首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of nine ale and nine lager brewing strains of Saccharomyces cerevisiae to produce volatile sulphur compounds during fermentation of brewers' wort was studied. In general, lager strains produced higher levels of hydrogen sulphide, methanethiol and methyl thioacetate than did ale strains. Methanethiol was shown to be a precursor of methyl thioacetate in both ale and lager strains.  相似文献   

2.
Formation of gas and of methylated sulfur compounds was observed in anaerobic enrichment cultures with methoxylated aromatic compounds as substrates. Via direct dilution of mud samples in defined reduced media supplemented with trimethoxybenzoate or syringate two new strains of anaerobic homoacetogenic bacteria (strain TMBS4 and strain SA2) were obtained in pure culture. Both strains produced dimethylsulfide and methanethiol during growth on methoxylated aromatic compounds. Growth tests and determination of stoichiometries demonstrated that the volatile sulfur compounds were formed from the methyl group at the aromatic ring and the sulfide added as reducing agent to the medium (R = aromatic residue): 2 R - O - CH3 + H2 S 2 R - OH + (CH3)2SDimethylsulfide was the major organic sulfur compound formed, whereas methanethiol appeared only as intermediate in small quantities. The isolates grew also with trihydroxybenzenes such as gallate, phloroglucinol, or pyrogallol without formation of methylated sulfur compounds. The aromatic compounds were degraded to acetate. The freshwater strain TMBS4 also fermented pyruvate. Other aliphatic or aromatic compounds were not utilized. External electron acceptors (sulfate, nitrate, fumarate) were not reduced. Both strains were mesophilic and formed rod-shaped, non-motile, Gram-negative cells. Spore formation was not observed. Tentatively, both isolates can be affiliated to the genus Pelobacter.Abbreviations TMB 3,4,5-trimethoxybenzoate - MT methanethiol - DMS dimethylsulfide  相似文献   

3.
A variety of volatile compounds were detected from six endobacteria isolated from different host species. From this, only two isolates (LCB01 and AVA02) produced volatile compounds capable of inhibiting the growth of the pathogenic Fusarium oxysporum f. sp. cubense race 4 (FocR4). Inhibition by volatile compounds produced by isolate LCB01 (Herbaspirillum spp.) was the most effective with 20.3% inhibition towards FocR4. Volatile compounds profiles indicated that inhibition may be attributed to the presence of single compounds such as 2-pentane 3-methyl, methanethiol and 3-undecene, or their action synergistically. Both methanethiol and 3-undecene were also produced by AVA02 (Pseudomonas spp.), but the absence of 2-pentane 3-methyl seemed to have affected the inhibitory effect with only 1.4% inhibition. The absence or the low levels of the three compounds in the other four isolates resulted in no inhibition of FocR4. These observations strongly suggest the antifungal nature of the three volatile compounds towards FocR4.  相似文献   

4.
Leaf discs, but not detached leaves, exposed to L-methionine or S-methyl-L-cysteine emitted a volatile sulphur compound identified as methanethiol by different trapping systems and by GC. Methanethiol emission was analyzed using pumpkin (Cucurbita pepo) leaf discs. Emission was observed in darkness or light, however methanethiol emission was greately stimulated by light. Light-dependent emission started after a lag-time of 5–6 hr with an emission peak after 36–40 hr. Maximum rates obtained were in the range of 200 pmol methanethiol/min/cm2 leaf area. After a period of 42 hr about 60–80% of total methionine sulphur added was released as methanethiol. Addition of chloramphenicol did not alter the induction period nor the maximum emission rate of methanethiol in response to L-methionine. Emission was also observed in response to S-methyl-L-cysteine; however, the shorter lag-period for methanethiol formation suggests metabolism via a different enzyme system. In a cell-free system of pumpkin leaves methanethiol formation occured in response to L-methionine. Feeding experiments with L-[35S]methionine to leaf discs showed that more than 80% of methanethiol emitted was derived from the labelled methionine fed. These findings suggest that plants have the capacity to degrade L-methionine to methanethiol. Whole leaves fed L-methionine by the petiole system do not emit methanethiol, but this compound is formed and transported into the feeding solution. Thus, methanethiol is also produced by the intact leaf, but, in contrast to sulphide, is not released into the atmosphere. It is suggested that translocation of methanethiol may function as a signal for the regulation of sulphate uptake.  相似文献   

