首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the diversity and distribution of archaeal and bacterial 16S rRNA gene sequences in deep aquifers of mid‐ to late Miocene hard shale located in the northernmost region of the Japanese archipelago. A major fault in the north‐west–south‐east (NW–SE) direction runs across the studied area. We collected three groundwater samples from boreholes on the south‐west (SW) side of the fault at depths of 296, 374 and 625 m below ground level (m.b.g.l.) and one sample from the north‐east (NE) side of the fault at a depth of 458 m.b.g.l. The groundwater samples were observed to be neutral and weakly saline. The total microbial counts after staining with acridine orange were in the order 105?106 cells mL?1 and 103 cells mL?1 in the aquifers to the SW and to the NE of the fault, respectively. A total of 407 archaeal and bacterial 16S rRNA gene sequences (204 and 203 sequences, respectively) were determined for clone libraries constructed from all groundwater samples. Phylogenetic analyses showed that the libraries constructed from the SW aquifers were generally coherent but considerably different from those constructed from the NE aquifer. All of the archaeal clone libraries from the SW aquifers were predominated by a single sequence closely related to the archaeon Methanoculleus chikugoensis, and the corresponding bacterial libraries were mostly predominated by the sequences related to Bacteroidetes, Firmicutes and δ‐Proteobacteria. In contrast, the libraries from the NE aquifer were dominated by uncultured environmental archaeal clones with no methanogen sequences and by β‐proteobacterial clones with no sequences related to Bacteroidetes and δ‐Proteobacteria. Hence, the possible coexistence of methanogens and sulphate reducers in Horonobe deep borehole (HDB) on the SW side is suggested, particularly in HDB‐6 (374 m.b.g.l.). Moreover, these organisms might play an important geochemical role in the groundwater obtained from the aquifers.  相似文献   

2.
The microbial communities present in two underground coal mines in the Bowen Basin, Queensland, Australia, were investigated to deduce the effect of pumping and mining on subsurface methanogens and methanotrophs. The micro‐organisms in pumped water from the actively mined areas, as well as, pre‐ and post‐mining formation waters were analyzed using 16S rRNA gene amplicon sequencing. The methane stable isotope composition of Bowen Basin coal seam indicates that methanogenesis has occurred in the geological past. More recently at the mine site, changing groundwater flow dynamics and the introduction of oxygen in the subsurface has increased microbial biomass and diversity. Consistent with microbial communities found in other coal seam environments, pumped coal mine waters from the subsurface were dominated by bacteria belonging to the genera Pseudomonas and the family Rhodocyclaceae. These environments and bacterial communities supported a methanogen population, including Methanobacteriaceae, Methanococcaceae and Methanosaeta. However, one of the most ubiquitous micro‐organisms in anoxic coal mine waters belonged to the family ‘Candidatus Methanoperedenaceae’. As the Archaeal family ‘Candidatus Methanoperedenaceae’ has not been extensively defined, the one studied species in the family is capable of anaerobic methane oxidation coupled to nitrate reduction. This introduces the possibility that a methane cycle between archaeal methanogenesis and methanotrophy may exist in the anoxic waters of the coal seam after hydrogeological disturbance.  相似文献   

3.
It was previously concluded that opposing gradients of sulphate and methane, observations of 16S ribosomal DNA sequences displaying great similarity to those of anaerobic methane-oxidizing Archaea and a peak in sulphide concentration in groundwater from a depth of 250–350 m in Olkiluoto, Finland, indicated proper conditions for methane oxidation with sulphate. In the present research, pressure-resistant, gas-tight circulating systems were constructed to enable the investigation of attached and unattached anaerobic microbial populations from a depth of 327 m in Olkiluoto under in situ pressure (2.4 MPa), diversity, dissolved gas and chemistry conditions. Three parallel flow cell cabinets were configured to allow observation of the influence on microbial metabolic activity of 11 mℳ methane, 11 mℳ methane plus 10 mℳ H2 or 2.1 mℳ O2 plus 7.9 mℳ N2 (that is, air). The concentrations of these gases and of organic acids and carbon, sulphur chemistry, pH and Eh, ATP, numbers of cultivable micro-organisms, and total numbers of cells and bacteriophages were subsequently recorded under batch conditions for 105 days. The system containing H2 and methane displayed microbial reduction of 0.7 mℳ sulphate to sulphide, whereas the system containing only methane resulted in 0.2 mℳ reduced sulphate. The system containing added air became inhibited and displayed no signs of microbial activity. Added H2 and methane induced increasing numbers of lysogenic bacteriophages per cell. It appears likely that a microbial anaerobic methane-oxidizing process coupled to acetate formation and sulphate reduction may be ongoing in aquifers at a depth of 250–350 m in Olkiluoto.  相似文献   

