首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An NZM2410-derived lupus susceptibility locus on murine chromosome 4, Sle2(z), has previously been noted to engender generalized B cell hyperactivity. To study how Sle2(z) impacts B cell tolerance, two Ig H chain site-directed transgenes, 3H9 and 56R, with specificity for DNA were backcrossed onto the C57BL/6 background with or without Sle2(z). Interestingly, the presence of the NZM2410 "z" allele of Sle2 on the C57BL/6 background profoundly breached B cell tolerance to DNA, apparently by thwarting receptor editing. Whereas mAbs isolated from the spleens of B6.56R control mice demonstrated significant usage of the endogenous (i.e., nontargeted) H chain locus and evidence of vigorous L chain editing; Abs isolated from B6.Sle2(z).56R spleens were largely composed of the transgenic H chain paired with a spectrum of L chains, predominantly recombined to J(k)1 or J(k)2. In addition, Sle2(z)-bearing B cells adopted divergent phenotypes depending on their Ag specificity. Whereas Sle2(z)-bearing anti-DNA transgenic B cells were skewed toward marginal zone B cells and preplasmablasts, B cells from the same mice that did not express the transgene were skewed toward the B1a phenotype. This work illustrates that genetic loci that confer lupus susceptibility may influence B cell differentiation depending on their Ag specificity and potentially contribute to antinuclear autoantibody formation by infringing upon B cell receptor editing. Taken together with a recent report on Sle1(z), these studies suggest that dysregulated receptor-editing of nuclear Ag-reactive B cells may be a major mechanism through which antinuclear Abs arise in lupus.  相似文献   

2.
In response to encounter with self-Ag, autoreactive B cells may undergo secondary L chain gene rearrangement (receptor editing) and change the specificity of their Ag receptor. Knowing at what differentiative stage(s) developing B cells undergo receptor editing is important for understanding how self-reactive B cells are regulated. In this study, in mice with Ig transgenes coding for anti-self (DNA) Ab, we report dsDNA breaks indicative of ongoing secondary L chain rearrangement not only in bone marrow cells with a pre-B/B cell phenotype but also in immature/transitional splenic B cells with little or no surface IgM (sIgM(-/low)). L chain-edited transgenic B cells were detectable in spleen but not bone marrow and were still found to produce Ab specific for DNA (and apoptotic cells), albeit with lower affinity for DNA than the unedited transgenic Ab. We conclude that L chain editing in anti-DNA-transgenic B cells is not only ongoing in bone marrow but also in spleen. Indeed, transfer of sIgM(-/low) anti-DNA splenic B cells into SCID mice resulted in the appearance of a L chain editor (Vlambdax) in the serum of engrafted recipients. Finally, we also report evidence for ongoing L chain editing in sIgM(low) transitional splenic B cells of wild-type mice.  相似文献   

3.
Tolerance to dsDNA is broken in mice with a high-affinity anti-DNA H chain transgene, 56R, on the C57BL/6 background (B6.56R). B6.56R produce more anti-dsDNA Abs than BALBc.56R. To investigate how anti-DNA Abs are regulated on the B6 background, phenotypic and genetic studies were performed. B6.56R have reduced numbers of B cells and phenotypically altered B cell subsets, including relative increases in the proportions of IgM-negative bone marrow B cells, cells with a marginal zone phenotype, and cells with a transitional T3 phenotype. The peripheral B cell repertoire in B6.56R is restricted: most B cells express the 56R H chain and use a similar, limited subset of editor L chains. DNA binding is more common in B6.56R because the repertoire is shifted toward L chains that are more permissive for DNA binding. H chain editing is also observed and is increased in spontaneous as compared with LPS hybridomas. A subset of spontaneous hybridomas appears to lack H chain expression.  相似文献   

