首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Secretion of ligninperoxidase [E.C.1.11.1.7] by Penicillium citrinum, Fusarium oxysporum and Aspergillus terreus in liquid culture growth medium has been demonstrated. Enzymatic characteristics like Km, pH and temperature optima using veratryl alcohol as the organic substrate of ligninperoxidases from above sources have been determined. Km values using veratryl alcohol as substrate for enzymes from P. citrinum, F. oxysporum and A. terreus were 69, 64 and 60 microM respectively. Km values using H2O2 as the variable substrate were 64, 72 and 80 microM.The pH optima were 4.0, 2.3 and 2.0 respectively. The values of temperature optima were 30 degrees, 25 degrees and 22 degrees C for the enzymes from P. citrinum, F. oxysporum and A. terreus respectively.  相似文献   

2.
Solanum melongena fruit juice contains peroxidase activity of the order of 0.125 IU/mL. A method for the 11-fold purification of the enzyme was developed. The Km values of the peroxidase for the substrates guaiacol and hydrogen peroxide were 6.5 mM and 0.33 mM, respectively. The pH and temperature optima were 5.5 and 84 degrees C, respectively using guaiacol as the substrate. Sodium azide and phenyl hydrazine inhibited the enzyme competitively.  相似文献   

3.
The D-aminoacylase produced by Alcaligenes denitrificans DA181 was a new type of aminoacylase which had both high stereospecificity and specific activity. The molecular weight and isoelectric point of this enzyme were 58,000 and 4.4, respectively. The apparent Km and kcat values of this enzyme for N-acetyl-D-methionine were estimated to be 0.48 mM and 6.24 x 10(4) min-1, respectively. The optimum temperature was 45 degrees C. The enzyme was stable up to 55 degrees C for 1 hr in the presence of 0.2 mg/ml bovine serum albumin. The enzyme was stable in the pH range of 6.0 to 11.0 with an optimum pH of 7.5. This enzyme contained about 2.1 g atom of zinc per mole of enzyme. Enzyme activity was inhibited by incubation with EDTA. The inhibition by EDTA was fully reversed by Co2+ and partially by Zn2+.  相似文献   

4.
Mn-peroxidase (MnP), a biotechnologically important enzyme was purified for the first time from a plant source Musa paradisiaca (banana) stem, which is an agro-waste easily available after harvest of banana fruits. MnP was earlier purified only from the fungal sources. The enzyme was purified from stem juice by ultrafiltration and anion-exchange column chromatography on diethylamino ethylcellulose with 8-fold purification and purification yield of 65%. The enzyme gave a single protein band in SDS-PAGE corresponding to molecular mass 43 kDa. The Native-PAGE of the enzyme also gave a single protein band, confirming the purity of the enzyme. The UV/VIS spectrum of the purified enzyme differed from the other heme peroxidases, as the Soret band was shifted towards lower wavelength and the enzyme had an intense absorption band around 250 nm. The K(m) values using MnSO4 and H2O2 as the substrates of the purified enzyme were 21.0 and 9.5 microM, respectively. The calculated k(cat) value of the purified enzyme using Mn(II) as the substrate in 50 mM lactate buffer (pH 4.5) at 25 degrees C was 6.7s(-1), giving a k(cat)/K(m) value of 0.32 microM(-1)s(-1). The k(cat) value for the MnP-catalyzed reaction was found to be dependent of the Mn(III) chelator molecules malonate, lactate and oxalate, indicating that the enzyme oxidized chelated Mn(II) to Mn(III). The pH and temperature optima of the enzyme were 4.5 and 25 degrees C, respectively. The enzyme in combination with H2O2 liberated bromine and iodine in presence of KBr and KI respectively. All these enzymatic characteristics were similar to those of fungal MnP. The enzyme has the potential as a green brominating and iodinating agent in combination with KBr/KI and H2O2.  相似文献   

