurons in Ocam mutant mice. Since a subset of Ocam+ motor neurons also express Alcam, Alcam or other functionally redundant IgSF molecules may compensate for Ocam in controlling sensory-motor specificity. Taken together, these results reveal that IgSF molecules are broadly expressed by sensory and motor neurons during development, and that Ocam and other IgSF molecules may have redundant functions in controlling the specificity of sensory-motor circuits.  相似文献   

12.
Rhythmic entrainment, or beat synchronization, provides an opportunity to understand how multiple systems operate together to integrate sensory-motor information. Also, synchronization is an essential component of musical performance that may be enhanced through musical training. Investigations of rhythmic entrainment have revealed a developmental trajectory across the lifespan, showing synchronization improves with age and musical experience. Here, we explore the development and maintenance of synchronization in childhood through older adulthood in a large cohort of participants (N = 145), and also ask how it may be altered by musical experience. We employed a uniform assessment of beat synchronization for all participants and compared performance developmentally and between individuals with and without musical experience. We show that the ability to consistently tap along to a beat improves with age into adulthood, yet in older adulthood tapping performance becomes more variable. Also, from childhood into young adulthood, individuals are able to tap increasingly close to the beat (i.e., asynchronies decline with age), however, this trend reverses from younger into older adulthood. There is a positive association between proportion of life spent playing music and tapping performance, which suggests a link between musical experience and auditory-motor integration. These results are broadly consistent with previous investigations into the development of beat synchronization across the lifespan, and thus complement existing studies and present new insights offered by a different, large cross-sectional sample.  相似文献   

13.
Poeppel D 《Current biology : CB》2006,16(21):R930-R932
Language processing can be triggered by auditory, visual or somatosensory input. A recent study has provided new insight into a fundamental issue raised by this observation: how is knowledge of language implemented in the human brain such that speakers can use any type of sensory-motor input-output system for comprehension and production?  相似文献   

14.
The successful, coordinated, posture and locomotion of any animal requires a precise and continuous adjustment of limb movements by sensory feedback from extero- and proprioceptors associated with the legs. We here review the recent advances in our understanding of how specific local adjustments of the hind legs of the desert locust, Schistocerca gregaria, are made in response to tactile signals from two different classes of exteroceptor on a leg. The aim is to understand particular features of the organization of neuronal networks and how different types of constituent interneurones contribute to the processing of sensory signals. This information can then be used to define the design principles that govern the organization of sensory-motor networks.  相似文献   

15.
Habitat modification and invasive species are among the most important contemporary drivers of biodiversity loss. These two threatening processes are often studied independently and few studies have focused on how they interact to influence species declines. Here we assess the predation pressure placed on the threatened great desert skink (Liopholis kintorei) and how this interacts with fire‐induced habitat modifications. We collected daily track data of potential predators for 1 month at 30 great desert skink burrow‐systems where vegetation cover varied significantly after experimental burns. We used these data to evaluate potential predation pressure at the burrow‐system and assess whether fire influenced predator pressure. We supplemented this analysis by documenting predation via the inspection of large mammalian predator scats collected from great desert skink habitat. The level of feral cat activity at a burrow‐system entrance was significantly higher than that of any other potential predator, however fire had no effect on the visitation rates of feral cats, dingoes or large snakes to great desert skink burrow‐systems. The remains of great desert skink were found significantly more frequently in feral cat scats, compared to fox and dingo scats. We provide the first direct evidence that feral cats are a significant predator for great desert skink, thus supporting the hypothesis that feral cat predation is a key threatening process. Feral cat activity was not influenced by small‐scale experimental burns, however, this does not preclude an effect of larger scale fires and we recommend further research exploring this possible interaction.  相似文献   

16.
This work presents a simulation study using an anatomically relevant model of the vestibulo-ocular reflex (VOR). The aim is to explore the functional properties of a bilateral structure in the premotor circuits of the oculomotor system. The major conclusions using sinusoidal inputs are: A bilateral structure in a sensory-motor system improves its linear range beyond expected central limits, if provided with symmetric interconnections. Given a bilateral (push-pull) sensory arrangement, non-linear sensor characteristics are actually advantageous. The greatest improvement in linear range of the reflex (here VOR) relies on intact sensors on both sides. In the case of a single sensor (unilateral head velocity input), or unmatched bilateral sensors, this study predicts a decrease in the linear range and the appearance of a variable bias. These implications are compatible with available data and can be tested in a clinical invironment.  相似文献   

