首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Arabidopsis lyrata, a close relative of the model plant Arabidopsis thaliana, is 1 of a few plant species for which the genome is to be entirely sequenced, which promises to yield important insights into genome evolution. Only 2 sparse linkage maps have been published, and these were based solely on markers derived from the A. thaliana genome. Because the genome of A. lyrata is practically twice as large as that of A. thaliana, the extent of map coverage of the A. lyrata genome remains uncertain. In this study, a 2-way pseudo-testcross strategy was used to construct genetic linkage maps of A. lyrata subsp. petraea and A. lyrata subsp. lyrata, using simple sequence repeat (SSR) and cleaved amplified polymorphic sequence (CAPS) markers from the A. thaliana genome, and anonymous amplified fragment length polymorphism (AFLP) markers that could potentially uncover regions unique to the A. lyrata genome. The SSR and CAPS markers largely confirmed the relationships between linkage groups in A. lyrata and A. thaliana. AFLP markers slightly increased the coverage of the A. lyrata maps, but mostly increased marker density on the linkage groups. We noted a much lower level of polymorphism and a greater segregation distortion in A. lyrata subsp. lyrata markers. The implications of these findings for the sequencing of the A. lyrata genome are discussed.  相似文献   

2.
We have increased the density of genetic markers on the Arabidopsis lyrata chromosomes AL6 and AL7 corresponding to the A. thaliana chromosome IV, in order to determine chromosome rearrangements between these two species, and to compare recombination fractions across the same intervals. We confirm the two rearrangements previously inferred (a reciprocal translocation and a large inversion, which we infer to be pericentric). By including markers around the centromere regions of A. thaliana chromosomes IV and V, we localize the AL6 centromere, and can localize the breakpoints of these chromosome rearrangements more precisely than previously. One translocation breakpoint was close to the centromere, and the other coincided with one end of the inversion, suggesting that a single event caused both rearrangements. At the resolution of our mapping, apart from these rearrangements, all other markers are in the same order in A. lyrata and A. thaliana. We could thus compare recombination rates in the two species. We found slightly higher values in A. thaliana, and a minimum estimate for regions not close to a centromere in A. lyrata is 4-5 centimorgans per megabase. The mapped region of AL7 includes the self-incompatibility loci (S-loci), and this region has been predicted to have lower recombination than elsewhere in the genome. We mapped 17 markers in a region of 1.23 Mb surrounding these loci, and compared the approximately 600 kb closest to the S-loci with the surrounding region of approximately the same size. There were significantly fewer recombination events in the closer than the more distant region, supporting the above prediction, but showing that the low recombination region is very limited in size.  相似文献   

3.
To add detail to the genetic map of Arabidopsis lyrata, and compare it with that of A. thaliana, we have developed many additional markers in the A. lyrata linkage groups, LG1 and LG2, corresponding to A. thaliana chromosome 1. We used a newly developed method for marker development for single nucleotide polymorphisms present in gene sequences, plus length differences, to map genes in an A. lyrata family, including variants in several genes close to the A. thaliana centromere 1, providing the first data on the location of an A. lyrata centromere; we discuss the implications for the evolution of chromosome 1 of A. thaliana. With our larger marker density, large rearrangements between the two Arabidopsis species are excluded, except for a large inversion on LG2. This was previously known in Capsella; its presence in A. lyrata suggests that, like most other rearrangements, it probably arose in the A. thaliana lineage. Knowing that marker orders are similar, we can now compare homologous, non-rearranged map distances to test the prediction of more frequent crossing-over in the more inbreeding species. Our results support the previous conclusion of similar distances in the two species for A. lyrata LG1 markers. For LG2 markers, the distances were consistently, but non-significantly, larger in A. lyrata. Given the two species' large DNA content difference, the similarity of map lengths, particularly for LG1, suggests that crossing-over is more frequent across comparable physical distances in the inbreeder, A. thaliana, as predicted.  相似文献   