5.
Ten strains of Geotrichum candidum were studied on a liquid cheese model medium for the production of sulfur compounds which contribute to the aroma of cheeses. The volatile components produced by each cultured strain were extracted by dynamic headspace extractions, separated and quantified by gas chromatography (GC), and identified by GC-mass spectrometry. It was shown that four strains of this microorganism produced significant quantities of S-methyl thioacetate, S-methyl thiopropionate, S-methyl thiobutanoate, S-methyl thioisobutanoate, S-methyl thioisovalerate, and S-methyl thiohexanoate. This is the first example of the production of these compounds by a fungus. In addition, dimethyldisulfide, dimethyltrisulfide, dimethylsulfide, and methanethiol, which are more commonly associated with the development of cheese flavor in bacterial cultures, were also produced by G. candidum in various yields, depending on the strain selected. The potential application of these strains in cultured microbial associations to produce modified cheeses with more desirable organoleptic properties is discussed.  相似文献   

6.
The conditions under which Brevibacterium linens CNRZ 918, a strain isolated from the surface smear flora of Gruyère de Comté cheese, produced methanethiol from methionine were studied. Demethiolation was estimated from the methanethiol production capacity of resting cells. Methionine was demethiolated mainly during the exponential growth phase of the organism during which time the cells were rod-shaped and had a generation time of 5 h, and the medium became alkaline. At the end of growth (pH 9) the cells were coccoid, and produced only very little methanethiol. The production of methanethiol required the presence of methionine in the culture medium, this reflecting the probable induction of the enzyme systems involved. Glucose favoured growth and inhibited production of methanethiol. Lactate favoured both growth and methanethiol production. Resting rod cells also produced methanethiol from structural analogues of methionine and from methionine-containing peptides. The apparent kinetic constants of the production of methanethiol for rod and coccoid cells were respectively Km = 14 mM and 46 mM, Vmax = 208 nkat g-1 and 25 nkat g-1. The optimum temperature and pH for production were 30 degrees C and pH 8. Azide or malonate favoured the production of methanethiol by resting cells, whereas chloramphenicol had no effect.  相似文献   

7.
Thirty-seven basidiomycetous yeasts belonging to 30 species of seven genera were grown on media containing l-cysteine or l-methionine as sole nitrogen sources with the objective of evaluating volatile organic sulfur compound (VOSC) production. The headspace of yeast cultures was analyzed by the solid-phase microextraction (SPME) sampling method, and volatile compounds were quantified and identified by GC-MS techniques. Ten strains assimilating L-methionine produced the following VOSCs: 3-(methylthio)-1-propanol, methanethiol, S-methyl thioacetate, dimethyl disulfide, dimethyl trisulfide, allyl methyl sulphide and 4,5-dihydro-3(2H)-thiophenone. Production was <1 mgl(-1) except for 3-(methylthio)-1-propanol of which between 40 and 400 mgl(-1) was synthesized. Higher alcohols (isobutyl alcohol, isoamyl alcohol and active amyl alcohol) and esters (ethyl acetate, ethyl propionate, n-propyl acetate, isobutyl acetate, n-propyl propionate, n-butyl acetate, isoamyl acetate, amyl acetate, isoamyl propionate, amyl propionate and 2-phenylmethyl acetate) were also sporadically produced. This is the first report of VOSCs production by basidiomycetous yeasts. Consequently, basidiomycetous yeasts may be considered an interesting new group of microbial VOSCs producers for the flavor industry.  相似文献   

8.
Acidophiles are typically isolated from sulfate-rich ecological niches yet the role of sulfur metabolism in their growth and survival is poorly defined. Studies of heterotrophically grown “Ferroplasma acidarmanus” showed that its growth requires a minimum of 100 mM of a sulfate-containing salt. Headspace gas analyses by GC/MS determined that the volatile sulfur compound emitted by active “F. acidarmanus” cultures is methanethiol. In “F. acidarmanus” cultures grown either heterotrophically or chemolithotrophically, methanethiol was produced constitutively. Radiotracer studies with 35S-labeled methionine, cysteine, and sulfate showed that all three were used in methanethiol production. Additionally, 3H-labeled methionine was incorporated into methanethiol and was probably used as a methyl-group donor. Methanethiol production in whole cell lysates supplied with SO32− indicated that NADPH-dependant sulfite reductase and methyltransferase activities were present. Cell lysates also contained enzymatic activity for methionine-γ-lyase that cleaved the side chain of either methionine to form methanethiol or cysteine to produce H2S. Since methanethiol was detected from the degradation of cysteine, it is likely that sulfide was methylated by a thiol methyltransferase. Collectively, these data demonstrate that “F. acidarmanus” produces methanethiol through the metabolism of methionine, cysteine, or sulfate. This is the first report of a methanethiol-producing acidophile, thus identifying a new contributor to the global sulfur cycle.  相似文献   