5.
Five bands of lactate dehydrogenase (LDH) isoenzymes were seen by polyacrylamide gel electrophoresis in gastrocnemius muscle of the turtle (Kachuga smithi). The major band was of M2H2 type and was partially purified by gel filtration and affinity chromatography. The specific activity of the enzyme was 2.6 units/mg protein. The half-life of the enzyme at 4 degrees C, was about 7 days. The optimum temperature for enzyme activity was 30 degrees C and the enzyme was irreversibly inactivated at 40 degrees C. The optimum pH for the forward reaction (pyruvate to lactate) was 5.5, while for reverse reaction it was between 8.0 to 9.5. The apparent Km values for pyruvate, NADH, lactate and NAD+ were 0.20, 0.013, 25 and 0.333 mM, respectively. Oxalate was found to be the inhibitor of LDH with Ki of about 4.2 mM.  相似文献   

6.
The wood-destroying fungus Phanerochaete chrysosporium secretes extracellular enzymes known as lignin peroxidases that are involved in the biodegradation of lignin and a number of environmental pollutants. Several lignin peroxidases are produced in liquid cultures of this fungus. However, only lignin peroxidase isozyme H8 has been extensively characterized. In agitated nutrient nitrogen-limited culture, P. chrysosporium produces two lignin peroxidases in about equal proportions. The molecular weights of these two major proteins (H2 and H8) as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis were 38,500 (H2) and 42,000 (H8). The isoelectric points of these enzymes were 4.3 for H2 and 3.65 for H8. All subsequent experiments in this study were performed with H2 as it contributed the most (42%) to total activity and had the highest specific activity (57.3 U/mg). The Km values of lignin peroxidase H2 for H2O2 and veratryl alcohol were calculated to be 47 microM and 167 microM at pH 3.5, respectively. The pH optima for veratryl alcohol oxidase activity were pH 2.5 at 25 degrees C, pH 3.0 at 35 degrees C, and pH 3.5 at 45 degrees C. In the same manner the temperature optimum shifted from 25 degrees C at pH 2.5 to 45 degrees C at pH 3.5 and approximately 45-60 degrees C at pH 4.5. During storage the resting enzyme was relatively stable for 48 h up to 50 degrees C. Above this temperature the enzyme lost all activity within 6 h at 60 degrees C. At 70 degrees C all activity was lost within 10 min. The resting enzyme retained approximately 80% of its initial activity when stored at 40 degrees C for 21 h at a pH range of 4.0-6.5. Above pH 7.5 and below 4.0, the enzyme lost all activity in less than 5 h. During turnover the enzyme remained active at pH 5.5 for over 2 h whereas the enzyme activity was lost after 45 min at pH 2.5. The oxidation of veratryl alcohol was inhibited by EDTA, azide, cyanide, and by the catalase inhibitor 3-amino-1,2,4-triazole, but not by chloride. In the absence of another reducing substrate incubation of lignin peroxidase H2 with excess H2O2 resulted in partial and irreversible inactivation of the enzyme. The spectral characteristics of lignin peroxidase H2 are similar to those of other peroxidases. The suitability of lignin peroxidases for industrial applications is discussed.  相似文献   

7.
Water buffalo lactoperoxidase (WBLP) was purified with Amberlite CG 50 H+ resin, CM Sephadex C-50 ion-exchange chromatography, and Sephadex G-100 gel filtration chromatography from skim milk. All purification steps of the WBLP were shown with SDS-PAGE and Rz (A412/A280) controlled the purification degree of the enzyme. Rz value for the purified WBLP was 0.8. To determine purification steps and kinetic properties, the activity of enzyme was measured by using 2,2-azino-bis-(3-ethylbenzthiazoline-6 sulfonic acid) diammonium salt (ABTS) as a choromogenic substrate at pH=6. Km, Vmax, optimum pH, and optimum temperature for the WBLP were found by means of graphics for ABTS as substrates. Optimum pH and optimum temperature of the WBLP were 6 and 60 degrees C, respectively. Km value at optimum pH and optimum temperature for the WBLP was 0.82 mM. Vmax value at optimum pH and optimum temperature was 13.7 micromol/mL x min. Km value at optimum pH and 25 degrees C for the WBLP was 0.77 mM. Vmax value at optimum pH and 25 degrees C was 4.83 micromol/mL x min. The purified WBLP was found to have high antibacterial activity in a thiocynate-H2O2 medium for some pathogenic bacteria, such as Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginose, Shigella sonnei, Staphylococcus saphrophyticus, Staphylococcus epidermidis, and Shigella dysenteriae and compared with well known antibacterial substances such as tetracycline, penicillin, and netilmicine.  相似文献   