4.
Anaerobic benzene degradation was confirmed in microbial communities enriched from Baltimore Harbor (Baltimore, MD) sediments under methanogenic conditions. Molecular characterization based on 16S rDNA gene sequences revealed that the strains in the communities were diversely affiliated with such phylogenetic branches as the Bacteroidetes, Euryarchaeota, Firmicutes, and Thermotogae phyla. Of interest was that the majority of the microbial populations detected in these cultures were closely related to the members of dechlorinating microbial communities. Further, some of those species were previously found in naphthalene- or phenanthrene-degrading methanogenic communities. Finally, this result could be used to design targeted isolation strategies for anaerobic benzene-degrading strains under methanogenic conditions.  相似文献   

5.
地下水微生物功能群及生物地球化学循环   总被引:1,自引:0,他引:1  
李平  谭添  刘韩  王和林 《微生物学报》2021,61(6):1598-1609
地下水系统是地球关键带的重要组成部分,为微生物提供了特殊的栖息环境和复杂的生存条件,进而演化出复杂的生物地球化学过程.随着多技术、多学科的交叉融合及发展,近几十年地下水微生物功能群及生物地球化学循环研究取得了引人瞩目的 重要进展.本文从地下水中的微生物群功能分区、微生物介导的地球化学元素循环、污染与修复中的生物地球化学...  相似文献   

6.
Aims:  To investigate the factors affecting benzene biodegradation and microbial community composition in a contaminated aquifer.
Methods and Results:  We identified the microbial community in groundwater samples from a benzene-contaminated aquifer situated below a petrochemical plant. Eleven out of twelve groundwater samples with in situ dissolved oxygen concentrations between 0 and 2·57 mg l−1 showed benzene degradation in aerobic microcosm experiments, whereas no degradation in anaerobic microcosms was observed. The lack of aerobic degradation in the remaining microcosm could be attributed to a pH of 12·1. Three groundwaters, examined by 16S rRNA gene clone libraries, with low in situ oxygen concentrations and high benzene levels, each had a different dominant aerobic (or denitrifying) population, either Pseudomonas , Polaromonas or Acidovorax species. These groundwaters also had syntrophic organisms, and aceticlastic methanogens were detected in two samples. The alkaline groundwater was dominated by organisms closely related to Hydrogenophaga .
Conclusions:  Results show that pH 12·1 is inimical to benzene biodegradation, and that oxygen concentrations below 0·03 mg l−1 can support aerobic benzene-degrading communities.
Significance and Impact of the Study:  These findings will help to guide the treatment of contaminated groundwaters, and raise questions about the extent to which aerobes and anaerobes may interact to effect benzene degradation.  相似文献   

7.
Bacterial communities in groundwater collected from five different sites at the Kamaishi Mine were investigated by using denaturing gradient gel electrophoresis (DGGE). The bacterial cells in groundwater were collected on Millipore filters, and their nucleic acid was extracted by freeze-thaw cycles. A partial 16S rRNA gene was amplified by using a universal primer set by PCR. The PCR products were analyzed by DGGE. The band pattern of DGGE was essentially identical between two samples obtained from different depths in the same borehole (KH-1). Samples from the other sites differed from one another. The partial sequences of 16S rRNA genes (about 350 base pairs) isolated from bands were determined and analyzed for phylogenetic position. Almost half the sequences from two samples of the KH-1 belonged to the cluster of spore-forming, gram-positive sulfate reducer, Desulfotomaculum. The other bands also were related to those of obligate anaerobes. This suggests that the environment in both sites of KH-1 was highly anaerobic. Although only a few sequences were retrieved from the other sites, they were phylogenetically distanced from known isolates.  相似文献   

8.
Molecular ecology of hydrothermal vent microbial communities   总被引:6,自引:0,他引:6  
  相似文献   

9.

