共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Ca(2+)-dependent inactivation of a cloned cardiac Ca2+ channel alpha 1 subunit (alpha 1C) expressed in Xenopus oocytes. 总被引:1,自引:0,他引:1 下载免费PDF全文
The alpha 1 subunit of cardiac Ca2+ channel, expressed alone or coexpressed with the corresponding beta subunit in Xenopus laevis oocytes, elicits rapidly inactivating Ca2+ currents. The inactivation has the following properties: 1) It is practically absent in external Ba2+; 2) it increases with Ca2+ current amplitudes; 3) it is faster at more negative potentials for comparable Ca2+ current amplitudes; 4) it is independent of channel density; and 5) it does not require the beta subunit. These findings indicate that the Ca2+ binding site responsible for inactivation is encoded in the alpha 1 subunit and suggest that it is located near the inner channel mouth but outside the membrane electric field. 相似文献
3.
Aiello EA Cingolani HE 《American journal of physiology. Heart and circulatory physiology》2001,280(4):H1528-H1536
Angiotensin II (ANG II) evokes positive inotropic responses in various species. However, the effects of this peptide on L-type Ca(2+) currents (I(Ca)) are still controversial. We report in this study that the effects of ANG II on I(Ca) differ depending on the mode of patch-clamp technique used, standard whole cell (WC) or perforated patch (PP). No significant effects of ANG II (0.5 microM) were observed when WC in cells dialyzed with high EGTA was used. However, when the intracellular milieu was preserved using PP, ANG II induced a significant 77 +/- 6% increase in I(Ca) (-2.2 +/- 0.3 in control and -3.9 +/- 0.6 pA/pF in ANG II, n = 8, P < 0.05). When WC was used in cells dialyzed with low Ca(2+) buffer capacity (EGTA 0.1 mM), ANG II was able to induce an increase in I(Ca) (-3.5 +/- 0.3 in control vs. -4.8 +/- 0.4 pA/pF in ANG II, n = 13, P < 0.05). This increase was prevented when the cells were also dialyzed with the protein kinase C (PKC) inhibitor chelerythrine (50 microM) or calphostin C (1 microM). The above results allow us to conclude that strong intracellular Ca(2+) buffering prevents the physiological actions of ANG II on cardiac I(Ca), which are also dependent on activation of PKC. 相似文献
4.
5.
Wanichawan P Louch WE Hortemo KH Austbø B Lunde PK Scott JD Sejersted OM Carlson CR 《American journal of physiology. Cell physiology》2011,300(5):C989-C997
The cardiac Na(+)/Ca(2+) exchanger 1 (NCX1) is an important regulator of intracellular Ca(2+) homeostasis and cardiac function. Several studies have indicated that NCX1 is phosphorylated by the cAMP-dependent protein kinase A (PKA) in vitro, which increases its activity. However, this finding is controversial and no phosphorylation site has so far been identified. Using bioinformatic analysis and peptide arrays, we screened NCX1 for putative PKA phosphorylation sites. Although several NCX1 synthetic peptides were phosphorylated by PKA in vitro, only one PKA site (threonine 731) was identified after mutational analysis. To further examine whether NCX1 protein could be PKA phosphorylated, wild-type and alanine-substituted NCX1-green fluorescent protein (GFP)-fusion proteins expressed in human embryonic kidney (HEK)293 cells were generated. No phosphorylation of full-length or calpain- or caspase-3 digested NCX1-GFP was observed with purified PKA-C and [γ-(32)P]ATP. Immunoblotting experiments with anti-PKA substrate and phosphothreonine-specific antibodies were further performed to investigate phosphorylation of endogenous NCX1. Phospho-NCX1 levels were also not increased after forskolin or isoproterenol treatment in vivo, in isolated neonatal cardiomyocytes, or in total heart homogenate. These data indicate that the novel in vitro PKA phosphorylation site is inaccessible in full-length as well as in calpain- or caspase-3 digested NCX1 protein, suggesting that NCX1 is not a direct target for PKA phosphorylation. 相似文献
6.
