首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The enzymatic extracts from seven species of microalgae (Pediastrum duplex, Dactylococcopsis fascicularis, Halochlorococcum porphyrae, Oltmannsiellopsis unicellularis, Achnanthes longipes, Navicula sp. and Amphora coffeaeformis) collected from three habitats (freshwater, tidal pool, and coastal benthic) at Jeju Island in Korea were investigated for their antioxidant activity. Of the extracts tested, the AMG 300 L (an exo 1, 4-α-d-glucosidase) extract of P. duplex, the Viscozyme extract of Navicula sp., and the Celluclast extract of A. longipes provided the most potential as antioxidants. Meanwhile, the Termamyl extract of P. duplex in an H2O2 scavenging assay exhibited an approximate 60% scavenging effect. In this study, we report that the DNA damage inhibitory effects of P. duplex (Termamyl extract) and D. fascicularis (Kojizyme extract) were nearly 80% and 69% respectively at a concentration of 100 μg/ml. Thus, it is suggested that the microalgae tested in this study yield promising DNA damage inhibitory properties on mouse lymphoma L 5178 cells that are treated with H2O2. Therefore, microalgae such as P. duplex may be an excellent source of naturally occurring antioxidant compounds with potent DNA damage inhibition potential.  相似文献   

2.
Oxidative stress and miRNAs have been confirmed to play an important role in neurological diseases. The study aimed to explore the underlying effect and mechanisms of miR-146a in H2O2-induced injury of PC12 cells. Here, PC12 cells were stimulated with 200 μM of H2O2 to construct oxidative injury model. Cell injury was evaluated on the basis of the changes in cell viability, migration, invasion, apoptosis, and DNA damage. Results revealed that miR-146a expression was up-regulated in H2O2-induced PC12 cells. Functional analysis showed that down-regulation of miR-146a alleviated H2O2-induced cytotoxicity in PC12 cells. Dual-luciferase reporter and western blot assay verified that MCL1 was a direct target gene of miR-146a. Moreover, anti-miR-146a-mediated suppression on cell cytotoxicity was abated following MCL1 knockdown in H2O2-induced PC12 cells. Furthermore, MCL1 activated JAK/STAT signaling pathway and MCL1 overexpression attenuated H2O2-induced cytotoxicity in PC12 cells by JAK/STAT signaling pathway. In conclusion, this study suggested that suppression of miR-146a abated H2O2-induced cytotoxicity in PC12 cells via regulating MCL1/JAK/STAT pathway.  相似文献   

3.
Our previous results have demonstrated that both nitric oxide (NO) and hydrogen peroxide (H2O2) are involved in the promotion of adventitious root development in marigold (Tagetes erecta L.). However, not much is known about the intricate molecular network of adventitious root development triggered by NO and H2O2. In this study, the involvement of calcium (Ca2+) and calmodulin (CaM) in NO- and H2O2-induced adventitious rooting in marigold was investigated. Exogenous Ca2+ was capable of promoting adventitious rooting, with a maximal biological response at 50 μM CaCl2. Ca2+ chelators and CaM antagonists prevented NO- and H2O2-induced adventitious rooting, indicating that both endogenous Ca2+ and CaM may play crucial roles in the adventitious rooting induced by NO and H2O2. NO and H2O2 treatments increased the endogenous content of Ca2+ and CaM, suggesting that NO and H2O2 enhanced adventitious rooting by stimulating the endogenous Ca2+ and CaM levels. Moreover, treatment with Ca2+ enhanced the endogenous levels of NO and H2O2. Additionally, Ca2+ might be involved as an upstream signaling molecule for CaM during NO- and H2O2-induced rooting. Altogether, the results suggest that both Ca2+ and CaM are two downstream signaling molecules in adventitious rooting induced by NO and H2O2.  相似文献   