Background

Ventilator-associated pneumonia is the most prevalent acquired infection of patients on intensive care units and is associated with considerable morbidity and mortality. Evidence suggests that an improved understanding of the composition of the biofilm communities that form on endotracheal tubes may result in the development of improved preventative strategies for ventilator-associated pneumonia.

Methodology/Principal Findings

The aim of this study was to characterise microbial biofilms on the inner luminal surface of extubated endotracheal tubes from ICU patients using PCR and molecular profiling. Twenty-four endotracheal tubes were obtained from twenty mechanically ventilated patients. Denaturing gradient gel electrophoresis (DGGE) profiling of 16S rRNA gene amplicons was used to assess the diversity of the bacterial population, together with species specific PCR of key marker oral microorganisms and a quantitative assessment of culturable aerobic bacteria. Analysis of culturable aerobic bacteria revealed a range of colonisation from no growth to 2.1×108 colony forming units (cfu)/cm2 of endotracheal tube (mean 1.4×107 cfu/cm2). PCR targeting of specific bacterial species detected the oral bacteria Streptococcus mutans (n = 5) and Porphyromonas gingivalis (n = 5). DGGE profiling of the endotracheal biofilms revealed complex banding patterns containing between 3 and 22 (mean 6) bands per tube, thus demonstrating the marked complexity of the constituent biofilms. Significant inter-patient diversity was evident. The number of DGGE bands detected was not related to total viable microbial counts or the duration of intubation.

Conclusions/Significance

Molecular profiling using DGGE demonstrated considerable biofilm compositional complexity and inter-patient diversity and provides a rapid method for the further study of biofilm composition in longitudinal and interventional studies. The presence of oral microorganisms in endotracheal tube biofilms suggests that these may be important in biofilm development and may provide a therapeutic target for the prevention of ventilator-associated pneumonia.  相似文献   

10.
11.
The microbial composition of concrete biofilms within wastewater collection systems was studied using molecular assays. SSU rDNA clone libraries were generated from 16 concrete surfaces of manholes, a combined sewer overflow, and sections of a corroded sewer pipe. Of the 2457 sequences analyzed, α-, β-, γ-, and δ-Proteobacteria represented 15%, 22%, 11%, and 4% of the clones, respectively. β-Proteobacteria (47%) sequences were more abundant in the pipe crown than any of the other concrete surfaces. While 178 to 493 Operational Taxonomic Units (OTUs) were associated with the different concrete samples, only four sequences were shared among the different clone libraries. Bacteria implicated in concrete corrosion were found in the clone libraries while archaea, fungi, and several bacterial groups were also detected using group-specific assays. The results showed that concrete sewer biofilms are more diverse than previously reported. A more comprehensive molecular database will be needed to better study the dynamics of concrete biofilms.  相似文献   

12.
The microbial composition of concrete biofilms within wastewater collection systems was studied using molecular assays. SSU rDNA clone libraries were generated from 16 concrete surfaces of manholes, a combined sewer overflow, and sections of a corroded sewer pipe. Of the 2457 sequences analyzed, α-, β-, γ-, and δ-Proteobacteria represented 15%, 22%, 11%, and 4% of the clones, respectively. β-Proteobacteria (47%) sequences were more abundant in the pipe crown than any of the other concrete surfaces. While 178 to 493 Operational Taxonomic Units (OTUs) were associated with the different concrete samples, only four sequences were shared among the different clone libraries. Bacteria implicated in concrete corrosion were found in the clone libraries while archaea, fungi, and several bacterial groups were also detected using group-specific assays. The results showed that concrete sewer biofilms are more diverse than previously reported. A more comprehensive molecular database will be needed to better study the dynamics of concrete biofilms.  相似文献   