4.
The editing of B cell Ag receptor (BCR) through successive rearrangements of Ig genes has been considered to be a major mechanism for the central B cell tolerance, which precludes appearance of self-reactive B cells, through studies using anti-self-Ig transgenic/knock-in mouse systems. However, contribution of the receptor editing in the development of the normal B cell repertoire remains unclear. In addition, the signaling pathway directing this event is unknown. In this study, we demonstrate that receptor editing in anti-DNA Ig knock-in mice is impaired in the absence of an adaptor protein BASH (BLNK/SLP-65) that is involved in BCR signaling. Remarkably, the supposed hallmarks of receptor editing such as Iglambda chain expression, recombination sequence rearrangements at Igkappa loci, and presence of in-frame VkappaJkappa joins in the Igkappa loci inactivated by the recombination sequence rearrangements, were all diminished in BASH-deficient mice with unmanipulated Ig loci. BCR ligation-induced Iglambda gene recombination in vitro was also impaired in BASH-deficient B cells. Furthermore, the BASH-deficient mice showed an excessive Ab response to a DNA carrier immunization, suggesting the presence of unedited DNA-reactive B cells in the periphery. These results not only define a signaling pathway required for receptor editing but indicate that the BCR-signaled receptor editing indeed operates in the development of normal B cell repertoire and contributes to establishing the B cell tolerance.  相似文献   

5.
6.
Lupus-prone (NZB x NZW)F(1) (BWF(1)) mice were made transgenic (Tg) for an anti-DNA Ab inherited either as a conventional V(H)3H9- micro H chain Tg (3H9- micro ) with or without a conventional V(kappa)8-kappa Tg, or a V(H)3H9 V(H) knock-in Tg allele (3H9R) with or without a V(kappa)4 V(kappa) knock-in Tg allele (V(kappa)4R). V(H)3H9 yields an anti-DNA Ab with most L chains including an anti-ssDNA with the V(kappa)8 Tg and an anti-dsDNA with the V(kappa)4 Tg. BWF(1) mice that inherited the conventional 3H9- micro had normal serum IgM, little to none of which was encoded by 3H9- micro, and only a small percentage of those mice had serum anti-DNA, none of which was transgene encoded. B cells expressing the conventional 3H9- micro Tg were anergic. BWF(1) mice that inherited the knock-in 3H9R Tg allele also had normal serum IgM, one-half of which was encoded by 3H9R, and produced anti-DNA encoded by the Tg allele. Most B cells expressing the knock-in 3H9R Tg also had an anergic phenotype. The results indicate that autoimmune-prone BWF(1) mice initially develop effective B cell tolerance to DNA through anergy, and anergy was sustained in 3H9- micro Tg peripheral B cells but not in 3H9R Tg B cells. B cells expressing the 3H9R knock-in Tg allele were able to achieve an activation threshold that B cells expressing the 3H9- micro conventional Tg could not. The maintenance of B cell tolerance to DNA in autoimmune-prone BWF(1) mice appears to differ from both normal mice and autoimmune-prone MRL(lpr/lpr) mice.  相似文献   

7.
In normal B cell development, a large percentage of newly formed cells bear receptors with high levels of self-reactivity that must be tolerized before entry into the mature B cell pool. We followed the fate of self-reactive B cells expressing high affinity anti-hen egg lysozyme (HEL) Ag receptors exposed in vivo to membrane HEL in a setting in which the anti-HEL L chain was "knocked-in" at the endogenous L chain locus. These mice demonstrated extensive and efficient L chain receptor editing responses and had B cell numbers comparable to those found in animals lacking membrane Ag. BrdU labeling indicated that the time required for editing in response to membrane HEL was approximately 6 h. In mice transgenic for soluble HEL, anti-HEL B cells capable of editing showed evidence for both editing and anergy. These data identify receptor editing as a major physiologic mechanism by which highly self-reactive B cells are tolerized to membrane and soluble self-Ags.  相似文献   

8.
FcgammaR2B-deficient mice develop autoantibodies and glomerulonephritis with a pathology closely resembling human lupus when on the C57BL/6 (B6) background. The same mutation on the BALB/c background does not lead to spontaneous disease, suggesting differences in lupus susceptibility between the BALB/c and B6 strains. An F2 genetic analysis from a B6/BALB cross identified regions from the B6 chromosomes 12 and 17 with positive linkage for IgG autoantibodies. We have generated a congenic strain that contains the suppressor allele from the BALB/c chromosome 12 centromeric region (sbb2(a)) in an otherwise B6.FcgammaR2B(-/-) background. None of the B6.FcgammaR2B(-/-)sbb2(a/a) mice tested have developed IgG autoantibodies in the serum or autoimmune pathology. Mixed bone marrow reconstitution experiments indicate that sbb2(a) is expressed in non-B bone marrow-derived cells and acts in trans. sbb2(a) does not alter L chain editing frequencies of DNA Abs in the 3H9H/56R H chain transgenic mice, but the level of IgG2a anti-DNA Abs in the serum is reduced. Thus, sbb2(a) provides an example of a non-MHC lupus-suppressor locus that protects from disease by restricting the production of pathogenic IgG isotypes even in backgrounds with inefficient Ab editing checkpoints.  相似文献   

