首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measurements were made on the level of synthesis of soluble ribonucleates (sRNA) in Escherichia coli K-12 infected with the ribonucleic acid (RNA)-containing bacteriophage R17. Little or no decrease in sRNA synthesis was found to occur under conditions of infection which result in a 70 to 80% inhibition of ribosomal RNA synthesis.  相似文献   

2.
3.
4.
Synthesis of ribosomal RNA in a cell-free system was achieved using purified Escherichia coli RNA polymerase and bacterial DNA templates from E. coli, Proteus mirabilis and E. coli/P. mirabilis hybrid strains carrying an E. coli DNA enriched for ribosomal RNA genes.Both direct and indirect competition hybridization revealed that from 5 to 15% of the in vitro product, depending on the template used, had sequences homologous to rRNA. The level of synthesis of sequences homologous to rRNA was related directly to the proportion of rRNA genes in the template. The use of heterologous DNA during competition hybridization ensured at least a 100-fold greater sensitivity for the detection of rRNA sequences than from any messenger RNA sequence.  相似文献   

5.
WE have shown that induction of the enzyme L-arabinose isomerase in Salmonella typhimurium ceases following infection with the bacteriophage P22 leading to lysis, whereas with infection leading to lysogeny there is a temporary inhibition of induction after which the synthesis of the enzyme begins again1. After infection, there is a transient depression of the overall rate of RNA and protein synthesis1. This phenomenon is similar to that observed in T-even phage and λ-infected E. coli2–5. Arguments for and against the involvement of phage genes2–12 in such phenomena have been put forward. We now present evidence to suggest that the sie gene of phage P22 is involved in the inhibition of host macromolecular synthesis.  相似文献   

6.
No alteration in the messenger specificity of initiation factor 3 (IF-3) is observed upon T4 phage infection of several strains of Escherichia coli. IF-3 present in the 1.0 m NH4Cl washes of ribosomes from T4-infected cells supports the translation of f2 RNA and T4 late mRNA with the same degree of efficiency as the IF-3 in the ribosomal washes obtained from uninfected cells. At high concentrations the ribosomal washes obtained from T4-infected cells are more inhibitory for both f2 RNA- and T4 late mRNA-directed protein synthesis than the ribosomal washes from uninfected cells. Furthermore, this increased inhibition is also observed in the poly(U)-directed synthesis of polyphenylalanine. These data suggest that translational controls exerted at the level of IF-3 probably do not account for the alterations in protein synthesis observed upon T4 infection.  相似文献   

7.
8.
9.
Aerobacter aerogenes incubated in a medium containing all factors necessary for exponential growth except Mg++ continued to synthesize nucleic acids and proteins for more than 70 hr, provided the major carbon source was in excess at all times. After 24 hr of Mg++ starvation, deoxyribonucleic acid content in the culture had increased 10-fold. In contrast, the viable-cell count increased only about threefold during the first few hours and then remained approximately constant for the subsequent 70 hr. After specified intervals of Mg++ starvation, extracts of the bacteria, or ribonucleic acid (RNA) purified from them, was centrifuged through gradients of sucrose to separate transfer RNA from ribosomal components. After correcting for losses, we obtained the following results. (i) There was a progressive rise in the content of transfer RNA competent to accept amino acids and during starvation it remained completely stable. (ii) In contrast, the contents of normally sedimenting ribosomal RNA and ribosomal subunits (30 and 50S) remained approximately constant for more than 24 hr. This did not result from stability of ribosomes made prior to starvation together with an inhibition of synthesis of new particles. Rather, ribosomes were continually breaking down and being replaced by an equivalent number of new ones. (iii) The breakdown of ribosomes appeared to be sequentially ordered; polysomes yielded 70S monomers, which then gave 30 and 50S particles, and these disintegrated to smaller units and finally to acid-soluble products. (iv) Furthermore, the particles derived from breakdown do not appear to exchange with subparticles on the path of assembly. Thus, ribosome decay was age-dependent and ribosomal RNA molecules had a minimal life expectancy of 90 min; however, some survived much longer.  相似文献   