Walsh KB Cheng Q 《American journal of physiology. Heart and circulatory physiology》2004,286(1):H186-H194
The goal of this study was to determine whether the protein kinase A (PKA) responsiveness of the cardiac L-type Ca(2+) current (ICa) is affected during transient increases in intracellular Ca(2+) concentration. Ventricular myocytes were isolated from 3- to 4-day-old neonatal rats and cultured on aligned collagen thin gels. When measured in 1 or 2 mM Ca(2+) external solution, the aligned myocytes displayed a large ICa that was weakly regulated (20% increase) during stimulation of PKA by 2 microM forskolin. In contrast, application of forskolin caused a 100% increase in ICa when the external Ca(2+) concentration was reduced to 0.5 mM or replaced with Ba(2+). This Ca(2+)-dependent inhibition was also observed when the cells were treated with 1 microM isoproterenol, 100 microM 3-isobutyl-1-methylxanthine, or 500 microM 8-bromo-cAMP. The responsiveness of ICa to PKA was restored during intracellular dialysis with a calmodulin (CaM) inhibitory peptide but not during treatment with inhibitors of protein kinase C, Ca(2+)/CaM-dependent protein kinase, or calcineurin. Adenoviral-mediated expression of a CaM molecule with mutations in all four Ca(2+)-binding sites also increased the PKA sensitivity of ICa. Finally, adult mouse ventricular myocytes displayed a greater response to forskolin and cAMP in external Ba(2+). Thus Ca(2+) entering the myocyte through the voltage-gated Ca(2+) channel regulates the PKA responsiveness of ICa. 相似文献
7.
Boixel C Tessier S Pansard Y Lang-Lazdunski L Mercadier JJ Hatem SN 《American journal of physiology. Heart and circulatory physiology》2000,278(2):H670-H676
The effects of tyrosine protein kinases (TK) on the L-type Ca(2+) current (I(Ca)) were examined in whole cell patch-clamped human atrial myocytes. The TK inhibitors genistein (50 microM), lavendustin A (50 microM), and tyrphostin 23 (50 microM) stimulated I(Ca) by 132 +/- 18% (P < 0.001), 116 +/- 18% (P < 0.05), and 60 +/- 6% (P < 0.001), respectively. After I(Ca) stimulation by genistein, external application of isoproterenol (1 microM) caused an additional increase in I(Ca). Dialyzing the cells with a protein kinase A inhibitor suppressed the effect of isoproterenol on I(Ca) but not that of genistein. Inhibition of protein kinase C (PKC) by pretreatment of cells with 100 nM staurosporine or 100 nM calphostin C prevented the effects of genistein on I(Ca). The PKC activator phorbol 12-myristate 13-acetate (PMA), after an initial stimulation (75 +/- 17%, P < 0.05), decreased I(Ca) (-36 +/- 5%, P < 0.001). Once the inhibitory effect of PMA on I(Ca) had stabilized, genistein strongly stimulated the current (323 +/- 25%, P < 0.05). Pretreating myocytes with genistein reduced the inhibitory effect of PMA on I(Ca). We conclude that, in human atrial myocytes, TK inhibit I(Ca) via a mechanism that involves PKC. 相似文献
8.
