首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In Trypanosoma brucei, a major pathogenic protozoan parasite of Central Africa, a number of glycolytic enzymes present in the cytosol of other organisms are uniquely segregated in a microbody-like organelle, the glycosome, which they are believed to reach post-translationally after being synthesized by free ribosomes in the cytosol. In a search for possible topogenic signals responsible for import into glycosomes we have compared the amino acid sequences of four glycosomal enzymes: triosephosphate isomerase (TIM), glyceraldehyde-phosphate dehydrogenase (GAPDH), phosphoglycerate kinase (PGK) and aldolase (ALDO), with each other and with their cytosolic counterparts. Each of these enzymes contains a marked excess of positive charges, distributed in two or more clusters along the polypeptide chain. Modelling of the three-dimensional structures of TIM, PGK and GAPDH using the known structural coordinates of homologous enzymes from other organisms indicates that all three may have in common two 'hot spots' about 40 A apart, which themselves include a pair of basic amino acid residues separated by a distance of about 7 A. The sequence of glycosomal ALDO, for which no three-dimensional information is available, is compatible with the presence of the same configuration on the surface of this enzyme. We propose that this feature plays an essential role in the import of enzymes into glycosomes.  相似文献   

2.
Glycolytic enzymes were found to bind to isolated coated vesicles. From a preparation of rabbit muscle myogen mixed with clathrin coated vesicles greater than 75% of four enzymes, aldolase. glyceraldehydephosphate dehydrogenase, pyruvate kinase, and lactate dehydrogenase were found to pellet with isolated coated vesicles upon centrifugation at 60.000 g for 1 h. The binding of purified aldolase, glyceraldehydephosphate dehydrogenase, pyruvate kinase, the muscle form and the heart form of lactate dehydrogenase was characterized further. Substrates were found to elute three of the enzymes and binding was determined to be a function of ionic strength.  相似文献   

3.
Changes in glycosylation are correlated to disease and associated with differentiation processes. Experimental tools are needed to investigate the physiological implications of these changes either by labeling of the modified glycans or by blocking their biosynthesis. N-Acetylgalactosamine (GalNAc) is a monosaccharide widely encountered in glycolipids, proteoglycans, and glycoproteins; once taken up by cells it can be converted through a salvage pathway to UDP-GalNAc, which is further used by glycosyltransferases to build glycans. In order to find new reporter molecules able to integrate into cellular glycans, synthetic analogues of GalNAc were prepared and tested as substrates of both enzymes acting sequentially in the GalNAc salvage pathway, galactokinase 2 (GK2) and uridylpyrophosphorylase AGX1. Detailed in vitro assays identified the GalNAc analogues that can be transformed into sugar nucleotides and revealed several bottlenecks in the pathway: a modification on C6 is not tolerated by GK2; AGX1 can use all products of GK2 although with various efficiencies; and all analogues transformed into UDP-GalNAc analogues except those with alterations on C4 are substrates for the polypeptide GalNAc transferase T1. Besides, all analogues that could be incorporated in vitro into O-glycans were also integrated into cellular O-glycans as attested by their detection on the cell surface of CHO-ldlD cells. Altogether our results show that GalNAc analogues can help to better define structural requirements of the donor substrates for the enzymes involved in GalNAc metabolism, and those that are incorporated into cells will prove valuable for the development of novel diagnostic and therapeutic tools.  相似文献   

4.
Various glycolytic and gluconeogenic enzymes were tested as substrates for the insulin receptor kinase. Phosphofructokinase and phosphoglycerate mutase were found to be the best substrates. Phosphorylation of these enzymes was rapid, stimulated 2- to 6-fold by 10(-7) M insulin and occurred exclusively on tyrosine residues. Enolase, fructose 1,6-bisphosphatase, lactate dehydrogenases in decreasing order, were also subject to insulin-stimulated phosphorylation but to a smaller extent than that for phosphofructokinase or phosphoglycerate mutase. The phosphorylation of phosphofructokinase was studied most extensively since phosphofructokinase is known to catalyze a rate-limiting step in glycolysis. The apparent Km of the insulin receptor for phosphofructokinase was 0.1 microM, which is within the physiologic range of concentration of this enzyme in most cells. Tyrosine phosphorylation of phosphofructokinase paralleled autophosphorylation of the beta-subunit of the insulin receptor with respect to time course, insulin dose response (half maximal effect between 10(-9) and 10(-8) M insulin), and cation requirement (Mn2+ greater than Mg2+ much greater than Ca2+). Further study will be required to determine whether the tyrosine phosphorylation of phosphofructokinase plays a role in insulin-stimulated increases in glycolytic flux.  相似文献   