4.
PB90 is a novel protein elicitor isolated from Phytophthora boehmeriae. Here, we report that treatment of PB90 stimulates hypericin production and hydrogen peroxide (H2O2) generation in Hypericum perforatum L. cells and demonstrate that H2O2 is essential for PB90-induced hypericin production. To further study the source of PB90-triggered H2O2, we have investigated activities of plasma membrane NADPH oxidase in Hypericum perforatum L. cells subjected to PB90 treatment. It is revealed that treatment of the cells with PB90 significantly increases NADPH oxidase activity. NADPH oxidase inhibitors suppress not only the PB90-stimulated NADPH oxidase activity but also the PB90-triggered H2O2 generation and PB90-induced hypericin production, showing that NADPH oxidase is involved in PB90-triggered H2O2 generation and hypericin production. Moreover, the suppression of NADPH oxidase inhibitors on PB90-induced hypericin production can be reversed by H2O2, although H2O2 per se has no effects on hypericin production of the cells. Together, the data demonstrate that PB90 may induce hypericin production of H. perforatum cells through the NADPH oxidase-mediated H2O2 signaling pathway.  相似文献   

5.
Neuronal oxidative stress (OS) injury has been proven to be associated with many neurodegenerative diseases, and thus, antioxidation treatment is an effective method for treating these diseases. Saikosaponin-D (SSD) is a sapogenin extracted from Bupleurum falcatum and has been shown to have many pharmacological activities. The main purpose of this study was to investigate whether and how SSD protects PC12 cells from H2O2-induced apoptosis. The non-toxic level of SSD significantly mitigated the H2O2-induced decrease in cell viability, reduced the apoptosis rate, improved the nuclear morphology, and reduced caspase-3 activation and poly ADP-ribose polymerase (PARP) cleavage. Additionally, exogenous H2O2-induced apoptosis by damaging the intracellular antioxidation system. SSD significantly slowed the H2O2-induced release of malonic dialdehyde (MDA) and lactate dehydrogenase and increased the activity of superoxide dismutase (SOD) and the total antioxidant capacity, thereby reducing apoptosis. More importantly, SSD effectively blocked H2O2-induced phosphorylation of extracellular-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38MAPK), and specific inhibitors of ERK, JNK, and p38-reduced OS injury and apoptosis, suggesting that SSD reduces OS injury and apoptosis via MAPK signalling pathways. Finally, we confirmed that SSD significantly reduced H2O2-induced reactive oxygen species (ROS) accumulation, and the ROS inhibitor blocked the apoptosis caused by MAPK activation and cellular oxidative damage. In short, our study confirmed that SSD reduces H2O2-induced PC12 cell apoptosis by removing ROS and blocking MAPK-dependent oxidative damage.  相似文献   

6.
7.
In this study, the effect of aucubin on H2O2-induced apoptosis was studied by using a rat pheochromocytoma (PC12) cell line. We have analyzed the apoptosis of H2O2-induced PC12 cells, H2O2-induced apoptosis appeared to correlate with lower Bcl-2 expression, higher Bax expression and sequential activation of caspase-3 leading to cleavage of poly-ADP-ribose polymerase (PARP). Aucubin not only inhibited lower Bcl-2 expression, high Bax expression, but also modulated caspase-3 activation, PARP cleavage, and eventually protected against H2O2-induced apoptosis. These results indicated that aucubin can obstruct H2O2-induced apoptosis by regulating of the expression of Bcl-2 and Bax, as well as suppression of caspases cascade activation.  相似文献   

8.
The sensitivity of phytoplankton species for hydrogen peroxide (H2O2) was analyzed by pulse amplitude modulated (PAM) fluorometry. The inhibition of photosynthesis was more severe in five tested cyanobacterial species than in three green algal species and one diatom species. Hence the inhibitory effect of H2O2 is especially pronounced for cyanobacteria. A specific damage of the photosynthetic apparatus was demonstrated by changes in 77 K fluorescence emission spectra. Different handling of oxidative stress and different cell structure are responsible for the different susceptibility to H2O2 between cyanobacteria and other phytoplankton species. This principle may be potentially employed in the development of new agents to combat cyanobacterial bloom formation in water reservoirs.  相似文献   