10.
11.
Thymidylate synthetase, which appears after infection of Escherichia coli with bacteriophage T4, has been partially purified. The phage enzyme is immunologically distinct from the host enzyme and has a molecular weight of 50,000 in comparison to 68,000 for the host enzyme. A system has been developed to characterize T4 td mutants previously known to have impaired expression of phage thymidylate synthetase. For this system, an E. coli host lacking thymidylate synthetase was isolated. Known genetic suppressors were transduced into this host. The resulting isogenic hosts were infected with phage T4 td mutants. The specific activities and amounts of cross-reacting material induced by several different types of phage mutants under conditions of suppression or non-suppression have been examined. The results show that the phage carries the structural gene specifying the thymidylate synthetase which appears after phage infection, and that the combination of plaque morphology, enzyme activity assays, and an assay for immunologically cross-reacting material provides a means for identifying true amber mutants of the phage gene.  相似文献   

12.
In this study, we isolated a bacteriophage T7-resistant mutant strain of Escherichia coli (named S3) and then proceeded to characterize it. The mutant bacterial colonies appeared to be mucoid. Microarray analysis revealed that genes related to colanic acid production were upregulated in the mutant. Increases in colanic acid production by the mutant bacteria were observed when l-fucose was measured biochemically, and protective capsule formation was observed under an electron microscope. We found a point mutation in the lon gene promoter in S3, the mutant bacterium. Overproduction of colanic acid was observed in some phage-resistant mutant bacteria after infection with other bacteriophages, T4 and lambda. Colanic acid overproduction was also observed in clinical isolates of E. coli upon phage infection. The overproduction of colanic acid resulted in the inhibition of bacteriophage adsorption to the host. Biofilm formation initially decreased shortly after infection but eventually increased after 48 h of incubation due to the emergence of the mutant bacteria. Bacteriophage PBECO4 was shown to infect the colanic acid-overproducing mutant strains of E. coli. We confirmed that the gene product of open reading frame 547 (ORF547) of PBECO4 harbored colanic acid-degrading enzymatic (CAE) activity. Treatment of the T7-resistant bacteria with both T7 and PBECO4 or its purified enzyme (CAE) led to successful T7 infection. Biofilm formation decreased with the mixed infection, too. This procedure, using a phage cocktail different from those exploiting solely receptor differences, represents a novel strategy for overcoming phage resistance in mutant bacteria.  相似文献   

13.
Ribosomal ribonucleic acid (RNA) and lipopolysaccharide (LPS) from P. aeruginosa were compared with respect to their protective activities in mice against an infection with P. aeruginosa. This study is concentrated on the protective activity of RNA. RNA isolated from purified ribosomes did not contain LPS as determined with the Limulus test. Injection of RNA with the adjuvant dimethyldioctadecylammonium bromide (DDA) protected mice against P. aeruginosa without inducing LPS-specific antibodies. C3H/HeJ mice which are relatively insensitive to the protective activity of LPS could be protected with RNA. The protective activities of RNA and LPS from a mutant strain of P. aeruginosa, PAC 605, containing defective lipopolysaccharide, were compared with the protective activities of RNA and LPS from the parent strain, PAC IR. The protective activity of LPS from PAC 605 was 1000 fold lower than the protective activity of LPS from PAC IR. RNA preparations of both strains induced similar percentages of survival. The protective activity of ribosomal RNA from P. aeruginosa was nonspecific since mice were also protected against a heterologous serotype of P. aeruginosa and against Escherichia coli. RNA from ribosomes of P. aeruginosa, E. coli and the non-lipopolysaccharide containing Saccharomyces cerevisiae had similar protective activities. No protection was obtained with the ribonucleic acid from the E. coli phage MS 2. It is concluded that ribosomal RNA has protective activities distinct from those of LPS.  相似文献   