8.
高产菊粉酶酵母筛选、发酵和酶学性质研究   总被引:18,自引:0,他引:18  
筛选到1株菊粉酶高产克鲁维酵母菌株,采用酵母高密度细胞发酵方法,最高菊粉酶产量达到288.78u/mL,比80~90年代国际上报道的克鲁维酵母菊粉酶最高产量高6.8倍。该酶的菊粉酶/转化酶活性比为1/24.72;菊糖m=13.3mmol/L,蔗糖Km=62.6mmol/L;最适反应pH值为4.4,但在pH3.8~5.6的范围内均保持了较高的活性,相当于最适pH值下活性的90%;最适反应温度为55℃,在50~575℃范围内能够保持较高活性,50℃下酶的半衰期约为16h;外加Mg2+提高酶活性11.28%。  相似文献   

9.
A novel cytochrome c and a catalase-peroxidase with alkaline peroxidase activity were purified from the culture supernatant of Bacillus sp. No.13 and characterized. The cytochrome c exhibited absorption maxima at 408 nm (Soret band) in its oxidized state, and 550 (alpha-band), 521 (beta-band), and 415 (Soret band) nm in its reduced state. The native cytochrome c with a relative molecular mass of 15,000 was composed of two identical subunits. The cytochrome c showed over 50 times higher peroxidase activity than those of known c-type cytochromes from various sources. The optimum pH and temperature of the peroxidase activity were about 10.0 and 70 degrees C, respectively. The peroxidase activity is stable in the pH range of 6.0 to 10.8 (30 degrees C, 1-h treatment), and at temperatures up to 80 degrees C (pH 8.5, 20-min treatment). The heme content was determined to be 1 heme per subunit. The amino acid sequence of the cytochrome c showed high homology with those of the c-type cytochromes from Bacillus subtilis and Bacillus sp. PS3. The catalase-peroxidase showed high catalase activity and considerable peroxidase activity, the specific activities being 55,000 and 0.94 micromol/min/mg, respectively. The optimum pH and temperature of the peroxidase activity were in the range of 6.4 to 10.1 and 60 degrees C, respectively. The catalase-peroxidase showed a lower K(m) value (0.67 mM) as to H(2)O(2) than known catalase-peroxidases.  相似文献   

10.
Thermostable peroxidase from Bacillus stearothermophilus   总被引:8,自引:0,他引:8  
A peroxidase from Bacillus stearothermophilus was purified to homogeneity. The enzyme (Mr 175,000) was composed of two subunits of equal size, and showed a Soret band at 406 nm. On reduction with sodium dithionite, absorption at 434 nm and 558 nm was observed. The spectrum of reduced pyridine haemochrome showed peaks at 418, 526 and 557 nm; the reduced minus oxidized spectrum of pyridine haemochrome showed peaks of 418, 524 and 556 nm with a trough at 452 nm. These results indicate that the enzyme contained protohaem IX as a prosthetic group. The optimum pH was about 6 and the apparent optimum temperature was 70 degrees C. The enzyme was relatively stable up to 70 degrees C; at 30 degrees C it was stable for a month. The enzyme had peroxidase activity toward a mixture of 2,4-dichlorophenol and 4-aminoantipyrine with a Km for H2O2 of 1.3 mM. It also acted as a catalase with a Km for H2O2 of 7.5 mM.  相似文献   

11.
Polyphenol oxidase (PPO, EC 1.14.18.1) was extracted from celery roots (Apium graveolens L.) with 0.1 M phosphate buffer, pH 7.0. The PPO was partially purified by (NH4)2SO4 and dialysis. Substrate specificity experiments were carried out with catechol, pyrogallol, L-DOPA, p-cresol, resorcinol, and tyrosine. The Km for pyrogallol, catechol, and L-DOPA were 4.5, 8.3, and 6.2mM, respectively, at 25 degrees C. Data for Vmax/Km values, which represent catalytic efficiency, show that pyrogallol has the highest value. The optimum pH and temperature were determined with catechol, pyrogallol, and L-DOPA. Optimum pH was 7.0 for catechol and L-DOPA, and 7.5 for pyrogallol. Optimum temperatures for maximum PPO activity were 25 degrees C for pyrogallol, 40 degrees C for catechol, and 45 degrees C for L-DOPA. Heat inactivation studies showed a decrease in enzymatic activity at temperatures above 60 degrees C. The order of inhibitor effectiveness was: L-cysteine > ascorbic acid > glycine > resorcinol > NaCl.  相似文献   