13.
Subsurface microorganisms are crucial for contaminant degradation and maintenance of groundwater quality. This study investigates the microbial biomass and community composition [by phospholipid fatty acids (PLFAs)], as well as physical and chemical soil characteristics at woodland flooding sites of an artificial groundwater recharge system used for drinking water production. Vertical soil profiles to c . 4 m at two watered and one nonwatered site were analyzed. The microbial biomass was equal in watered and nonwatered sites, and considerable fractions (25–42%) were located in 40–340 cm depth. The microbial community structure differed significantly between watered and nonwatered sites, predominantly below 100 cm depth. Proportions of the bacterial PLFAs 16:1ω5, 16:1ω7, cy17:0 and 18:1ω9t, and the long-chained PLFAs 22:1ω9 and 24:1ω9 were more prominent at the watered sites, whereas branched, saturated PLFAs (iso/anteiso) dominated at the nonwatered site. PLFA community indices indicated stress response ( trans / cis ratio), higher nutrient availability (unsaturation index) and changes in membrane fluidity (iso/anteiso ratio) due to flooding. In conclusion, water recharge processes led to nutrient input and altered environmental conditions, which resulted in a highly active and adapted microbial community residing in the vadose zone that effectively degraded organic compounds.  相似文献   

14.
15.
Summary The leaching of six Eastern coals was investigated using experimental coal columns subjected to simulated leaching events. Measurements of CO2 assimilation and specific enrichment cultures indicated that the microbial communities of all leachates were dominated by iron- and sulfur-oxidizing chemoautotrophic bacteria. Comparison of CO2 assimilation rates in leachates and core samples of leached coal indicated that most chemoautotrophs remained within coal columns during leaching. Mean numbers of chemoautotrophic bacteria in leachate samples were correlated with concentrations of dissolved iron and sulfate. Leachates from unwashed, run-of-mine coals contained more chemoautotrophs and more iron and sulfate than did leachates from washed, final product coals. After several leachings, the ratio of sulfur oxidizers to iron oxidizers tended to increase. These data suggest that the chemoautotrophic community of final product coals may be pyritelimited. Aerobic heterotrophs constituted a minor component of the microbial community in leachates from the six coals and their abundance and metabolic activity were apparently not influenced by the beneficiation history of the coal. Changes in rates of acetate metabolism may have been related to microbial succession within the heterotrophic community of coal columns. In all leachates, rates of tritiated methylthymidine assimilation were correlated with rates of acetate incorporation but not with CO2 assimilation, even though autotrophs dominated the microflora. Thus, thymidine assimilation rates appear to reflect activities or growth of mainly heterotrophic microorganisms in leachate.  相似文献   

16.
17.
The microbial community of a groundwater system contaminated by 1,2-dichloroethane (1,2-DCA), a toxic and persistent chlorinated hydrocarbon, has been investigated for its response to biostimulation finalized to 1,2-DCA removal by reductive dehalogenation. The microbial population profile of samples from different wells in the aquifer and from microcosms enriched in the laboratory with different organic electron donors was analyzed by ARISA (Amplified Ribosomal Intergenic Spacer Analysis) and DGGE (Denaturing Gradient Gel Electrophoresis) of 16S rRNA genes. 1,2-DCA was completely removed with release of ethene from most of the microcosms supplemented with lactate, acetate plus formate, while cheese whey supported 1,2-DCA dehalogenation only after a lag period. Microbial species richness deduced from ARISA profiles of the microbial community before and after electron donor amendments indicated that the response of the community to biostimulation was heterogeneous and depended on the well from which groundwater was sampled. Sequencing of 16S rRNA genes separated by DGGE indicated the presence of bacteria previously associated with soils and groundwater polluted by halogenated hydrocarbons or present in consortia active in the removal of these compounds. A PCR assay specific for Desulfitobacterium sp. showed the enrichment of this genus in some of the microcosms. The dehalogenation potential of the microbial community was confirmed by the amplification of dehalogenase-related sequences from the most active microcosms. Cloning and sequencing of PCR products indicated the presence in the metagenome of the bacterial community of a new dehalogenase potentially involved in 1,2-DCA reductive dechlorination.  相似文献   