4.
Nucleotide variation in eight effectively unlinked genes was surveyed in species-wide samples of the closely related outbreeding species Arabidopsis halleri and A. lyrata ssp. petraea and in three of these genes in A. lyrata ssp. lyrata and A. thaliana. Significant genetic differentiation was observed more frequently in A. l. petraea than in A. halleri. Average estimates of nucleotide variation were highest in A. l. petraea and lowest in A. l. lyrata, reflecting differences among species in effective population size. The low level of variation in A. l. lyrata is concordant with a bottleneck effect associated with its origin. The A. halleri/A. l. petraea speciation process was studied, considering the orthologous sequences of an outgroup species (A. thaliana). The high number of ancestral mutations relative to exclusive polymorphisms detected in A. halleri and A. l. petraea, the significant results of the multilocus Fay and Wu H tests, and haplotype sharing between the species indicate introgression subsequent to speciation. Average among-population variation in A. halleri and A. l. petraea was approximately 1.5- and 3-fold higher than that in the inbreeder A. thaliana. The detected reduction of variation in A. thaliana is less than that expected from differences in mating system alone, and therefore from selective processes related to differences in the effective recombination rate, but could be explained by differences in population structure.  相似文献   

5.
The species Arabidopsis halleri, an emerging model for the study of heavy metal tolerance and accumulation in plants, has evolved a high level of constitutive zinc tolerance. Mapping of quantitative trait loci (QTL) was used to investigate the genetic architecture of zinc tolerance in this species. A first-generation backcross progeny of A. halleri ssp. halleri from a highly contaminated industrial site and its nontolerant relative A. lyrata ssp. petraea was produced and used for QTL mapping of zinc tolerance. A genetic map covering most of the A. halleri genome was constructed using 85 markers. Among these markers, 65 were anchored in A. thaliana and revealed high synteny with other Arabidopsis genomes. Three QTL of comparable magnitude on three different linkage groups were identified. At all QTL positions zinc tolerance was enhanced by A. halleri alleles, indicating directional selection for higher zinc tolerance in this species. The two-LOD support intervals associated with these QTL cover 24, 4, and 13 cM. The importance of each of these three regions is emphasized by their colocalization with HMA4, MTP1-A, and MTP1-B, respectively, three genes well known to be involved in metal homeostasis and tolerance in plants.  相似文献   

6.
We have constructed a genetic map of Arabidopsis lyrata, a self-incompatible relative of the plant model species A. thaliana. A. lyrata is a diploid (n = 8) species that diverged from A. thaliana (n = 5) approximately 5 MYA. Mapping was conducted in a full-sib progeny of two unrelated F(1) hybrids between two European populations of A. lyrata ssp. petraea. We used the least-squares method of the Joinmap program for map construction. The gross chromosomal differences between the two species were most parsimoniously explained with three fusions, two reciprocal translocations, and one inversion. The total map length was 515 cM, and the distances were 12% larger than those between corresponding markers in the linkage map of A. thaliana. The 72 markers, consisting of microsatellites and gene-based markers, were spaced on average every 8 cM. Transmission ratio distortion was extensive, and most distortions were specific to each reciprocal cross, suggesting cytoplasmic interactions. We estimate locations and most probable genotype frequencies of transmission ratio distorting loci (TRDL) with a Bayesian method and discuss the possible reasons for the observed distortions.  相似文献   

7.
Comparative mapping in cruciferous plants is ongoing, and recently two additional genetic maps of diploid Capsella and Arabidopsis lyrata subsp. petraea have been presented. We compared both maps with each other using the sequence map and genomic data resources from Arabidopsis thaliana as a reference. The ancestors of the species pair Capsella-Arabidopsis diverged from one another approximately 10-14 million years ago (mya), whereas Arabidopsis thaliana and Arabidopsis lyrata have been separated since roughly 5-6 mya. Our analysis indicated that among diploid Capsella and Arabidopsis lyrata all eight genetic linkage groups are totally colinear to each other, with only two inversions significantly differentiating these two species.By minimizing the number of chromosomal rearrangements during genome evolution, we presented a model of chromosome evolution involving all three species. From this scenario, it is obvious that Arabidopsis thaliana underwent a dramatic genome reconstruction, with a base chromosome number reduction from five to eight and with approximately 1.3 chromosomal rearrangements per million years. In contrast, the terminal lineage leading to Capsella has only undergone less than 0.09 rearrangements per million years. This is the same rate as calculated for Arabidopsis lyrata since its separation from the Capsella lineage 10-14 mya. These results are in strong contrast to all overestimated rates calculated from comparisons of the systems Arabidopsis thaliana and Brassica, and our data demonstrate the problematic nature of both model systems.  相似文献   