9.
Here we examined whether Ca2+/Calmodulin (CaM) is involved in abscisic acid (ABA)-induced antioxidant defense and the possible relationship between CaM and H2O2 in ABA signaling in leaves of maize (Zea mays L.) plants exposed to water stress. An ABA-deficient mutant vp5 and its wild type were used for the experimentation. We found that water stress enhanced significantly the contents of CaM and H2O2, and the activities of chloroplastic and cytosolic superoxide dismutase (SOD), ascorbate peroxidase (APX) and glutathione reductase (GR), and the gene expressions of the CaM1, cAPX, GR1 and SOD4 in leaves of wild-type maize. However, the increases mentioned above were almost arrested in vp5 plants and in the wild-type plants pretreated with ABA biosynthesis inhibitor tungstate (T), suggesting that ABA is required for water stress-induced H2O2 production, the enhancement of CaM content and antioxidant defense. Besides, we showed that the up-regulation of water stress-induced antioxidant defense was almost completely blocked by pretreatment with Ca2+ inhibitors, CaM antagonists and reactive oxygen (ROS) manipulators. Moreover, the analysis of time course of CaM and H2O2 production under water stress showed that the increase in CaM content preceded that of H2O2. These results suggested that Ca2+/CaM and H2O2 were involved in the ABA-induced antioxidant defense under water stress, and the increases of Ca2+/CaM contents triggered H2O2 production, which inversely affected the contents of CaM. Thus, a cross-talk between Ca2+/CaM and H2O2 may play a pivotal role in the ABA signaling.  相似文献   

10.
Propofol (2,6-diisopropylphenol) is a widely used general anesthetic with anti-oxidant activities. This study aims to investigate protective capacity of propofol against hydrogen peroxide (H2O2)-induced oxidative injury in neural cells and whether the anti-oxidative effects of propofol occur through a mechanism involving the modulation of NADPH oxidase (NOX) in a manner of calcium-dependent. The rat differentiated PC12 cell was subjected to H2O2 exposure for 24 h to mimic a neuronal in vitro model of oxidative injury. Our data demonstrated that pretreatment of PC12 cells with propofol significantly reversed the H2O2-induced decrease in cell viability, prevented H2O2-induced morphological changes, and reduced the ratio of apoptotic cells. We further found that propofol attenuated the accumulation of malondialdehyde (biomarker of oxidative stress), counteracted the overexpression of NOX core subunit gp91phox (NOX2) as well as the NOX activity following H2O2 exposure in PC12 cells. In addition, blocking of L-type Ca2+ channels with nimodipine reduced H2O2-induced overexpression of NOX2 and caspase-3 activation in PC12 cells. Moreover, NOX inhibitor apocynin alone or plus propofol neither induces a significant downregulation of NOX activity nor increases cell viability compared with propofol alone in the PC12 cells exposed to H2O2. These results demonstrate that the protective effects of propofol against oxidative injury in PC12 cells are mediated, at least in part, through inhibition of Ca2+-dependent NADPH oxidase.  相似文献   