Regulation of maximal open probability is a separable function of Ca(v)beta subunit in L-type Ca2+ channel, dependent on NH2 terminus of alpha1C (Ca(v)1.2alpha) 下载免费PDF全文
beta subunits (Ca(v)beta) increase macroscopic currents of voltage-dependent Ca2+ channels (VDCC) by increasing surface expression and modulating their gating, causing a leftward shift in conductance-voltage (G-V) curve and increasing the maximal open probability, P(o,max). In L-type Ca(v)1.2 channels, the Ca(v)beta-induced increase in macroscopic current crucially depends on the initial segment of the cytosolic NH2 terminus (NT) of the Ca(v)1.2alpha (alpha1C) subunit. This segment, which we term the "NT inhibitory (NTI) module," potently inhibits long-NT (cardiac) isoform of alpha1C that features an initial segment of 46 amino acid residues (aa); removal of NTI module greatly increases macroscopic currents. It is not known whether an NTI module exists in the short-NT (smooth muscle/brain type) alpha(1C) isoform with a 16-aa initial segment. We addressed this question, and the molecular mechanism of NTI module action, by expressing subunits of Ca(v)1.2 in Xenopus oocytes. NT deletions and chimeras identified aa 1-20 of the long-NT as necessary and sufficient to perform NTI module functions. Coexpression of beta2b subunit reproducibly modulated function and surface expression of alpha1C, despite the presence of measurable amounts of an endogenous Ca(v)beta in Xenopus oocytes. Coexpressed beta2b increased surface expression of alpha1C approximately twofold (as demonstrated by two independent immunohistochemical methods), shifted the G-V curve by approximately 14 mV, and increased P(o,max) 2.8-3.8-fold. Neither the surface expression of the channel without Ca(v)beta nor beta2b-induced increase in surface expression or the shift in G-V curve depended on the presence of the NTI module. In contrast, the increase in P(o,max) was completely absent in the short-NT isoform and in mutants of long-NT alpha1C lacking the NTI module. We conclude that regulation of P(o,max) is a discrete, separable function of Ca(v)beta. In Ca(v)1.2, this action of Ca(v)beta depends on NT of alpha1C and is alpha1C isoform specific. 相似文献
9.
A defining property of L-type Ca(2+) channels is their potentiation by both 1,4-dihydropyridine agonists and strong depolarization. In contrast, non-L-type channels are potentiated by neither agonist nor depolarization, suggesting that these two processes may by linked. In this study, we have tested whether the mechanisms of agonist- and depolarization-induced potentiation in the cardiac L-type channel (alpha(1C)) are linked. We found that the mutant L-type channel GFP-alpha(1C)(TQ-->YM), bearing the mutations T1066Y and Q1070M, was able to undergo depolarization-induced potentiation but not potentiation by agonist. Conversely, the chimeric channel GFP-CACC was potentiated by agonist but not by strong depolarization. These data indicate that the mechanisms of agonist- and depolarization-induced potentiation of alpha(1C) are distinct. Since neither GFP-CACC nor GFP-CCAA was potentiated significantly by depolarization, no single repeat of alpha(1C) appears to be responsible for depolarization-induced potentiation. Surprisingly, GFP-CACC displayed a low estimated open probability similar to that of the alpha(1C), but could not support depolarization-induced potentiation, demonstrating that a relatively low open probability alone is not sufficient for depolarization-induced potentiation to occur. Thus, depolarization-induced potentiation may be a global channel property requiring participation from all four homologous repeats. 相似文献
10.
Poteser M Romanin C Schreibmayer W Mayer B Groschner K 《The Journal of biological chemistry》2001,276(18):14797-14803
Modulation of smooth muscle, L-type Ca(2+) channels (class C, Ca(V)1.2b) by thionitrite S-nitrosoglutathione (GSNO) was investigated in the human embryonic kidney 293 expression system at the level of whole-cell and single-channel currents. Extracellular administration of GSNO (2 mM) rapidly reduced whole-cell Ba(2+) currents through channels derived either by expression of alpha1C-b or by coexpression of alpha1C-b plus beta2a and alpha2-delta. The non-thiol nitric oxide (NO) donors 2,2-diethyl-1-nitroso-oxhydrazin (2 mM) and 3-morpholinosydnonimine-hydrochloride (2 mM), which elevated cellular cGMP levels to a similar extent as GSNO, failed to affect Ba(2+) currents significantly. Intracellular administration of copper ions, which promote decomposition of the thionitrite, antagonized its inhibitory effect, and loading of cells with high concentrations of dithiothreitol (2 mM) prevented the effect of GSNO on alpha1C-b channels. Intracellular loading of cells with oxidized glutathione (2 mM) affected neither alpha1C-b channel function nor their modulation by GSNO. Analysis of single-channel behavior revealed that GSNO inhibited Ca(2+) channels mainly by reducing open probability. The development of GSNO-induced inhibition was associated with the transient occurrence of a reduced conductance state of the channel. Our results demonstrate that GSNO modulates the alpha1 subunit of smooth muscle L-type Ca(2+) channels by an intracellular mechanism that is independent of NO release and stimulation of guanylyl cyclase. We suggest S-nitrosation of intracellularly located sulfhydryl groups as an important determinant of Ca(2+) channel gating and conductance. 相似文献
11.