9.
Most mature B lymphocytes express one BCR L chain, kappa or lambda, but recent work has shown that there are exceptions in that some B lymphocytes express both kappa and lambda and some even bear two different kappa L chains. Using the anti-DNA H chain-transgenic mouse, 56R, we find that B cells with pre-existing autoreactivity are especially subject to L chain inclusion. Specifically, we show that isotypic and allelic inclusion enables autoreactive B cells to bypass central tolerance giving rise to B cells that retain dangerous features. One receptor in dual receptor B cells is an editor L chain, i.e., neutralizes or alters self-reactivity of the 56R H chain transgene. We compare the 56R mouse when on the C57/BL/6 background, a strain prone to autoimmunity, with that of 56R when on the BALB/c background, a strain that resists autoimmunity. In the B6.56R mouse, polyreactive B cells with dual L chain move to the follicular B cell compartment. Their localization in the follicular compartment may explain the ease with which B cells in the B6.56R differentiate into autoantibody-producing plasma cells. Likewise, in the BALB/c.56R mouse, dual L chain B cells are found in the follicular B cell compartment. Yet, the lack of autoantibody-producing plasma cells in the BALB/c.56R suggests that postfollicular tolerance checkpoints are intact. The Jkappa usage in dual kappa L chain B cells suggests increased receptor editing activity and is consistent with the expected distribution of Jkappa genes in our computational model for random selection of Jkappa.  相似文献   

10.
B cell Ag receptor editing is a process that can change kappa antigen recognition specificity of a B cell receptor through secondary gene rearrangements on the same allele. In this study we used a model mouse pre-B cell line (38B9) to examine factors that might affect allelic targeting of secondary rearrangements of the kappa locus. We isolated clones that showed both productive and nonproductive rearrangements of one kappa allele, while retaining the other kappa allele in the germline configuration (kappa(+)/kappa degrees or kappa(-)/kappa degrees ). In the absence of any selective pressures, subsequent rearrangement of the germline alleles occurred at the same frequency as secondary rearrangement of the productive or nonproductive rearranged alleles. Because 38B9 cells lack Ig heavy chains, we stably expressed mu heavy chain protein in 38B9 cells to determine whether heavy-light pairing might affect allelic targeting of secondary kappa rearrangements. Although the expression of heavy chain was found to both pair with and stabilize kappa protein in these cells, it had no effect on preferential targeting Vkappa-Jkappa receptor editing compared with rearrangement of a germline allele. These studies suggest that in the absence of selection to eliminate autoreactive Vkappa-Jkappa genes, there is no allelic preference for secondary rearrangement events in 38B9 cells.  相似文献   

11.
To analyze B lymphocyte central tolerance in a polyclonal immune system, mice were engineered to express a superantigen reactive to IgM of allotype b (IgM(b)). IgM(b/b) mice carrying superantigen were severely B cell lymphopenic, but small numbers of B cells matured. Their sera contained low levels of IgG and occasionally high levels of IgA. In bone marrow, immature B cells were normal in number, but internalized IgM and had a unique gene expression profile, compared with those expressing high levels of surface IgM, including elevated recombinase activator gene expression. A comparable B cell population was defined in wild-type bone marrows, with an abundance suggesting that at steady state ~20% of normal developing B cells are constantly encountering autoantigens in situ. In superantigen-expressing mice, as well as in mice carrying the 3H9 anti-DNA IgH transgene, or 3H9 H along with mutation in the murine κ-deleting element RS, IgM internalization was correlated with CD19 downmodulation. CD19(low) bone marrow cells from 3H9;RS(-/-) mice were enriched in L chains that promote DNA binding. Our results suggest that central tolerance and attendant L chain receptor editing affect a large fraction of normal developing B cells. IgH(a/b) mice carrying the superantigen had a ~50% loss in follicular B cell numbers, suggesting that escape from central tolerance by receptor editing from one IgH allele to another was not a major mechanism. IgM(b) superantigen hosts reconstituted with experimental bone marrow were demonstrated to be useful in revealing pathways involved in central tolerance.  相似文献   