12.
Effect of polyacrylamide (PAA) gel on properties of horseradish peroxidase, immobilized by means of the incorporation into PAA gel is studied. Catalytic properties of immobilized enzyme are studied. Km value and pH-dependency of the enzyme activity are found to be close to those of soluble enzyme, kcat value is 3 times lower at pH 7.0. PH-stability of immobilized peroxidase at 20 degrees C and thermostability of soluble and immobilized peroxidases at pH 7.0 within the temperature range from 20 to 81 degrees C are studied. The stability of peroxidase in PAA gel is found to decrease (in 3 times at 20 degrees C, and in 17 times at 56 degrees C). A mechanism of the effect of PAA gel on catalytic properties and stability of peroxidase is discussed.  相似文献   

13.
Lactoperoxidase (LPO) was purified from bovine milk using Amberlite CG 50 H+ resin, CM Sephadex C-50 ion-exchange chromatography, and Sephadex G-100 gel filtration chromatography. During the purification steps, the activity of enzyme was measured using 2,2'-azino-bis (3-ethylbenzthiazoline-6 sulfonic acid) diamonium salt (ABTS) as a chromogenic substrate at pH 6. Optimum pH and optimum temperature values for LPO were determined for ABTS, p-phenylendiamine, catechol, epinephrine, and pyrogallol as substrates, and then Km and Vmax values for the same substrate were obtained by means of Lineweaver-Burk graphics. The purification degree of the enzyme was controlled by SDS-PAGE and Rz (A412/A280) values. Km values, at optimum pH and 20 degrees C, were 0.197 mM, 0.063 mM, 0.64 mM, 25.2 mM, and 63.95 mM for p-phenylendiamine, ABTS, epinephrine, pyrogallol, and catechol, respectively. Vmax values, at optimum pH and 20 degrees C, were 3.5x10(-5) EU/mL, 4.0x10(-5) EU/mL, 5.8x10(-4) EU/mL, 8.4x10(-4) EU/mL, and 1.01x10(-3) EU/mL for the same substrates, respectively. p-Phenylendiamine was first found as a new substrate for LPO.  相似文献   

14.
The kinetics of sodium gradient dependent phosphate uptake by the renal brush border membrane vesicles of the rat have ben studied under various conditions of temperature and pH. From 7 to 30 degrees C the Lineweaver-Burk plots are linear, and the apparent Km progressively increases from 54 to 91 microM. Above 30 degrees C, the apparent Km continues to increase to reach 135 microM at 40 degrees C, but a break is observed in the Lineweaver-Burk plots at the substrate concentration of 300 microM. The existence of this break, confirmed by the Eadie-Hofstee plot supports the hypothesis of a dual mechanism of phosphate transport, one for low concentrations of substrate with a Km of 100 microM and the other for high concentrations with a Km of approximately 240 microM. When the two components of the Eadie-Hofstee plot are analyzed according to a nonlinear regression program, these two values of Km become 70 microM and 1.18 mM, respectively. The Vmax continuously increases with temperature. However, the Arrhenius plot (In Vmax vs. 1/TK) shows an abrupt discontinuity at 23 degrees C. pH experiments were performed at 35 degrees C. In the absence of a proton gradient, increasing the pH from 6.5 to 7.5 and 8.5 decreases the apparent Km from 341 to 167 and 94 microM, respectively. When only the divalent form of phosphate is considered as the substrate, the apparent Km does not vary anymore with the pH and remains around the mean value of 105 microM. The uniformity of the apparent Km for the total phosphate uptake, when only the divalent phosphate is considered as being the substrate, suggests that this divalent form is the only one which is transported. Whatever the substrate considered, total phosphate or divalent phosphate, the highest Vmax is obtained at pH 7.5 which probably approximates the optimum pH inside the vesicles for the phosphate uptake.  相似文献   