8.
In contrast to the situation described for mammals and Drosophila, chromosome territory (CT) arrangement and somatic homologous pairing in interphase nuclei of Arabidopsis thaliana (n = 5) are predominantly random except for a more frequent association of the chromosomes bearing a homologous nucleolus organizer region. To find out whether this chromosome arrangement is also characteristic for other species of the genus Arabidopsis, we investigated Arabidopsis lyrata ssp. lyrata (n = 8), one of the closest relatives of A. thaliana. First, we determined the size of each chromosome and chromosome arm, the sequence type of centromeric repeats and their distribution between individual centromeres and the position of the 5S/45S rDNA arrays in A. lyrata. Then we demonstrated that CT arrangement, homologous pairing and sister chromatid alignment of distinct euchromatic and/or heterochromatic regions within A. lyrata interphase nuclei are similar to that in A. thaliana nuclei. Thus, the arrangement of interphase chromosomes appears to be conserved between both taxa that diverged about 5 million years ago. Since the chromosomes of A. lyrata resemble those of the presumed ancestral karyotype, a similar arrangement of interphase chromosomes is also to be expected for other closely related diploid species of the Brassicaceae family.  相似文献   

9.
We examined the level of postzygotic reproductive isolation in F(1) and F(2) hybrids of reciprocal crosses between the Arabidopsis lyrata subspecies lyrata (North American) and petraea (European). Our main results are: first, the percentage of fertile pollen was significantly reduced in the F(1) and F(2) compared to the parental populations. Second, mean pollen fertility differed markedly between reciprocal crosses: 84% in the F(2) with ssp. lyrata cytoplasm and 61% in the F(2) with ssp. petraea cytoplasm. Third, 17% of the F(2) with ssp. petraea cytoplasm showed male sterility (produced less than 30 pollen grains in our subsample). The hybrids were female fertile. We used QTL mapping to find the genomic regions that determine pollen fertility and that restore cytoplasmic male sterility (CMS). In the F(2) with ssp. lyrata cytoplasm, an epistatic pair of QTLs was detected. In the reciprocal F(2) progeny, four QTLs demonstrated within-population polymorphism for hybrid male sterility. In addition, in the F(2) with ssp. petraea cytoplasm, there was a strong male fertility restorer locus on chromosome 2 where a cluster of CMS restorer gene-related PPR genes have been found in A. lyrata. Our results underline the importance of cytonuclear interactions in understanding genetics of the early stages of speciation.  相似文献   

10.
The genetic variation that underlies the glucosinolate phenotype of Arabidopsis lyrata ssp. petraea was investigated between and within populations. A candidate glucosinolate biosynthetic locus (MAM, containing methylthioalkylmalate synthase genes) was mapped in A. lyrata to a location on linkage group 6 corresponding to the homologous location for MAM in A. thaliana. In A. thaliana MAM is responsible for side chain elongation in aliphatic glucosinolates, and the MAM phenotype can be characterized by the ratios of long- to short-chain glucosinolates. A quantitative trait loci (QTL) analysis of glucosinolate ratios in an A. lyrata interpopulation cross found one QTL at MAM. Additional QTL were identified for total indolic glucosinolates and for the ratio of aliphatic to indolic glucosinolates. MAM was then used as the candidate gene for a within-population cosegregation analysis in a natural A. lyrata population from Germany. Extensive variation in microsatellite markers at MAM was found and this variation cosegregated with the same glucosinolate ratios as in the QTL study. The combined results indicate that both between- and within-population genetic variation in the MAM region determines phenotypic variation in glucosinolate side chains in A. lyrata.  相似文献   