9.
Production of S-Methylthioacetate by Brevibacterium linens   总被引:2,自引:1,他引:1       下载免费PDF全文
Volatile sulfur compounds production by eight strains of Brevibacterium linens isolated from cheeses was demonstrated: methanethiol, dimethyldisulfide, and 2,3,4-trithiapentane. Four of these strains also produced S-methylthioacetate, an important aroma component of smear-coated cheeses. It is the first demonstrated microbiological production of a thioester.  相似文献   

10.
Production of Sulfur Flavors by Ten Strains of Geotrichum candidum   总被引:2,自引:0,他引:2       下载免费PDF全文
Ten strains of Geotrichum candidum were studied on a liquid cheese model medium for the production of sulfur compounds which contribute to the aroma of cheeses. The volatile components produced by each cultured strain were extracted by dynamic headspace extractions, separated and quantified by gas chromatography (GC), and identified by GC-mass spectrometry. It was shown that four strains of this microorganism produced significant quantities of S-methyl thioacetate, S-methyl thiopropionate, S-methyl thiobutanoate, S-methyl thioisobutanoate, S-methyl thioisovalerate, and S-methyl thiohexanoate. This is the first example of the production of these compounds by a fungus. In addition, dimethyldisulfide, dimethyltrisulfide, dimethylsulfide, and methanethiol, which are more commonly associated with the development of cheese flavor in bacterial cultures, were also produced by G. candidum in various yields, depending on the strain selected. The potential application of these strains in cultured microbial associations to produce modified cheeses with more desirable organoleptic properties is discussed.  相似文献   

11.
Twenty-nine yeast strains were isolated from the ascocarps of black and white truffles (Tuber melanosporum Vitt. and Tuber magnatum Pico, respectively), and identified using a polyphasic approach. According to the conventional taxonomic methods, MSP-PCR fingerprinting and sequencing of the D1/D2 domain of 26S rDNA, the strains were identified as Candida saitoana, Debaryomyces hansenii, Cryptococcus sp., Rhodotorula mucilaginosa, and Trichosporon moniliiforme. All isolates assimilated l-methionine as a sole nitrogen source and produced the volatile organic compounds (VOCs), 2-methyl butanol, 3-methyl butanol, methanethiol, S-methyl thioacetate, dimethyl sulfide, dimethyl disulfide, dimethyl trisulfide, dihydro-2-methyl-3(2H)-thiophenone and 3-(methylthio)-1-propanol (MTP). ANOVA analysis of data showed significant (P<0.01) differences in VOCs produced by different yeasts, with MTP as the major component (produced at concentrations ranging from 19.8 to 225.6 mg/l). In addition, since some molecules produced by the isolates of this study are also characteristic of truffle complex aroma, it is possible to hypothesize a complementary role of yeasts associated with this ecosystem in contributing to final Tuber spp. aroma through the independent synthesis of yeast-specific volatile constituents.  相似文献   

12.
Various bacteria, actinomycetes, and filamentous fungi decomposed methionine, but only certain aerobic bacteria isolated from soil decomposed it in the absence of other organic substrates. These bacteria could grow on methionine as the only organic substrate and source of nitrogen and sulfur. Methionine was first deaminated and then demethiolated with production of methanethiol, part of which was oxidized to dimethyl disulfide. The amount of methanethiol that was oxidized varied with different cultures. A bacterial culture initially unable to grow on methionine developed capacity to do this in a medium which contained methionine and other growth substrates. The two sulfur products, methanethiol and dimethyl disulfide, are volatile and escaped from the media, resulting in a decrease in the sulfur content proportional to the amount of methionine decomposed.  相似文献   

13.
Aims:  To investigate the abilities of various probiotic bacteria to produce volatile sulfur compounds (VSCs) relevant to food flavour and aroma.
Methods and Results:  Probiotic strains ( Lactobacillus acidophilus NCFM, Lactobacillus plantarum 299v, Lactobacillus rhamnosus GG, Lactobacillus reuteri ATCC55730 and L. reuteri BR11), Lactobacillus delbrueckii ATCC4797, L. plantarum ATCC14917 and Lactococcus lactis MG1363 were incubated with either cysteine or methionine. Volatile compounds were captured, identified and quantified using a sensitive solid-phase microextraction (SPME) technique combined with gas chromatography coupled to a pulsed flame photometric detector (SPME/GC/PFPD). Several VSCs were identified including H2S, methanethiol, dimethyldisulfide and dimethyltrisulfide. The VSC profiles varied substantially for different strains of L. plantarum and L. reuteri and it was found that L. reuteri ATCC55730 and L. lactis MG1363 produced the lowest levels of VSCs ( P  < 0·05). Levels of VSCs generated by bacteria were found to be equivalent to, or higher than, that found in commercial cheeses.
Conclusions:  Several probiotic strains are able to generate considerable levels of VSCs and substantial variations in VSC generating potential exists between different strains from the same species.
Significance and Importance of the Study:  This study demonstrates that probiotic bacteria are able to efficiently generate important flavour and aroma compounds and therefore has implications for the development of probiotic containing foods.  相似文献   