15.
Intracellular thermostable amylases from a thermophilic Baccilus sp. AK-2 have been isolated and purified. The crude enzyme, having pH optimum at 6.5. and temperature optimum at 68 degrees C was purified by DEAE-cellulose column chromatography. Three separable enzyme fractions having starch hydrolyzing property were eluted by lowering the pH from 8.5 to 7.0. Electrophoretic mobility of these fractions showed a single band. Calcium ion up to a concentration of 20 mM had an activating effect on the three fractions. The optimum temperature for the three fractions (FI, FII and FIII) was 65 degrees C and the pH optimum for each was 6.0, 6.5 and 6.0, respectively. The -SH group in the amylase molecule was essential for enzyme activity. Except for Ca2+, Mg2+, Sr2+ and Mn2+ all other metal ions studied inhibited both alpha and beta-amylase activities. EDTA showed dose dependent non-competitive inhibition. Product formation studies proved FI and FIII to be of the alpha-amylase type and FII of the beta-amylase type. The Km for the substrate (starch) in the presence or absence of EDTA was 0.8 X 10(-3) and 1.13 X 10(-3) g/ml for alpha-amylase and beta-amylase, respectively.  相似文献   

16.
Phosphate acetyltransferase (PTA) and acetate kinase (AK) of the hyperthermophilic eubacterium Thermotoga maritima have been purified 1,500- and 250-fold, respectively, to apparent homogeneity. PTA had an apparent molecular mass of 170 kDa and was composed of one subunit with a molecular mass of 34 kDa, suggesting a homotetramer (alpha4) structure. The N-terminal amino acid sequence showed significant identity to that of phosphate butyryltransferases from Clostridium acetobutylicum rather than to those of known phosphate acetyltransferases. The kinetic constants of the reversible enzyme reaction (acetyl-CoA + Pi -->/<-- acetyl phosphate + CoA) were determined at the pH optimum of pH 6.5. The apparent Km values for acetyl-CoA, Pi, acetyl phosphate, and coenzyme A (CoA) were 23, 110, 24, and 30 microM, respectively; the apparent Vmax values (at 55 degrees C) were 260 U/mg (acetyl phosphate formation) and 570 U/mg (acetyl-CoA formation). In addition to acetyl-CoA (100%), the enzyme accepted propionyl-CoA (60%) and butyryl-CoA (30%). The enzyme had a temperature optimum at 90 degrees C and was not inactivated by heat upon incubation at 80 degrees C for more than 2 h. AK had an apparent molecular mass of 90 kDa and consisted of one 44-kDa subunit, indicating a homodimer (alpha2) structure. The N-terminal amino acid sequence showed significant similarity to those of all known acetate kinases from eubacteria as well that of the archaeon Methanosarcina thermophila. The kinetic constants of the reversible enzyme reaction (acetyl phosphate + ADP -->/<-- acetate + ATP) were determined at the pH optimum of pH 7.0. The apparent Km values for acetyl phosphate, ADP, acetate, and ATP were 0.44, 3, 40, and 0.7 mM, respectively; the apparent Vmax values (at 50 degrees C) were 2,600 U/mg (acetate formation) and 1,800 U/mg (acetyl phosphate formation). AK phosphorylated propionate (54%) in addition to acetate (100%) and used GTP (100%), ITP (163%), UTP (56%), and CTP (21%) as phosphoryl donors in addition to ATP (100%). Divalent cations were required for activity, with Mn2+ and Mg2+ being most effective. The enzyme had a temperature optimum at 90 degrees C and was stabilized against heat inactivation by salts. In the presence of (NH4)2SO4 (1 M), which was most effective, the enzyme did not lose activity upon incubation at 100 degrees C for 3 h. The temperature optimum at 90 degrees C and the high thermostability of both PTA and AK are in accordance with their physiological function under hyperthermophilic conditions.  相似文献   