11.
Linkage mapping is often used to identify genes associated with phenotypic traits and for aiding genome assemblies. Still, many emerging maps do not locate centromeres – an essential component of the genomic landscape. Here, we demonstrate that for genomes with strong chiasma interference, approximate centromere placement is possible by phasing the same data used to generate linkage maps. Assuming one obligate crossover per chromosome arm, information about centromere location can be revealed by tracking the accumulated recombination frequency along linkage groups, similar to half‐tetrad analyses. We validate the method on a linkage map for sockeye salmon (Oncorhynchus nerka) with known centromeric regions. Further tests suggest that the method will work well in other salmonids and other eukaryotes. However, the method performed weakly when applied to a male linkage map (rainbow trout; O. mykiss) characterized by low and unevenly distributed recombination – a general feature of male meiosis in many species. Further, a high frequency of double crossovers along chromosome arms in barley reduced resolution for locating centromeric regions on most linkage groups. Despite these limitations, our method should work well for high‐density maps in species with strong recombination interference and will enrich many existing and future mapping resources.  相似文献   

12.
Nucleotide variation at the alcohol dehydrogenase locus (Adh) was studied in the outcrossing Arabidopsis lyrata, a close relative of the selfing Arabidopsis thaliana. Overall, estimated nucleotide diversity in the North American ssp. lyrata and two European ssp. petraea populations was 0.0038, lower than the corresponding specieswide estimate for A. thaliana at the same set of nucleotide sites. The distribution of segregating sites across the gene differed between the two species. Estimated sequence diversity within an A. lyrata population with a large sample size (0.0023) was much higher than has previously been observed for A. thaliana. This North American population has an excess of sites at intermediate frequencies compared with neutral expectation (Tajima's D = 2.3, P < 0.005), suggestive of linked balancing selection or a recent population bottleneck. In contrast, an excess of rare polymorphisms has been found in A. thaliana. Polymorphism within A. lyrata and divergence from A. thaliana appear to be correlated across the Adh gene sequence. The geographic distribution of polymorphism was quite different from that of A. thaliana, for which earlier studies of several genes found low within-population nucleotide site polymorphism and no overall continental differentiation of variation despite large differences in site frequencies between local populations. Differences between the outcrossing A. lyrata and the selfing A. thaliana reflect the impact of differences in mating system and the influence of bottlenecks in A. thaliana during rapid colonization on DNA sequence polymorphism. The influence of additional variability-reducing mechanisms, such as background selection or hitchhiking, may not be discernible.  相似文献   

13.
Molecular mapping of the centromeres of tomato chromosomes 7 and 9   总被引:4,自引:0,他引:4  
The centromeres of two tomato chromosomes have been precisely localized on the molecular linkage map through dosage analysis of trisomic stocks. To map the centromeres of chromosomes 7 and 9, complementary telo-, secondary, and tertiary trisomic stocks were used to assign DNA markers to their respective chromosome arms and thus to localize the centromere at the junction of the short and long arms. It was found that both centromeres are situated within a cluster of cosegregating markers. In an attempt to order the markers within the centric clusters, genetic maps of the centromeric regions of chromosomes 7 and 9 were constructed from F2 populations of 1620Lycopersicon esculentum × L. pennellii (E × P) plants and 1640L. esculentum × L. pimpinellifolium (E × PM) plants. Despite the large number of plants analyzed, very few recombination events were detected in the centric regions, indicating a significant suppression of recombination at this region of the chromosome. The fact that recombination suppression is equally strong in crosses between closely related (E × PM) and remotely related (E × P) parents suggests that centromeric suppression is not due to DNA sequence mismatches but to some other mechanism. The greatest number of centromeric markers was resolved in theL. esculentum × L. pennellii F2 population. The centromere of chromosome 7 is surrounded by eight cosegregating markers: three on the short arm, five on the long arm. Similarly, the centric region of chromosome 9 contains ten cosegregating markers including one short arm marker and nine long arm markers. The localization of centromeres to precise intervals on the molecular linkage map represents the first step towards the characterization and ultimate isolation of tomato centromeres.  相似文献   