14.
An extensive screening of coliphage T4 mutants has revealed two distinct classes defective, respectively, in the two sequential phage-induced phosphorylations of the host RNA polymerase, alteration and modification. The existence of these mutants proves that T4-specified functions are involved in both processes. The viabilities of these mutants demonstrate that neither alteration nor modification is essential for growth in Escherichia coli B/r. Physiological studies after infection of E. coli B/r have failed to reveal any abnormalities of phage deficient in alteration or modification. Both mutants normally inhibit host protein and stable RNA synthesis and normally express all classes of T4 genes. Thus, these specific phage-induced structural changes in the host RNA polymerase are not fundamental to the control of gene expression during T4 development. Alteration and modification may be required for growth in some strains of E. coli and hence be selectively advantageous because they extend the normal host range of the phage.Alteration appears to be catalyzed by a T4 function injected with the DNA. A polypeptide of molecular weight 61,000, which is probably cleaved during morphogenesis from a precursor of molecular weight 79,000, is missing in phage particles of alteration-deficient strains and may be the phage activity so injected. The T4 gene involved in alteration is named alt.Modification is controlled by a T4-replicative gene that has been mapped into a region of about 500 base-pairs between genes 39 and 56. These mapping data show that the defect in α modification defines a new T4 gene, named mod.  相似文献   

15.
HflX is a GTP binding protein of unknown function. Based on the presence of the hflX gene in hflA operon, HflX was believed to be involved in the lytic-lysogenic decision during phage infection in Escherichia coli. We find that E. coli HflX binds 16S and 23S rRNA - the RNA components of 30S and 50S ribosomal subunits. Here, using purified ribosomal subunits, we show that HflX specifically interacts with the 50S. This finding is in line with the homology of HflX to GTPases involved in ribosome biogenesis. However, HflX-50S interaction is not limited to a specific nucleotide-bound state of the protein, and the presence of any of the nucleotides GTP/GDP/ATP/ADP is sufficient. In this respect, HflX is different from other GTPases. While E. coli HflX binds and hydrolyses both ATP and GTP, only the GTP hydrolysis activity is stimulated by 50S binding. This work uncovers interesting attributes of HflX in ribosome binding.  相似文献   

16.
The effect of Escherichia coli ribosomal protein S1 on translation has been studied in S1-depleted systems programmed with poly(U), poly(A) and MS2 RNA3. The translation of the phage RNA depends strictly on the presence of S1. Optimum poly(U)-directed polyphenylalanine synthesis and poly(A)-programmed polylysine synthesis also require S1. Excess S1 relative to ribosomes and messenger RNA results in inhibition of translation of MS2 RNA and poly(U), but not of poly (A). In the case of phage RNA translation, this inhibition can be counteracted by increasing the amount of messenger RNA. Three other 30 S ribosomal proteins (S3, S14 and S21) are also shown to inhibit MS2 RNA translation. The effects of S1 on poly(U) translation were studied in detail and shown to be very complex. The concentration of Mg2+ in the assay mixtures and the ratio of S1 relative to ribosomes and poly(U) are crucial factors determining the response of this translational system towards the addition of S1. The results of this study are discussed in relation to recent developments concerning the function of this protein.  相似文献   

17.
Free minus strands (minus strands not involved in a firm duplex structure) are produced in Escherichia coli infected with the RNA phage Qβ. These minus strands can be extracted from the cells under conditions of mild lysis and low salt concentrations, and can be purified by electrophoresis on polyacrylamide gels.The free minus strands are fully competent as template for the Qβ-replicase in the absence of host factors, directing the synthesis of plus strands.  相似文献   

18.
19.
20.
The kinetics of host ribonucleic acid (RNA) degradation and its resynthesis into Bdellovibrio-specific polyribonucleotides has been studied. The kinetics of RNA turnover was followed during a one-step synchronous growth cycle of Bdellovibrio growing within 32PO4-labeled Escherichia coli host cells. The species of labeled RNA present at any given time was ascertained through the specificity of the deoxyribonucleic acid (DNA)/RNA hybridization technique. At nearsaturating levels of RNA and at zero time, 7% of the host DNA sequences and only 0.04% of the Bdellovibrio DNA became hybridized with 32P-labeled host cell RNA (greater than 99% host specific). At the end of the burst, 98% of the labeled RNA sequences were specific for Bdellovibrio DNA. About 74% of the initial labeled host cell RNA became turned over into Bdellovibrio-specific sequences. We provide data indicating that host cell ribosomal RNA is assimilated by Bdellovibrio. Degradation of host cell RNA occurs in a gradual fashion over most of the Bdellovibrio developmental growth cycle. This application of the DNA/RNA hybridization technique and its general concept should be of value in elucidating the kinetics of nucleic acid turnover in other types of host-parasite systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号