11.
Hu X  Jiang M  Zhang A  Lu J 《Planta》2005,223(1):57-68
The histochemical and cytochemical localization of abscisic acid (ABA)-induced H2O2 production in leaves of maize (Zea mays L.) plants were examined, using 3,3-diaminobenzidine (DAB) and CeCl3 staining, respectively, and the relationship between ABA-induced H2O2 production and ABA-induced subcellular activities of antioxidant enzymes was studied. H2O2 generated in response to ABA treatment was detected within 0.5 h in major veins of the leaves and maximized at about 2–4 h. In mesophyll and bundle sheath cells, ABA-induced H2O2 accumulation was observed only in apoplast, and the greatest accumulation occurred in the walls of mesophyll cells facing large intercellular spaces. Meanwhile, ABA treatment led to a significant increase in the activities of the leaf chloroplastic and cytosolic antioxidant enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX) and glutathione reductase (GR), and pretreatment with the NADPH oxidase inhibitor diphenyleneiodonium (DPI), the O 2 scavenger Tiron and the H2O2 scavenger dimethylthiourea (DMTU) almost completely arrested the increase in the activities of these antioxidant enzymes. Our results indicate that the accumulation of apoplastic H2O2 is involved in the induction of the chloroplastic and cytosolic antioxidant enzymes. Moreover, an oxidative stress induced by paraquat (PQ), which generates O 2 and then H2O2 in chloroplasts, also up-regulated the activities of the chloroplastic and cytosolic antioxidant enzymes, and the up-regulation was blocked by the pretreatment with Tiron and DMTU. These data suggest that H2O2 produced at a specific cellular site could coordinate the activities of antioxidant enzymes in different subcellular compartments.  相似文献   

12.
This study employed confocal laser scanning microscopy to monitor the effect of H2O2 on cytosolic as well as mitochondrial calcium (Ca2+) concentrations, mitochondrial inner membrane potential (m) and flavine adenine dinucleotide (FAD) oxidation state in isolated mouse pancreatic acinar cells. The results show that incubation of pancreatic acinar cells with H2O2, in the absence of extracellular Ca2+ ([Ca2+]o) led to an increase either in cytosolic and in mitochondrial Ca2+ concentration. Additionally, H2O2 induced a depolarization of mitochondria and increased oxidized FAD level. Pretreatment of cells with the mitochondrial inhibitors rotenone or cyanide inhibited the response induced by H2O2 on mitochondrial inner membrane potential but failed to block oxidation of FAD in the presence of H2O2. However, the H2O2-evoked effect on FAD state was blocked by pretreatment of cells with the mitochondrial uncoupler, carbonyl cyanide p-trifluoromethoxy-phenylhydrazone (FCCP). On the other hand, perfusion of cells with thapsigargin (Tps), an inhibitor of the SERCA pump, led to an increase in mitochondrial Ca2+ concentration and in oxidized FAD level, and depolarized mitochondria. Pretreatment of cells with thapsigargin inhibited H2O2-evoked changes in mitochondrial Ca2+ concentration but not those in membrane potential and FAD state. The present results have indicated that H2O2 can evoke marked changes in mitochondrial activity that might be due to the oxidant nature of H2O2. This in turn could represent the mechanism of action of ROS to induce cellular damage leading to cell dysfunction and generation of pathologies in the pancreas. (Mol Cell Biochem 269: 165–173, 2005)  相似文献   

13.
The effects of pulsed electric fields of low frequency (50 Hz) on DNA of human lymphocytes were investigated. The influence of additional external factors, such as hydrogen peroxide (H2O2) and γ-irradiation, as well as the repair efficiency in these lymphocytes, was also evaluated. The comet assay, a very sensitive and rapid method for detecting DNA damage at the single cells level was the method used. A significant amount of damage was observed after exposure to the electric fields, compared to the controls. After 2 h incubation at 37°C, a proportion of damage was repaired. H2O2 and γ-irradiation increased the damage to lymphocytes exposed to pulsed electric fields according to the dose used, while the amount of the repair was proportional to the damage.  相似文献   