12.
Abs to DNA and nucleoproteins are expressed in systemic autoimmune diseases, whereas B cells producing such Abs are edited, deleted, or inactivated in healthy individuals. Why autoimmune individuals fail to regulate is not well understood. In this study, we investigate the sources of anti-dsDNA B cells in autoimmune transgenic MRL-lpr/lpr mice. These mice are particularly susceptible to lupus because they carry a site-directed transgene, H76R that codes for an anti-DNA H chain. Over 90% of the B cells are eliminated in the bone marrow of these mice, and the few surviving B cells are associated with one of two Vkappa editors, Vkappa38c and Vkappa21D. Thus, it appears that negative selection by deletion and editing are intact in MRL-lpr/lpr mice. However, a population of splenic B cells in the H76R MRL-lpr/lpr mice produces IgG anti-nuclear Abs, and these mice have severe autoimmune organ damage. These IgG Abs are not associated with editors but instead use a unique Vkappa gene, Vkappa23. The H76R/Vkappa23 combination has a relatively high affinity for dsDNA and an anti-nuclear Ab pattern characteristic of lupus. Therefore, this Vkappa gene may confer a selective advantage to anti-DNA Abs in diseased mice.  相似文献   

13.
Chronic graft-vs-host (cGVH) disease is induced in nonautoimmune mice by the transfer of alloreactive T cells that recognize foreign MHC class II. It closely resembles systemic lupus erythematosus, with antinuclear Abs and immune-mediated nephritis. Recent work has implicated TLRs, particularly TLR9, in the recognition of certain autoantigens in vitro and in vivo. To explore further the role of TLR9 in systemic autoimmunity, we induced cGVH disease in C57BL/6 (B6) mice lacking TLR9, including B6 mice expressing the anti-DNA-encoding IgH transgenes 3H9 or 56R (B6.3H9.TLR9(-/-), B6.56R.TLR9(-/-)). We found that cGVH disease caused breakdown of B cell tolerance to chromatin and DNA in TLR9(-/-) recipients of alloreactive cells, yet that nephritis was less severe and that some autoantibody titers were lower compared with B6-cGVH controls. Spleen lymphocyte analysis showed that cGVH disease strikingly depleted marginal zone B cells in B6 mice, but did not influence T cell subsets in either B6 or B6-TLR9(-/-) hosts. B6.56R.TLR9(-/-) mice had less spontaneous production of autoantibodies than B6.56R mice, but there were no significant differences between B6.56R and B6.56R.TLR9(-/-) postinduction of cGVH disease. Taken together, these results suggested that TLR9 may worsen some aspects of systemic autoimmunity while alleviating others.  相似文献   

14.
Receptor editing in the bone marrow (BM) serves to modify the Ag receptor specificity of immature self-reactive B cells, while anergy functionally silences self-reactive clones. Here, we demonstrate that anergic B cells in hen egg lysozyme Ig (HEL-Ig)/soluble HEL double transgenic mice show evidence of having undergone receptor editing in vivo, as demonstrated by the presence of elevated levels of endogenous kappa light chain rearrangements in the BM and spleen. In an in vitro IL-7-driven BM culture system, HEL-Ig BM B cells grown in the presence of soluble HEL down-regulated surface IgM expression and also showed induction of new endogenous kappa light chain rearrangements. Using a panel of soluble protein ligands with reduced affinity for the HEL-Ig receptor, the editing response was shown to correlate in a dose-dependent fashion with the strength of signaling through the B cell receptor. The finding that the level of B cell receptor cross-linking sufficient to induce anergy in B cells is also capable of engaging the machinery required for receptor editing suggests an intimate relationship between these two mechanisms in maintaining B cell tolerance.  相似文献   