12.
Gao T Bunemann M Gerhardstein BL Ma H Hosey MM 《The Journal of biological chemistry》2000,275(33):25436-25444
We have previously demonstrated that formation of a complex between L-type calcium (Ca(2+)) channel alpha(1C) (Ca(V)1.2) and beta subunits was necessary to target the channels to the plasma membrane when expressed in tsA201 cells. In the present study, we identified a region in the C terminus of the alpha(1C) subunit that was required for membrane targeting. Using a series of C-terminal deletion mutants of the alpha(1C) subunit, a domain consisting of amino acid residues 1623-1666 ("targeting domain") in the C terminus of the alpha(1C) subunit has been identified to be important for correct targeting of L-type Ca(2+) channel complexes to the plasma membrane. Although cells expressing the wild-type alpha(1C) and beta(2a) subunits exhibited punctate clusters of channel complexes along the plasma membrane with little intracellular staining, co-expression of deletion mutants of the alpha(1C) subunit that lack the targeting domain with the beta(2a) subunit resulted in an intracellular localization of the channels. In addition, three other regions in the C terminus of the alpha(1C) subunit that were downstream of residues 1623-1666 were found to contribute to membrane targeting of the L-type channels. Deletion of these domains in the alpha(1C) subunit resulted in a reduction of plasma membrane-localized channels, and a concomitant increase in channels localized intracellularly. Taken together, these results have demonstrated that a targeting domain in the C terminus of the alpha(1C) subunit was required for proper plasma membrane localization of the L-type Ca(2+) channels. 相似文献
13.
Ca(2+) bridges the C2 membrane-binding domain of protein kinase Calpha directly to phosphatidylserine 下载免费PDF全文
Verdaguer N Corbalan-Garcia S Ochoa WF Fita I Gómez-Fernández JC 《The EMBO journal》1999,18(22):6329-6338
The C2 domain acts as a membrane-targeting module in a diverse group of proteins including classical protein kinase Cs (PKCs), where it plays an essential role in activation via calcium-dependent interactions with phosphatidylserine. The three-dimensional structures of the Ca(2+)-bound forms of the PKCalpha-C2 domain both in the absence and presence of 1, 2-dicaproyl-sn-phosphatidyl-L-serine have now been determined by X-ray crystallography at 2.4 and 2.6 A resolution, respectively. In the structure of the C2 ternary complex, the glycerophosphoserine moiety of the phospholipid adopts a quasi-cyclic conformation, with the phosphoryl group directly coordinated to one of the Ca(2+) ions. Specific recognition of the phosphatidylserine is reinforced by additional hydrogen bonds and hydrophobic interactions with protein residues in the vicinity of the Ca(2+) binding region. The central feature of the PKCalpha-C2 domain structure is an eight-stranded, anti-parallel beta-barrel with a molecular topology and organization of the Ca(2+) binding region closely related to that found in PKCbeta-C2, although only two Ca(2+) ions have been located bound to the PKCalpha-C2 domain. The structural information provided by these results suggests a membrane binding mechanism of the PKCalpha-C2 domain in which calcium ions directly mediate the phosphatidylserine recognition while the calcium binding region 3 might penetrate into the phospholipid bilayer. 相似文献
14.