14.
Growth of the green algae Chlamydomonas reinhardtii and Chlorella sp. in batch cultures was investigated in a novel gas-tight photobioreactor, in which CO2, H2, and N2 were titrated into the gas phase to control medium pH, dissolved oxygen partial pressure, and headspace pressure, respectively. The exit gas from the reactor was circulated through a loop of tubing and re-introduced into the culture. CO2 uptake was estimated from the addition of CO2 as acidic titrant and O2 evolution was estimated from titration by H2, which was used to reduce O2 over a Pd catalyst. The photosynthetic quotient, PQ, was estimated as the ratio between O2 evolution and CO2 up-take rates. NH4 +, NO2 , or NO3 was the final cell density limiting nutrient. Cultures of both algae were, in general, characterised by a nitrogen sufficient growth phase followed by a nitrogen depleted phase in which starch was the major product. The estimated PQ values were dependent on the level of oxidation of the nitrogen source. The PQ was 1 with NH4 + as the nitrogen source and 1.3 when NO3 was the nitrogen source. In cultures grown on all nitrogen sources, the PQ value approached 1 when the nitrogen source was depleted and starch synthesis became dominant, to further increase towards 1.3 over a period of 3–4 days. This latter increase in PQ, which was indicative of production of reduced compounds like lipids, correlated with a simultaneous increase in the degree of reduction of the biomass. When using the titrations of CO2 and H2 into the reactor headspace to estimate the up-take of CO2, the production of O2, and the PQ, the rate of biomass production could be followed, the stoichiometrical composition of the produced algal biomass could be estimated, and different growth phases could be identified.  相似文献   

15.
Deinococcus radiodurans is a bacterium that can survive extreme DNA damage. To understand the role of endonuclease III (Nth) in oxidative repair and mutagenesis, we constructed nth single, double and triple mutants. The nth mutants showed no significant difference with wild type in both IR resistance and H2O2 resistance. We characterized these strains with regard to mutation rates and mutation spectrum using the rpoB/Rifr system. The Rifr frequency of mutant MK1 (△dr0289) was twofold higher than that of wild type. The triple mutant of nth (ME3)generated a mutation frequency 34.4-fold, and a mutation rate 13.8-fold higher than the wild type. All strains demonstrated specific mutational hotspots. Each single mutant had higher spontaneous mutation frequency than wild type at base substitution (G:C → A:T). The mutational response was further increased in the double and triple mutants. The higher mutation rate and mutational response in ME3 suggested that the three nth homologs had non-overlapped and overlapped substrate spectrum in endogenous oxidative DNA repair.  相似文献   

16.
The effect of foliar pretreatment by hydrogen peroxide (H2O2) at low concentrations of 0, 5, 10, and 15 mM on the chilling tolerance of two Zoysia cultivars, manilagrass (Zoysia matrella) and mascarenegrass (Zoysia tenuifolia), was studied. The optimal concentration for H2O2 pretreatment was 10 mM, as demonstrated by the lowest malondialdehyde (MDA) content and electrolyte leakage (EL) levels and higher protein content under chilling stress (7°C/2°C, day/night). Prior to initiation of chilling, exogenous 10 mM H2O2 significantly increased catalase (CAT), ascorbate peroxidase (APX), glutathione-dependent peroxidases (GPX), and glutathione-S-transferase (GST) activities in manilagrass, and guaiacol peroxidase (POD), APX, and glutathione reductase (GR) activities in mascarenegrass, suggesting that H2O2 may act as a signaling molecule, inducing protective metabolic responses against further oxidative damage due to chilling. Under further stress, optimal pretreatments alleviated the increase of H2O2 level and the decrease of turfgrass quality, and improved CAT, POD, APX, GR, and GPX activities, with especially significant enhancement of APX and GPX activities from the initiation to end of chilling. These antioxidative enzymes were likely the important factors for acquisition of tolerance to chilling stress in the two Zoysia cultivars. Our results showed that pretreatment with H2O2 at appropriate concentration may improve the tolerance of warm-season Zoysia grasses to chilling stress, and that manilagrass had better tolerance to chilling, as evaluated by lower MDA and EL, and better turfgrass quality, regardless of the pretreatment applied.  相似文献   