5.
Plant seeds store triacylglycerols (TAGs) in intracellular organelles called oil-bodies or oleosomes, which consist of oil droplets covered by a coat of phospholipids and proteins. During seed germination, the TAGs of oil-bodies hydrolysed by lipases sustain the growth of the seedlings. The mechanism whereby lipases gain access to their substrate in these organelles is largely unknown. One of the questions that arises is whether the protein/phospholipid coat of oil-bodies prevents the access of lipase to the oil core. We have investigated the susceptibility of almond oil-bodies to in vitro lipolysis by various purified lipases with a broad range of biochemical properties. We have found that all the enzymes assayed were capable of releasing on their own free fatty acids from the TAG of oil-bodies. Depending on the lipase, the specific activity measured on oil-bodies using the pH-stat technique was found to range from 18 to 38% of the specific activity measured on almond oil emulsified by gum arabic. Some of these lipases are known to have a dual lipase/phospholipase activity. However, no correlation was found to exist between the ability of a lipase to readily and efficiently hydrolyse the TAG content of oil-bodies and the presence of a phospholipase activity. Kinetic studies indicate that oil-bodies behave as a substrate as other proteolipid organelles such as milk fat globules. Finally we have shown that a purified water-soluble plant lipase on its own can easily hydrolyse oil-bodies in vitro. Our results suggest that the lipolysis of oil-bodies in seedlings might occur without any pre-hydrolysis of the protein coat.  相似文献   

6.
Survival of the human pathogen Streptococcus pneumoniae requires a functional mevalonate pathway, which produces isopentenyl diphosphate, the essential building block of isoprenoids. Flux through this pathway appears to be regulated at the mevalonate kinase (MK) step, which is strongly feedback-inhibited by diphosphomevalonate (DPM), the penultimate compound in the pathway. The human mevalonate pathway is not regulated by DPM, making the bacterial pathway an attractive antibiotic target. Since DPM has poor drug characteristics, being highly charged, we propose to use unphosphorylated, cell-permeable prodrugs based on mevalonate that will be phosphorylated in turn by MK and phosphomevalonate kinase (PMK) to generate the active compound in situ. To test the limits of this approach, we synthesized a series of C3-substituted mevalonate analogues to probe the steric and electronic requirements of the MK and PMK active sites. MK and PMK accepted substrates with up to two additional carbons, showing a preference for small substituents. This result establishes the feasibility of using a prodrug strategy for DPM-based antibiotics in S. pneumoniae and identified several analogues to be tested as inhibitors of MK. Among the substrates accepted by both enzymes were cyclopropyl, vinyl, and ethynyl mevalonate analogues that, when diphosphorylated, might be mechanism-based inactivators of the next enzyme in the pathway, diphosphomevalonate decarboxylase.  相似文献   

7.
Increased cellular levels of reactive oxygen species are known to arise during exposure of organisms to elevated metal concentrations, but the consequences for cells in the context of metal toxicity are poorly characterized. Using two-dimensional gel electrophoresis, combined with immunodetection of protein carbonyls, we report here that exposure of the yeast Saccharomyces cerevisiae to copper causes a marked increase in cellular protein carbonyl levels, indicative of oxidative protein damage. The response was time dependent, with total-protein oxidation peaking approximately 15 min after the onset of copper treatment. Moreover, this oxidative damage was not evenly distributed among the expressed proteins of the cell. Rather, in a similar manner to peroxide-induced oxidative stress, copper-dependent protein carbonylation appeared to target glycolytic pathway and related enzymes, as well as heat shock proteins. Oxidative targeting of these and other enzymes was isoform-specific and, in most cases, was also associated with a decline in the proteins' relative abundance. Our results are consistent with a model in which copper-induced oxidative stress disables the flow of carbon through the preferred glycolytic pathway, and promotes the production of glucose-equivalents within the pentose phosphate pathway. Such re-routing of the metabolic flux may serve as a rapid-response mechanism to help cells counter the damaging effects of copper-induced oxidative stress.  相似文献   

8.
In recent years, evidence has been accumulating that metabolic pathways are organized in vivo as multienzyme clusters. Affinity electrophoresis proves to be an attractive in vitro method to further evidence specific associations between purified consecutive enzymes from the glycolytic pathway on the one hand, and from the citric acid cycle on the other hand. Our results support the hypothesis of cluster formation between the glycolytic enzymes aldolase, glyceraldehydephosphate dehydrogenase, and triosephosphate isomerase, and between the cycle enzymes fumarase, malate dehydrogenase, and citrate synthase. A model is presented to explain the possibility of regulation of the citric acid cycle by varying enzyme-enzyme associations between the latter three enzymes, in response to changing local intramitochondrial ATP/ADP ratios.  相似文献   

9.
Summary Phenotypes of various glycolytic enzymes were determined in muscle biopsies. The results suggest that genetic effects on maximal enzyme activities may be associated with regulatory elements of the appropriate genes.  相似文献   