14.
Expressed sequence tags (ESTs) from the Arabidopsis thaliana sequencing project were used to construct a genetic RFLP map for Brassica oleracea. Of the 110 A. thaliana ESTs tested, 95 were found to be informative RFLP probes in map construction. In total, 212 new loci corresponding to the 95 ESTs were added to the existing genetic map of B. oleracea. The enriched map covers all nine basic linkage groups and confirms that the chromosomes of B. oleracea and A. thaliana are similar in linear organization. However, varying levels of sequence conservation between the chromosomes of B. oleracea and A. thaliana were detected in different regions of the genomes. Long conserved regions encompassing entire chromosome arms in both genomes were identified; these are probably shared by descent. On the other hand, extensive rearrangements were observed in numerous chromosome regions, producing a mosaic of A. thaliana-like segments in the genome of Brassica. The presence of extensive chromosome duplication in A. thaliana was taken into consideration in the construction of the comparative maps of B. oleracea and A. thaliana.  相似文献   

15.
Species closely related to model organisms present the opportunity to efficiently apply molecular and functional tools developed by a large research community to taxa with different ecological and evolutionary histories. We complied 42 microsatellite loci that amplify under common conditions in four closely related Arabidopsis: A. thaliana; A. halleri; A. lyrata ssp. lyrata; and A. lyrata ssp. petraea, as well as in one more distantly related crucifer; Arabis drummondii. Variation at these loci is amenable to a diversity of applications including population genetics, phylogeographical analyses, mapping of inter and intraspecific crosses, and recombination mapping. Our analysis of microsatellite variation illustrates significant differences in population genetic parameters among three Arabidopsis species. A population of A. thaliana, an inbreeding annual plant associated with disturbed habitats, was highly monomorphic (P = 8% percent polymorphic loci) and only 0.2% heterozygous for 648 locus-by-individual combinations. A population of the self-incompatible perennial herb, A. halleri, was more genetically variable (P = 71%) and had an excess of heterozygosity that may reflect a recent population bottleneck associated with human-mediated founder events. A population of the self-incompatible perennial herb, A. lyrata ssp. petraea, was even more genetically variable (P = 86%) and appeared to be at mutation-drift equilibrium. Population structure estimated from neutrally evolving loci provides an empirical expectation against which hypotheses of adaptive evolution at functional loci can be tested.  相似文献   

16.
Population genetic structure of Arabidopsis lyrata in Europe   总被引:2,自引:0,他引:2  
Population genetic theory predicts that the self-incompatible and perennial herb, Arabidopsis lyrata, will have a genetic structure that differs from the self-fertilizing, annual Arabidopsis thaliana. We quantified the genetic structure for eight populations of A. lyrata ssp. petraea in historically nonglaciated regions of central Europe. Analysis of 20 microsatellite loci for 344 individuals demonstrated that, in accordance with predictions, diploid populations had high genome-wide heterozygosity (H(O) = 0.48; H(E) = 0.52), high within-population diversity (83% of total) compatible with mutation-drift equilibrium, and moderate differentiation among populations (F(ST) = 0.17). Within a single population, the vast majority of genetic variability (92%) was found at the smallest spatial scale (< 3 m). Although there was no evidence of biparental inbreeding or clonal propagation at this scale (F(IS) = 0.003), significant fine-scale spatial autocorrelation indicated localized gene flow presumably due to gravity dispersed seeds (Sp = 0.018). Limited gene flow between isolated population clusters (regions) separated by hundreds of kilometres has given rise to an isolation by distance pattern of diversification, with low, but significant, differentiation among regions (F(ST) = 0.05). The maintenance of geographically widespread polymorphisms and uniformly high diversity throughout central Europe is consistent with periglacial survival of A. lyrata ssp. petraea north of the Alps in steppe-tundra habitats during the last glacial maximum. As expected of northern and previously glaciated localities, A. lyrata in Iceland was genetically less diverse and highly differentiated from central Europe (H(E) = 0.37; F(ST) = 0.27).  相似文献   

17.
A functional centromere located on a small DNA restriction fragment from Saccharomyces cerevisiae was identified as CEN14 by integrating centromere-adjacent DNA plus the URA3 gene by homologous recombination into the yeast genome and then by localizing the URA3 gene to chromosome XIV by standard tetrad analysis. DNA sequence analysis revealed that CEN14 possesses sequences (elements I, II, and III) that are characteristic of other yeast centromeres. Mitotic and meiotic analyses indicated that the CEN14 function resides on a 259-base-pair (bp) RsaI-EcoRV restriction fragment, containing sequences that extend only 27 bp to the right of the element I to III region. In conjunction with previous findings on CEN3 and CEN11, these results indicate that the specific DNA sequences required in cis for yeast centromere function are contained within a region about 150 bp in length.  相似文献   