The duck hepatitis B virus core protein contains a highly phosphorylated C terminus that is essential for replication but not for RNA packaging. 总被引:3,自引:18,他引:3 下载免费PDF全文
In this report, we present biochemical and mutational analyses of the duck hepatitis B virus core protein (DHBcAg). The data show that duck hepatitis B virus core particles consist of at least four different proteins with sizes between 32 and 34 kilodaltons, all of which react with DHBcAg-specific antiserum. Most of the heterogeneity was found to be due to extensive phosphorylation of the DHBcAg C terminus. Bacterially synthesized DHBcAg was not phosphorylated, and mutations within the viral P gene did not influence phosphorylation, suggesting that the kinase activity is not encoded by the viral C or P gene. Removal of the last 12 C-terminal DHBcAg amino acids, which are at least in part located on the core particle surface, had only a minor effect on DHBcAg phosphorylation and did not interfere with packaging of the capsids into viral envelopes or with genome replication. However, an attempt to infect ducklings with this mutant failed. Removal of the last 36 C-terminal DHBcAg amino acids abolished core protein heterogeneity but did not prevent particle formation. Interestingly, these particles were defective in genome replication, although they could still package viral pregenomic RNA. 相似文献
15.
A plasma membrane Ca(2+)-pump ATPase preparation purified from porcine aorta was incubated with cGMP-dependent protein kinase (G-kinase) under the conditions under which dose-dependent stimulation of the enzyme by G-kinase was observed. Several proteins were phosphorylated, but two isoforms of plasma membrane Ca(2+)-pump ATPase with molecular masses of 135- and 145-kDa were not phosphorylated. The protein that was phosphorylated by G-kinase and identified in our previous study as the 135-kDa isoform of Ca(2+)-pump ATPase, on the basis of its almost identical mobility on SDS-PAGE, was found to be another protein with a molecular mass of 138 kDa. Fractionation of the enzyme preparation after incubation with G-kinase by a newly developed calmodulin affinity chromatographic method resulted in the separation of all the G-kinase substrates from the two isoforms of plasma membrane Ca(2+)-pump ATPase. These results suggest that the direct phosphorylation of the Ca(2+)-pump ATPase does not occur in association with the stimulation of the plasma membrane Ca(2+)-pump ATPase by G-kinase. 相似文献
16.
17.
J N Muth H Yamaguchi G Mikala I L Grupp W Lewis H Cheng L S Song E G Lakatta G Varadi A Schwartz 《The Journal of biological chemistry》1999,274(31):21503-21506
The L-type voltage-dependent calcium channel (L-VDCC) regulates calcium influx in cardiac myocytes. Activation of the beta-adrenergic receptor (betaAR) pathway causes phosphorylation of the L-VDCC and that in turn increases Ca(2+) influx. Targeted expression of the L-VDCC alpha(1) subunit in transgenic (Tg) mouse ventricles resulted in marked blunting of the betaAR pathway. Inotropic and lusitropic responses to isoproterenol and forskolin in Tg hearts were significantly reduced. Likewise, Ca(2+) current augmentation induced by iso- proterenol and forskolin was markedly depressed in Tg cardiomyocytes. Despite no change in betaAR number, isoproterenol-stimulated adenylyl cyclase activity was absent in Tg membranes and NaF and forskolin responses were reduced. We postulate an important pathway for regulation of the betaAR by Ca(2+) channels. 相似文献
18.