14.
The focus of this study was to monitor the survival of populations and the volatile compound profiles of selected Lactobacillus strains during long-term incubation in milk. The enumeration of cells was determined by both the Direct Epifluorescent Filter Technique using carboxyfluorescein diacetate (CFDA) staining and the plate method. Volatile compounds were analysed by the gas-chromatography technique. All strains exhibited good survival in cultured milks, but Lactobacillus crispatus L800 was the only strain with comparable growth and viability in milk, assessed by plate and epifluorescence methods. The significant differences in cell numbers between plate and microscopic counts were obtained for L. acidophilus strains. The investigated strains exhibited different metabolic profiles. Depending on the strain used, 3 to 8 compounds were produced. The strains produced significantly higher concentrations of acetic acid, compared to other volatiles. Lactobacillus strains differed from one another in number and contents of the volatile compounds.  相似文献   

15.
Twenty-five strains of Fusarium sambucinum grown on wheat kernels were examined for trichothecene production and the synthesis of volatile sesquiterpenes. The volatiles were purged with air and collected on Tenax traps. Adsorbed compounds were eluted from the traps and injected into a gas chromatograph coupled with a mass spectrometer. Ten strains isolated from potato tubers produced high amounts of diacetoxyscirpenol and its derivatives. These strains were characterized by the production of high amounts of diverse sesquiterpenes. In 10 cultures, 19 compounds were detected, of which 6 were predominant and composed as much as 82% of the volatile sesquiterpene fraction (e.g., beta-farnesene, beta-chamigrene, beta-bisabolene, alpha-farnesene, trichodiene, and an unidentified compound). Fifteen strains isolated from various sources that did not produce trichothecenes produced much less volatile sesquiterpenes, with less chemical diversity. No more than six compounds were present in cultures. Two of these compounds were present in the toxigenic strains isolated from potatoes (beta-farnesene and acoradiene), but four were unique to the strains not producing trichothecenes (longifolene, isocaryophyllene, delta-elemene, and an unidentified one). The pattern of volatile sesquiterpenes was characteristic and distinctive for both toxic and nontoxic strains.  相似文献   

16.
Five cheese-ripening yeasts (Geotrichum candidum, Saccharomyces cerevisiae, Kluyveromyces lactis, Yarrowia lipolytica and Debaryomyces hansenii) were compared with respect to their ability to generate volatile aroma compounds. K. lactis produced a variety of esters - ethylacetate (EA) being the major one - and relatively limited amounts of volatile sulphur compounds (VSCs). Conversely, G. candidum produced significant amounts of VSCs [with the thioester S-methyl thioacetate (MTA) being the most prevalent] and lower quantities of non-sulphur volatile compounds than K. lactis. We suspect that K. lactis is able to produce and/or accumulate acetyl CoA - a common precursor of MTA and EA - but that it produces limited amounts of methanethiol (MTL); both acetyl CoA and MTL are precursors for MTA synthesis. When supplemented with exogenous MTL, MTA production greatly increased in K. lactis cultures whereas it was unchanged in G. candidum cultures, suggesting that MTL is a limiting factor for MTA synthesis in K. lactis but not in G. candidum. Our results are discussed with respect to L-methionine catabolism.  相似文献   