18.
Zhang W  Lee HR  Koo DH  Jiang J 《The Plant cell》2008,20(1):25-34
The centromere in eukaryotes is defined by the presence of a special histone H3 variant, CENH3. Centromeric chromatin consists of blocks of CENH3-containing nucleosomes interspersed with blocks of canonical H3-containing nucleosomes. However, it is not known how CENH3 is precisely deposited in the centromeres. It has been suggested that epigenetic modifications of the centromeric chromatin may play a role in centromere identity. The centromeres of Arabidopsis thaliana are composed of megabase-sized arrays of a 178-bp satellite repeat. Here, we report that the 178-bp repeats associated with the CENH3-containing chromatin (CEN chromatin) are hypomethylated compared with the same repeats located in the flanking pericentromeric regions. A similar hypomethylation of DNA in CEN chromatin was also revealed in maize (Zea mays). Hypomethylation of the DNA in CEN chromatin is correlated with a significantly reduced level of H3K9me2 in Arabidopsis. We demonstrate that the 178-bp repeats from CEN chromatin display a distinct distribution pattern of the CG and CNG sites, which may provide a foundation for the differential methylation of these repeats. Our results suggest that DNA methylation plays an important role in epigenetic demarcation of the CEN chromatin.  相似文献   

19.
We have analysed the centromere 1 (CEN1) of Arabidopsis thaliana by integration of genetic, sequence and fluorescence in situ hybridisation (FISH) data. CEN1 is considered to include the centromeric core and the flanking left and right pericentromeric regions, which are distinct parts by structural and/or functional properties. CEN1 pericentromeres are composed of different dispersed repetitive elements, sometimes interrupted by functional genes. In contrast the CEN1 core is more uniformly structured harbouring only two different repeats. The presented analysis reveals aspects concerning distribution and effects of the uniformly shaped heterochromatin, which covers all CEN1 regions. A lethal mutation tightly linked to CEN1 enabled us to measure recombination frequencies within the heterochromatin in detail. In the left pericentromere, the change from eu- to heterochromatin is accompanied by a gradual change in sequence composition but by an extreme change in recombination frequency (from normal to 53-fold decrease) which takes place within a small region spanning 15 kb. Generally, heterochromatin is known to suppress recombination. However, the same analysis reveals that left and right pericentromere, though similar in sequence composition, differ markedly in suppression (53-fold versus 10-fold). The centromeric core exhibits at least 200-fold if not complete suppression. We discuss whether differences in (fine) composition reflect quantitative and qualitative differences in binding sites for heterochromatin proteins and in turn render different functional properties. Based on the presented data we estimate the sizes of Arabidopsis centromeres. These are typical for regional centromeres of higher eukaryotes and range from 4.4 Mb (CEN1) to 3.55 Mb (CEN4).  相似文献   

20.
Kawabe A  Nasuda S  Charlesworth D 《Genetics》2006,174(4):2021-2032
Arabidopsis halleri and lyrata have three different major centromeric satellite sequences, a unique finding for a diploid Arabidopsis species. Since centromeric histones coevolve with centromeric satellites, these proteins would be predicted to show signs of selection when new centromere satellites have recently arisen. We isolated centromeric protein genes from A. halleri and lyrata and found that one of them, HTR12 (CENP-A), is duplicated, while CENP-C is not. Phylogenetic analysis indicates that the HTR12 duplication occurred after these species diverged from A. thaliana. Genetic mapping shows that HTR12 copy B has the same genomic location as the A. thaliana gene; the other copy (A, at the other end of the same chromosome) is probably the new copy. To test for selection since the duplication, we surveyed diversity at both HTR12 loci within A. lyrata. Overall, there is no strong evidence for an "evolutionary arms race" causing multiple replacement substitutions. The A. lyrata HTR12B sequences fall into three classes of haplotypes, apparently maintained for a long time, but they all encode the same amino acid sequence. In contrast, HTR12A has low diversity, but many variants are amino acid replacements, possibly due to independent selective sweeps within populations of the species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号