17.
Highly purfied beta-galactosidase from fungus Curvularia inaequalis cultural fluid with a specific activity of 50 units per mg of protein was obtained by 2-fold purification of the enzyme, using chromatography on DEAE-cellulose and on hydroxylapatite. The enzyme was found to hydrolyze o-nitrophenyl-beta-D-galactopyranoside (pH optimum of 3.7--4.5) and lactose (pH optimum 3.9--5.3). The isoelectric point was observed at pH 4.4 the temperature optimum was 60 degrees C. The molecular weight (115 000--126 000) and the amino acid composition of the enzyme were determined. Km values for o-nitrophenyl-beta-D-galactopyranoside and lactose were 0.55-10(-3) M and 4.5-10(-3) M respectively. Disc-electrophoresis in polyacrylamide gel revealed a single band with a specific activity. The homogeneity of the enzyme was found in ultracentrifuge.  相似文献   

18.
Polyethylene glycol (PEG) dehydrogenase in crude extracts of a PEG 20,000-utilizing mixed culture was purified 24 times by precipitation with ammonium sulfate, solubilization with laurylbetaine, and chromatography with diethylamino-ethyl-cellulose, hydroxylapatite, and Sephadex G-200. The purified enzyme was confirmed to be homogeneous by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The molecular weight of the enzyme, which appeared to consist of four identical subunits, was 2.4 X 10(5). The enzyme was stable below 35 degrees C and in the pH range of 7.5 to 9.0. The optimum pH and temperature of the activity were around 8.0 and 60 degrees C, respectively. The enzyme did not require any metal ions for activity and oxidized various kinds of PEGs, among which PEG 6,000 was the most active substrate. The apparent Km values for tetraethylene glycol and PEG 6,000 were about 10.0 and 3.0 mM, respectively.  相似文献   

19.
Polyethylene glycol (PEG) dehydrogenase in crude extracts of a PEG 20,000-utilizing mixed culture was purified 24 times by precipitation with ammonium sulfate, solubilization with laurylbetaine, and chromatography with diethylamino-ethyl-cellulose, hydroxylapatite, and Sephadex G-200. The purified enzyme was confirmed to be homogeneous by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The molecular weight of the enzyme, which appeared to consist of four identical subunits, was 2.4 X 10(5). The enzyme was stable below 35 degrees C and in the pH range of 7.5 to 9.0. The optimum pH and temperature of the activity were around 8.0 and 60 degrees C, respectively. The enzyme did not require any metal ions for activity and oxidized various kinds of PEGs, among which PEG 6,000 was the most active substrate. The apparent Km values for tetraethylene glycol and PEG 6,000 were about 10.0 and 3.0 mM, respectively.  相似文献   

20.
Bacillus cereus strain K-22 produced two distinct omega-amino acid transaminases, one catalyzing the transamination between beta-alanine and pyruvic acid and the other that between gamma-aminobutyric acid and alpha-ketoglutaric aic. The two enzymes were partially purified and separated from each other by various chromatographies. beta-Alanine:pyruvic acid transaminase and gamma-aminobutyric acid:alpha-ketoglutaric acid transaminase were induced by the addition of beta-alanine and gamma-aminobutyric acid, respectively, to the growth medium. beta-Alanine transaminase showed an optimum pH of 10.0 and optimum temperature of 35 degrees C, and its Km values for beta-alanine and pyruvic acid were both 1.1 mM. gamma-Aminobutyric acid, epsilon-aminocaproic acid, 2-aminoethylphosphonic acid, and propylamine showed about 30-40% of the activity of beta-alanine as amino donors, and oxalacetic acid was as good an amino acceptor as pyruvic acid. The optimum pH and temperature of gamma-aminobutyric acid transaminase were 9.0 and 50 degrees C, respectively, and its Km value for gamma-aminobutyric acid was 2.8 mM, while that for alpha-ketoglutaric acid was 2.3 mM. gamma-Aminobutyric acid and delta-aminovaleric acid were good amino donors but other omega-amino acids were virtually inactive with gamma-aminobutyric acid transaminase; alpha-ketoglutaric acid, and to a lesser extent glyoxylic acid, were active amino acceptors. Sulfhydryl reagents specifically activated gamma-aminobutyric acid transaminase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号