17.
The response of the epidermis was compared in two strains of pig, the English Large White and the G?ttinger Miniature, after irradiation with 90Sr beta rays. The effects of two types of anesthesia were also tested in pigs of each strain, a volatile gas mixture of approximately 70% oxygen, approximately 30% nitrous oxide, and 2% halothane, and an intravenously administered narcotic azaperon/etimodat with the animals breathing air. Strain- and anesthetic-related changes were compared on the basis of dose-effect curves for the incidence of moist desquamation from which ED50 values (+/- SE) were determined, i.e., the dose required to produce this effect in 50% of the fields irradiated. For English Large White pigs anesthetized with the volatile gas mixture, an ED50 of 27.32 +/- 0.52 Gy was obtained for moist desquamation. Irradiation with the azaperon/etomidat anesthesia in this strain of pig produced a significantly higher ED50 of 33.36 +/- 0.76 Gy (P less than 0.001). This appeared to be related to the fact that the animals were breathing air, i.e., a lower oxygen concentration (approximately 21%), at the time of irradiation. For the G?ttinger Miniature pig the ED50 values for moist desquamation were 38.93 +/- 3.12 Gy and 43.36 +/- 1.34 Gy while using the gaseous anesthetic mixture and the azaperon/etomidat anesthesia with the animals breathing air, respectively. These ED50 values are 10-11 Gy higher than those obtained for the English Large White pig under identical conditions of anesthesia, which resulted in a strain difference ratio of approximately 1.35. Radiation under the volatile gas mixture anesthesia resulted in a uniform irradiation response over the skin of the flank in both strains of pig. Radiation under azaperon/etomidat anesthesia resulted in a nonuniform skin response over the flank. The ED50 for moist desquamation was significantly higher in dorsal sites on the flank compared with the ventral area of English Large White pigs; a similar trend was seen in G?ttinger Miniature pigs. This difference in the radiosensitivity over the flank skin while the animals are under azaperon/etomidat anesthesia at the time of irradiation was associated with the animals breathing air and is in agreement with findings published previously for animals under halothane anesthesia and breathing air.  相似文献   

18.
We describe a new method, Selected Ion Flow Tube-Mass Spectrometry (SIFT-MS) for the rapid and sensitive real-time detection and quantification of volatile organic compounds from medically important fungi, grown on a range of laboratory media. SIFT-MS utilises the chemical ionisation reactions of mass-selected ions to characterise volatile organic compounds (VOCs) that are produced as metabolites from fungi. This technique has the distinct advantage over others in that it readily detects low molecular weight, reactive volatiles, and allows for real-time, quantitative monitoring. The fungi examined in this study were Aspergillus flavus, Aspergillus fumigatus, Candida albicans, Mucor racemosus, Fusarium solani, and Cryptococcus neoformans grown on or in malt extract agar, Columbia agar, Sabouraud's dextrose agar, blood agar, and brain-heart infusion broth. Common metabolites (ethanol, methanol, acetone, acetaldehyde, methanethiol, and crotonaldehyde) were detected and quantified. We found the fingerprint of volatiles, in terms of presence and quantity of volatiles to be strongly dependent on the culture medium, both in terms of variety and quantity of volatiles produced, but may form the basis for species specific identification of medically important fungi.  相似文献   

19.
Kluyveromyces lactis is one of the cheese-ripening yeasts and is believed to contribute to the formation of volatile sulfur compounds (VSCs) through degradation of L-methionine. L-methionine aminotransferase is potentially involved in the pathway that results in the production of methanethiol, a common precursor of VSCs. Even though this pathway has been studied previously, the genes involved have never been studied. In this study, on the basis of sequence homology, all the putative aminotransferase-encoding genes from K. lactis were cloned in an overproducing vector, pCXJ10, and their effects on the production of VSCs were analyzed. Two genes, KlARO8.1 and KlARO8.2, were found to be responsible for L-methionine aminotransferase activity. Transformants carrying these genes cloned in the pCXJ10 vector produced threefold-larger amounts of VSCs than the transformant containing the plasmid without any insert or other related putative aminotransferases produced.  相似文献   

20.
Activation and silencing of antibiotic production was achieved in Streptomyces albus J1074 and Streptomyces lividans TK21 after introduction of genes within the thienamycin cluster from S. cattleya. Dramatic phenotypic and metabolic changes, involving activation of multiple silent secondary metabolites and silencing of others normally produced, were found in recombinant strains harbouring the thienamycin cluster in comparison to the parental strains. In S. albus, ultra-performance liquid chromatography purification and NMR structural elucidation revealed the identity of four structurally related activated compounds: the antibiotics paulomycins A, B and the paulomenols A and B. Four volatile compounds whose biosynthesis was switched off were identified by gas chromatography–mass spectrometry analyses and databases comparison as pyrazines; including tetramethylpyrazine, a compound with important clinical applications to our knowledge never reported to be produced by Streptomyces. In addition, this work revealed the potential of S. albus to produce many others secondary metabolites normally obtained from plants, including compounds of medical relevance as dihydro-β-agarofuran and of interest in perfume industry as β-patchoulene, suggesting that it might be an alternative model for their industrial production. In S. lividans, actinorhodins production was strongly activated in the recombinant strains whereas undecylprodigiosins were significantly reduced. Activation of cryptic metabolites in Streptomyces species might represent an alternative approach for pharmaceutical drug discovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号