15.
The clonal selection theory postulates that immune tolerance mediated selection occurs at the level of the cell. The receptor editing model, instead, suggests that selection occurs at the level of the B-cell receptor, so that self-reactive receptors that encounter autoantigen in the bone marrow are altered through secondary rearrangement. Recent studies in transgenic model systems and normal B cells, both in vivo and in vitro, have demonstrated that receptor editing is a major mechanism for inducing B-cell tolerance.  相似文献   

16.
Systemic lupus erythematosus is an autoimmune disease characterized by autoantibodies and systemic inflammation that results in part from dendritic cell activation by nucleic acid containing immune complexes. There are many mouse models of lupus, some spontaneous and some induced. We have been interested in an induced model in which estrogen is the trigger for development of a lupus-like serology. The R4A transgenic mouse expresses a transgene-encoded H chain of an anti-DNA Ab. This mouse maintains normal B cell tolerance with deletion of high-affinity DNA-reactive B cells and maturation to immunocompetence of B cells making nonglomerulotropic, low-affinity DNA-reactive Abs. When this mouse is given estradiol, normal tolerance mechanisms are altered; high-affinity DNA-reactive B cells mature to a marginal zone phenotype, and the mice are induced to make high titers of anti-DNA Abs. We now show that estradiol administration also leads to systemic inflammation with increased B cell-activating factor and IFN levels and induction of an IFN signature. DNA must be accessible to B cells for both the production of high-affinity anti-DNA Abs and the generation of the proinflammatory milieu. When DNase is delivered to the mice at the same time as estradiol, there is no evidence for an abrogation of tolerance, no increased B cell-activating factor and IFN, and no IFN signature. Thus, the presence of autoantigen is required for positive selection of autoreactive B cells and for the subsequent positive feedback loop that occurs secondary to dendritic cell activation by DNA-containing immune complexes.  相似文献   

17.
BCR editing in the bone marrow contributes to B cell tolerance by orchestrating secondary Ig rearrangements in self-reactive B cells. We have recently shown that loss of the BCR or a pharmacologic blockade of BCR proximal signaling pathways results in a global "back-differentiation" response in which immature B cells down-regulate genes important for the mature B cell program and up-regulate genes characteristic of earlier stages of B cell development. These observations led us to test the hypothesis that self-Ag-induced down-regulation of the BCR, and not self-Ag-induced positive signals, lead to Rag induction and hence receptor editing. Supporting this hypothesis, we found that immature B cells from xid (x-linked immunodeficiency) mice induce re-expression of a Rag2-GFP bacterial artificial chromosome reporter as well as wild-type immature B cells following Ag incubation. Incubation of immature B cells with self-Ag leads to a striking reversal in differentiation to the pro-/pre-B stage of development, consistent with the idea that back-differentiation results in the reinduction of genes required for L chain rearrangement and receptor editing. Importantly, Rag induction, the back-differentiation response to Ag, and editing in immature and pre-B cells are inhibited by a combination of phorbol ester and calcium ionophore, agents that bypass proximal signaling pathways and mimic BCR signaling. Thus, mimicking positive BCR signals actually inhibits receptor editing. These findings support a model whereby Ag-induced receptor editing is inhibited by BCR basal signaling on developing B cells; BCR down-regulation removes this basal signal, thereby initiating receptor editing.  相似文献   

18.
The HIV-1 broadly neutralizing Ab (bnAb) 2F5 has been shown to be poly-/self-reactive in vitro, and we previously demonstrated that targeted expression of its VDJ rearrangement alone was sufficient to trigger a profound B cell developmental blockade in 2F5 V(H) knockin (KI) mice, consistent with central deletion of 2F5 H chain-expressing B cells. In this study, we generate a strain expressing the entire 2F5 bnAb specificity, 2F5 V(H) × V(L) KI mice, and find an even higher degree of tolerance control than observed in the 2F5 V(H) KI strain. Although B cell development was severely impaired in 2F5 V(H) × V(L) KI animals, we demonstrate rescue of their B cells when cultured in IL-7/BAFF. Intriguingly, even under these conditions, most rescued B cell hybridomas produced mAbs that lacked HIV-1 Envelope (Env) reactivity due to editing of the 2F5 L chain, and the majority of rescued B cells retained an anergic phenotype. Thus, when clonal deletion is circumvented, κ editing and anergy are additional safeguards preventing 2F5 V(H)/V(L) expression by immature/transitional B cells. Importantly, 7% of rescued B cells retained 2F5 V(H)/V(L) expression and secreted Env-specific mAbs with HIV-1-neutralizing activity. This partial rescue was further corroborated in vivo, as reflected by the anergic phenotype of most rescued B cells in 2F5 V(H) × V(L) KI × Eμ-Bcl-2 transgenic mice and significant (yet modest) enrichment of Env-specific B cells and serum Igs. The rescued 2F5 mAb-producing B cell clones in this study are the first examples, to our knowledge, of in vivo-derived bone marrow precursors specifying HIV-1 bnAbs and provide a starting point for design of strategies aimed at rescuing such B cells.  相似文献   