17.
18.
It has been proposed that biarticular muscles are primarily responsible for the control of the direction of external forces, as their activation is closely related and highly sensitive to the direction of external forces. This functional role for biarticular muscles has been supported qualitatively by experimental evidence, but has never been tested quantitatively for lack of a mathematical/mechanical formulation of this theory and the difficulty of measuring individual muscle forces during voluntary movements. The purposes of this study were: (1) to define rules for muscular coordination based on the control of external forces; (2) to develop a model of the cat hindlimb that allows for the calculation of the magnitude and direction of the ground reaction forces (GRFs) produced by individual hindlimb muscles; and (3) to test if the coordination of mono- and biarticular cat hindlimb muscles is related to the control of the resultant GRF. We measured the GRF, hindlimb kinematics, selected muscle forces and activations during cat locomotion. Then, the measured muscle forces were used as input to the hindlimb model to compute the muscle-induced GRF. We assume that if activation (and possibly force) increased as the muscle-induced component of GRF approximated the resultant GRF, then that muscle was used by the central nervous system (CNS) to help control the direction of the external GRF. During cat walking, medial gastrocnemius (MG) and plantaris (PL) forces increased with increasing proximity to the GRF, while soleus (SOL) forces and vastus lateralis (VL) activations did not. SOL and VL activation were most strongly related to the vertical and parallel (braking/accelerating) component of the GRF, respectively. We concluded from these results that MG and PL are primarily responsible for the control of the direction of the GRF, while SOL primarily functions as an anti-gravity muscle, and VL as an acceleration/deceleration muscle.  相似文献   

19.
 We present a controls systems model of horizontal-plane head movements during perturbations of the trunk, which for the first time interfaces a model of the human head with neural feedback controllers representing the vestibulocollic (VCR) and the cervicocollic (CCR) reflexes. This model is homeomorphic such that model structure and parameters are drawn directly from anthropomorphic, biomechanical and physiological studies. Using control theory we analyzed the system model in the time and frequency domains, simulating neck movement responses to input perturbations of the trunk. Without reflex control, the head and neck system produced a second-order underdamped response with a 5.2 dB resonant peak at 2.1 Hz. Adding the CCR component to the system dampened the response by approximately 7%. Adding the VCR component dampened head oscillations by 75%. The VCR also improved low-frequency compensation by increasing the gain and phase lag, creating a phase minimum at 0.1 Hz and a phase peak at 1.1 Hz. Combining all three components (mechanics, VCR and CCR) linearly in the head and neck system reduced the amplitude of the resonant peak to 1.1 dB and increased the resonant frequency to 2.9 Hz. The closed loop results closely fit human data, and explain quantitatively the characteristic phase peak often observed. Received: 15 April 1996 / Accepted in revised form: 1 July 1996  相似文献   

20.
The vestibulo-ocular reflex (VOR) is capable of producing compensatory eye movements in three dimensions. It utilizes the head rotational velocity signals from the semicircular canals to control the contractions of the extraocular muscles. Since canal and muscle coordinate frames are not orthogonal and differ from one another, a sensorimotor transformation must be produced by the VOR neural network. Tensor theory has been used to construct a linear transformation that can model the three-dimensional behavior of the VOR. But tensor theory does not take the distributed, redundant nature of the VOR neural network into account. It suggests that the neurons subserving the VOR, such as vestibular nucleus neurons, should have specific sensitivity-vectors. Actual data, however, are not in accord. Data from the cat show that the sensitivity-vectors of vestibular nucleus neurons, rather than aligning with any specific vectors, are dispersed widely. As an alternative to tensor theory, we modeled the vertical VOR as a three-layered neural network programmed using the back-propagation learning algorithm. Units in mature networks had divergent sensitivity-vectors which resembled those of actual vestibular nucleus neurons in the cat. This similarity suggests that the VOR sensorimotor transformation may be represented redundantly rather than uniquely. The results demonstrate how vestibular nucleus neurons can encode the VOR sensorimotor transformation in a distributed manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号