Pan Y Cohen I Guillerault F Fève B Girard J Prip-Buus C 《The Journal of biological chemistry》2002,277(49):47184-47189
We previously reported that the N-terminal domain (1-147 residues) of rat liver carnitine palmitoyltransferase I (L-CPTI) was essential for import into the outer mitochondrial membrane and for maintenance of a malonyl-CoA-sensitive conformation. Malonyl-CoA binding experiments using mitochondria of Saccharomyces cerevisiae strains expressing wild-type L-CPTI or previously constructed chimeric CPTs (Cohen, I., Kohl, C., McGarry, J.D., Girard, J., and Prip-Buus, C. (1998) J. Biol. Chem. 273, 29896-29904) indicated that the N-terminal domain was unable, independently of the C-terminal domain, to bind malonyl-CoA with a high affinity, suggesting that the modulation of malonyl-CoA sensitivity occurred through N/C intramolecular interactions. To assess the role of the C terminus in malonyl-CoA sensitivity, a series of C-terminal deletion mutants was generated. The kinetic properties of Delta772-773 and Delta767-773 deletion mutants were similar to those of L-CPTI, indicating that the last two highly conserved Lys residues in all known L-CPTI species were not functionally essential. By contrast, Delta743-773 deletion mutant was totally inactive and unfolded, as shown by its sensitivity to trypsin proteolysis. Because the C terminus of the native folded L-CPTI could be cleaved by trypsin without inducing protein unfolding, we concluded that the last 31 C-terminal residues constitute a secondary structural determinant essential for the initial protein folding of L-CPTI. 相似文献
19.
The alpha subunit of type II Ca2+/calmodulin-dependent protein kinase is highly conserved in Drosophila 总被引:2,自引:0,他引:2
A monoclonal antibody against rat brain type II Ca2+/calmodulin-dependent protein kinase (CaM kinase) precipitates three proteins from Drosophila heads with apparent molecular weights similar to those of the subunits of the rat brain kinase. Fly heads also contain a CaM kinase activity that becomes partially independent of Ca2+ after autophosphorylation, as does the rat brain kinase. We have isolated a Drosophila cDNA encoding an amino acid sequence that is 77% identical to the sequence of the rat alpha subunit. All known autophosphorylation sites are conserved, including the site that controls Ca(2+)-independent activity. The gene encoding the cDNA is located between 102E and F on the fourth chromosome. The protein product of this gene is expressed at much higher levels in the fly head than in the body. Thus, both the amino acid sequence and the tissue specificity of the mammalian kinase are highly conserved in Drosophila. 相似文献
20.
Functional cardiac L-type calcium channels are composed of the pore-forming alpha(1C) subunit and the regulatory beta(2) and alpha(2)/delta subunits. To investigate possible developmental changes in calcium channel composition, we examined the temporal expression pattern of alpha(1C) and beta(2) subunits during cardiac ontogeny in mice and rats, using sequence-specific antibodies. Fetal and neonatal hearts showed two size forms of alpha(1C) with 250 and 220 kDa. Quantitative immunoblotting revealed that the rat cardiac 250-kDa alpha(1C) subunit increased about 10-fold from fetal days 12-20 and declined during postnatal maturation, while the 220-kDa alpha(1C) decreased to undetectable levels. The expression profile of the 85-kDa beta(2) subunit was completely different: beta(2) was not detected at fetal day 12, rose in the neonatal stage, and persisted during maturation. Additional beta(2)-stained bands of 100 and 90 kDa were detected in fetal and newborn hearts, suggesting the transient expression of beta(2) subunit variants. Furthermore, two fetal proteins with beta(4) immunoreactivity were identified in rat hearts that declined during prenatal development. In the fetal rat heart, beta(4) gene expression was confirmed by RT-PCR. Cardiac and brain beta(4) mRNA shared the 3 prime region, predicting identical primary sequences between amino acid residues 62-519, diverging however, at the 5 prime portion. The data indicate differential developmental changes in the expression of Ca(2+) channel subunits and suggest a role of fetal alpha(1C) and beta isoforms in the assembly of Ca(2+) channels in immature cardiomyocytes. 相似文献