19.
Intrathymic tolerance results in elimination of T cells bearing self-reactive TCR V beta regions in mice expressing certain combinations of I-E and minor lymphocyte stimulatory (Mls) phenotypes. To determine if autoimmune strains of mice have a defect in intrathymic deletion of self-reactive TCR V beta regions, expression of V beta 3, V beta 6, V beta 8.1, and V beta 11 were examined in lpr/lpr and +/+ strains of mice; MRL/MpJ(H-2K, I-E+, Mlsb,), C57BL/6J(H-2b, I-E-, Mlsb,), C3H/HeJ(H-2k, I-E+, Mlsc), AKR/J(H-2k, I-E+, Mlsa); and in autoimmune NZB/N(H-2d, I-E+, Mlsa) and BXSB(H-2b, I-E-, Mlsb) mice. The results suggest that, during intrathymic development, self-reactive T cells are deleted in autoimmune strains of mice as found in normal control strains of mice. However, the TCR V beta repertoire is skewed in autoimmune strains compared to normal strains of mice. For example, MRL-lpr/lpr mice, but not other lpr/lpr strains, had increased expression of V beta 6 relative to expression in control MRL(-)+/+ mice, which is associated with collagen-induced arthritis. These data are consistent with a model of normal affinity for negative selection of self-reactive T cells in the thymus of autoimmune strains of mice followed by expansion of autoreactive T cell clones in the peripheral lymphoid organs. The peripheral lymphoid organs of lpr/lpr mice contain an expanded population of abnormal CD4-, CD8-, 6B2+ T cells. Elimination of self-reactive peripheral T cells suggests that these abnormal cells are derived from a CD4+ subpopulation in the thymus. Flow cytometry analysis of peripheral lymph node T cells from MRL-lpr/lpr mice reveal three populations of CD4+ T cells expressing low, intermediate and high intensity of B220 (6B2). This supports the hypothesis that in lpr/lpr mice, self-reactive CD4+ T cells are eliminated in the thymus, and that these cells lose expression of CD4 and acquire expression of 6B2 in the periphery.  相似文献   

20.
B/W mice spontaneously develop IgG antibodies to DNA that cause lethal immune nephritis. T and B cell interactions in the in vitro anti-DNA antibody response of B/W mice were investigated, and two distinct families of helper T cells that drive these responses were defined. First, the anti-DNA antibody-forming cell (AFC) response was found to be increased in B/W mice with nephritis and was inhibited with the monoclonal antibody anti-L3T4, suggesting a major role for helper T cells. Purified splenic T cells from mice with nephritis were able to augment both the IgG and the IgM anti-DNA AFC response of young B/W B cells. T helper cells were cloned from spleens of NZB/W F female mice with high titer anti-DNA antibodies and nephritis. The cloned T cells augmented both IgG and IgM anti-DNA AFC responses of young B/W B cells. Four clones--27.9, 30.7, 30.8, and 30.10--were selected for further study. These cells proliferated, in the context of syngeneic (H2d/z) antigen-presenting cells (APC) but not to allogeneic APC. Analysis of the mechanism of T helper cell clone-mediated augmentation of anti-DNA AFC revealed two populations: "cognate" T helper cells, which specifically augment anti-DNA AFC (30.7 and 30.10), and non-antigen-specific T helper cells (27.9 and 30.8), which augment the response of B cells of differing specificity by a bystander mechanism, probably through increased release of B cell growth and differentiation factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号