17.
Insulin resistance results, in part, from impaired insulin signaling in insulin target tissues. Consequently, increased levels of insulin are necessary to control plasma glucose levels. The effects of elevated insulin levels on pancreatic beta (β) cell function, however, are unclear. In this study, we investigated the possibility that insulin may influence survival of pancreatic β cells. Studies were conducted on RINm, RINm5F and Min-6 pancreatic β-cells. Cell death was induced by treatment with H2O2, and was estimated by measurements of LDH levels, viability assay (Cell-Titer Blue), propidium iodide staining and FACS analysis, and mitochondrial membrane potential (JC-1). In addition, levels of cleaved caspase-3 and caspase activity were determined. Treatment with H2O2 increased cell death; this effect was increased by simultaneous treatment of cells with insulin. Insulin treatment alone caused a slight increase in cell death. Inhibition of caspase-3 reduced the effect of insulin to increase H2O2-induced cell death. Insulin increased ROS production by pancreatic β cells and increased the effect of H2O2. These effects were increased by inhibition of IR signaling, indicative of an effect independent of the IR cascade. We conclude that elevated levels of insulin may act to exacerbate cell death induced by H2O2 and, perhaps, other inducers of apoptosis.  相似文献   

18.
To determine the protective effects of Pellino-1 against H2O2-induced apoptosis in periodontal ligament stem cells (PDLSC). We demonstrated that H2O2 decreases PDLSC viability by 40 and 50% with the concentrations of 400 and 500 μM, respectively, with an observed downregulation of Pellino-1 mRNA and protein; we further concluded that overexpression of Pellino-1 significantly lowers 8-hydroxy-2′-deoxyguanosine levels by 10% and upregulates superoxide dismutase 1, glutathione peroxidase levels, and catalase mRNA levels by 200, 40, and 250%, respectively. More importantly, we found that overexpression of Pellino-1 inhibited H2O2-induced cellular apoptosis through the activation of the NF-κB signaling pathway. Pellino-1 may be critically important for cell survival in the presence of oxidative elements; activation of the NF-κB signaling cascade was required for the overexpression of Pellino-1 to protect the cells from H2O2-induced apoptosis.  相似文献   

19.
Ros Barceló A 《Planta》2005,220(5):747-756
Lignification in Zinnia elegans L. stems is characterized by a burst in the production of H2O2, the apparent fate of which is to be used by xylem peroxidases for the polymerization of p-hydroxycinnamyl alcohols into lignins. A search for the sites of H2O2 production in the differentiating xylem of Z. elegans stems by the simultaneous use of optical (bright field, polarized light and epi-polarization) and electron-microscope tools revealed that H2O2 is produced on the outer-face of the plasma membrane of both differentiating (living) thin-walled xylem cells and particular (non-lignifying) xylem parenchyma cells. From the production sites it diffuses to the differentiating (secondary cell wall-forming) and differentiated lignifying xylem vessels. H2O2 diffusion occurs mainly through the continuous cell wall space. Both the experimental data and the theoretical calculations suggest that H2O2 diffusion from the sites of production might not limit the rate of xylem cell wall lignification. It can be concluded that H2O2 is produced at the plasma membrane in differentiating (living) thin-walled xylem cells and xylem parenchyma cells associated to xylem vessels, and that it diffuses to adjacent secondary lignifying xylem vessels. The results strongly indicate that non-lignifying xylem parenchyma cells are the source of the H2O2 necessary for the polymerization of cinnamyl alcohols in the secondary cell wall of lignifying xylem vessels.  相似文献   

20.
Acclimation to excess light is required for optimizing plant performance under natural environment. The present work showed that the treatment of Arabidopsis leaves with exogenous H2O2 can increase the acclimation of PSII to excess light. Treatments with H2O2 also enhanced the capacity of the mitochondrial alternative respiratory pathway and salicylic acid (SA) content. Our work also showed that the lack in alternative oxidase (AOX1a) in AtAOX1a antisense line and the SA deficiency in NahG (salicylate hydroxylase gene) transgenic mutant attenuated the H2O2-induced acclimation of PSII to excess light. It indicates that the H2O2-induced acclimation of PSII to excess light could be mediated by the alternative respiratory pathway and SA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号