10.
11.
12.
13.
14.
At a noninhibitory steady state concentration of adenosine 5'-phosphosulfate (APS), increasing the concentration of Penicillium chrysogenum ATP sulfurylase drives the rate of the APS kinase-catalyzed reaction toward zero. The result indicates that the ATP sulfurylase.APS complex does not serve as a substrate for APS kinase, i.e. there is no "substrate channeling" of APS between the two sulfate-activating enzymes. APS kinase had no effect on the [S]0.5 values, nH values, or maximum isotope trapping in the single turnover of ATP sulfurylase-bound [35S]APS. Equimolar APS kinase (+/- MgATP or APS) also had no effect on the rate constants for the inactivation of ATP sulfurylase by phenylglyoxal, diethylpyrocarbonate, or N-ethylmaleimide. Similarly, ATP sulfurylase (+/- ligands) had no effect on the inactivation of equimolar APS kinase by trinitrobenzene sulfonate, diethylpyrocarbonate, or heat. (The last promotes the dissociation of dimeric APS kinase to inactive monomers.) ATP sulfurylase also had no effect on the reassociation of APS kinase subunits at low temperature. The cumulative results suggest that the two sulfate activating enzymes do not associate to form a "3'-phosphoadenosine 5'-phosphosulfate synthetase" complex.  相似文献   

15.
The five glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, phosphoglycerate mutase, enolase and pyruvate kinase were each purified from extracts of Zymomonas mobilis cells, by using dye-ligand chromatography as the principal step. Two procedures, producing three and two of the enzymes respectively, are described in detail. Z. mobilis glyceraldehyde-phosphate dehydrogenase was found to be similar in most respects to the enzyme from other sources, except for having a slightly larger subunit size. Phosphoglycerate kinase has properties typical for this enzyme; however, it did not show the sulphate activation effects characteristic of this enzyme from most other sources. Phosphoglycerate mutase is a dimer, partially independent of 2,3-bisphosphoglycerate, and has a high specific activity. Enolase was found to be octameric; otherwise its properties were very similar to those of the yeast enzyme. Pyruvate kinase is unusual in being dimeric, and not requiring K+ for activity. It is not allosterically activated by sugar phosphates, having a high activity in the absence of any effectors. Some quantitative differences in the relative amounts of these enzymes, compared with eukaryotic species, are ascribed to the fact that Z. mobilis utilizes the Entner-Doudoroff pathway rather than the more common Embden-Meyerhoff glycolytic route.  相似文献   

16.
17.
The microcompartmentation of aldolase and glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) was investigated in four different cell types (3T3 cells, SV 40 transformed 3T3 cells, mouse fibroblasts, chick embryo cardiomyocytes) combining cell permeabilization and indirect immunofluorescence technique. Permeabilization of the cells prior to fixation released the soluble fractions, whilst the total amount of enzymes was preserved in nonpermeabilized cells. Both enzymes exist in a soluble as well as in a structure-bound form. The soluble fraction of aldolase and GAPDH is distributed homogeneously throughout the cytoplasm, excluding the nucleus and vesicles. The permeabilization-resistant form is associated with the actin cytoskeleton. A considerable amount of both enzymes is located in the perinuclear region and cannot be attributed to a definite structure. Comparing the staining patterns of aldolase and GAPDH in four different cell types we found that the distribution of the enzymes corresponds with diverse forms of actin cytoskeletal organization of these cells. The codistribution is maintained in cells treated with cytochalasin D.  相似文献   

18.
2-Phosphotartronate has been synthesized by permanganate oxidation of glycerol 2-phosphate and has been tested as an inhibitor of five glycolytic enzymes that bind phosphoglycerate or phosphoglycollate. Competitive inhibition of rabbit muscle phosphoglycerate mutase, enolase and pyruvate kinase was observed. Triose phosphate isomerase and 3-phosphoglycerate kinase were not inhibited.  相似文献   

19.
L Leyton  P Saling 《Cell》1989,57(7):1123-1130
In the mouse, the zona pellucida (ZP) glycoprotein ZP3 both binds intact sperm and induces acrosomal exocytosis. The subsequent signaling pathway(s) is still uncertain, but Gi-like proteins have been implicated. By analogy with other signal transduction mechanisms, we examined anti-phosphotyrosine antibody reactivity in mouse sperm. Antibodies reacted with three proteins of 52, 75, and 95 kd. Indirect immunofluorescence localized reactivity to the acrosomal region of the sperm head. The 52 kd and 75 kd phosphoproteins are detected only in capacitated sperm, whereas the 95 kd protein is detected in both fresh and capacitated sperm. For the 95 kd protein, the level of immunoreactivity is not related to sperm motility but is enhanced by both capacitation and sperm interaction with solubilized ZP proteins. In addition, binding of radiolabeled whole ZP or purified ZP3 to blots of separated sperm proteins identified two ZP binding proteins of 95 kd and 42 kd. 95 kd sperm proteins that bind to ZP3 also react with anti-phosphotyrosine antibodies (in a ZP concentration-dependent manner), supporting the idea that the same 95 kd sperm protein serves as a ZP3 receptor and as a tyrosine kinase substrate. These findings and our evidence on acrosome reaction triggering via sperm receptor aggregation suggest that a 95 kd protein in the sperm plasma membrane is aggregated by ZP3, which stimulates tyrosine kinase activity leading to acrosomal exocytosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号