18.
The microbial community of a groundwater system contaminated by 1,2-dichloroethane (1,2-DCA), a toxic and persistent chlorinated hydrocarbon, has been investigated for its response to biostimulation finalized to 1,2-DCA removal by reductive dehalogenation. The microbial population profile of samples from different wells in the aquifer and from microcosms enriched in the laboratory with different organic electron donors was analyzed by ARISA (Amplified Ribosomal Intergenic Spacer Analysis) and DGGE (Denaturing Gradient Gel Electrophoresis) of 16S rRNA genes. 1,2-DCA was completely removed with release of ethene from most of the microcosms supplemented with lactate, acetate plus formate, while cheese whey supported 1,2-DCA dehalogenation only after a lag period. Microbial species richness deduced from ARISA profiles of the microbial community before and after electron donor amendments indicated that the response of the community to biostimulation was heterogeneous and depended on the well from which groundwater was sampled. Sequencing of 16S rRNA genes separated by DGGE indicated the presence of bacteria previously associated with soils and groundwater polluted by halogenated hydrocarbons or present in consortia active in the removal of these compounds. A PCR assay specific for Desulfitobacterium sp. showed the enrichment of this genus in some of the microcosms. The dehalogenation potential of the microbial community was confirmed by the amplification of dehalogenase-related sequences from the most active microcosms. Cloning and sequencing of PCR products indicated the presence in the metagenome of the bacterial community of a new dehalogenase potentially involved in 1,2-DCA reductive dechlorination.  相似文献   

19.
Many mammals possess specialized scent glands, which convey information about the marking individual. As the chemical profile of scent marks is likely to be affected by bacteria metabolizing the primary gland products, the variation in bacterial communities between different individuals has been proposed to underpin olfactory communication. However, few studies have investigated the dependency of microbiota residing in the scent organs on the host's individual-specific parameters. Here, we used terminal restriction fragment length polymorphism analysis of the PCR-amplified 16S rRNA gene and clone library construction to investigate the microbial communities in the subcaudal gland secretion of the European badger (Meles meles). As the secretion has been shown to encode individual-specific information, we investigated the correlation of the microbiota with different individual-specific parameters (age, sex, body condition, reproductive status, and season). We discovered a high number of bacterial species (56 operational taxonomic units from four phyla: Actinobacteria, Firmicutes, Proteobacteria, and Bacteroidetes), dominated by Actinobacteria (76.0%). The bacterial communities of cubs and adults differed significantly. Cubs possessed considerably more diverse communities dominated by Firmicutes, while in adults the communities were less diverse and dominated by Actinobacteria, suggesting that the acquisition of a 'mature bacterial community' is an ontogenetic process related to physiological changes during maturation.  相似文献   

20.
The microbial communities established in mesophilic and thermophilic expanded granular sludge bed reactors operated with sulfate as the electron acceptor were analyzed using 16S rRNA targeted molecular methods, including denaturing gradient gel electrophoresis, cloning, and phylogenetic analysis. Bacterial and archaeal communities were examined over 450 days of operation treating ethanol (thermophilic reactor) or ethanol and later a simulated semiconductor manufacturing wastewater containing citrate, isopropanol, and polyethylene glycol 300 (mesophilic reactor), with and without the addition of copper(II). Analysis, of PCR-amplified 16S rRNA gene fragments using denaturing gradient gel electrophoresis revealed a defined shift in microbial diversity in both reactors following a change in substrate composition (mesophilic reactor) and in temperature of operation from 30°C to 55°C (thermophilic reactor). The addition of copper(II) to the influent of both reactors did not noticeably affect the composition of the bacterial or archaeal communities, which is in agreement with the very low soluble copper concentrations (3–310 μg l−1) present in the reactor contents as a consequence of extensive precipitation of copper with biogenic sulfides. Furthermore, clone library analysis confirmed the phylogenetic diversity of sulfate-reducing consortia in mesophilic and thermophilic sulfidogenic reactors operated with simple substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号