首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Previous studies have shown that peritoneal murine macrophages activated in vivo and in vitro to a tumoricidal stage have a depressed rate of RNA synthesis. In attempting to clarify the differences in RNA metabolism between noncytotoxic and tumoricidal macrophages, we have studied the relative accumulation of various species of RNA in macrophages activated in vivo and in vitro with the use of agarose gel electrophoresis. Macrophages activated in vitro to a cytotoxic stage with supernatants containing lymphokines (LK) and traces of lipopolysaccharide (LPS) have an imbalanced accumulation of mature ribosomal RNA (rRNA), with a decreased accumulation of 28S rRNA compared to 18S rRNA. In contrast, macrophages primed in vitro with LK free of detectable endotoxins that exhibit suppressive rather than tumoricidal activity do not manifest a decreased 28S:18S rRNA ratio. The conclusion that the decreased 28S:18S rRNA ratio was associated with the activation of macrophages to a cytolytic stage was supported by the finding that cytotoxic macrophages activated in vivo by i.p. injection of Propionibacterium acnes (formerly designated C. parvum) also demonstrated a decreased accumulation of 28S comparable with that observed in in vitro-activated macrophages. Moreover, activated macrophages that lost their cytolytic activity upon prolonged in vitro culture had an augmented accumulation of 28S rRNA. These results provide the first direct evidence that the expression of cytolytic activity is associated with modulation of a specific class of RNA. The unbalanced accumulation of rRNA appears to be a late molecular event in the activation process occurring during the transition from primed to cytotoxic macrophages, because inflammatory and primed macrophages had normal rRNA accumulation. A model of macrophage activation accounting for these results is proposed.  相似文献   

3.
We investigated the role of protein kinase C (PK-C) in the activation of cytotoxic peritoneal murine macrophages (M phi) by IFN-gamma or by IFN-beta. Two potent inhibitors of PK-C, 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride (H-7) and retinal, were used. We found that both drugs inhibited in a dose-dependent manner the activation of cytotoxicity induced by IFN-beta, suggesting the requirement for intact PK-C activity in this process. In contrast, neither H-7 nor retinal inhibited the activation of cytotoxic M phi by IFN-gamma, indicating that IFN-gamma acts through a PK-C-independent pathway. The effectiveness of both drugs in inhibiting PK-C in intact M phi was evaluated by measuring the inhibition of induction of c-fos mRNA by L-alpha-1-oleoyl-2-acetoyl-sn-3-glycerol, a process that has been shown to be dependent on PK-C activation. We have found a strict correlation in the dose-dependent inhibition by both drugs of c-fos mRNA induction and activation of M phi by IFN-beta. These results indicate that different pathways of activation are triggered by IFN-gamma and IFN-beta, the former being independent from and the latter dependent on intact PK-C activity.  相似文献   

4.
The effects of IFN-gamma on macrophage (M phi)-mediated antigen-specific T-cell proliferation was investigated. A well-defined assay system using purified resident populations of antigen-pulsed peritoneal M phi and immune T cells was used to measure M phi-induced antigen-specific T-cell proliferation. Antibody affinity purified or recombinant IFN-gamma inhibited M phi-induced T-cell proliferation when KLH-pulsed M phi from mice given IFN-gamma prior to KLH were cultured with KLH immune T cells from normal mice. Monoclonal rat anti-IFN-gamma antibody neutralized the inhibitory effect of IFN-gamma. This inhibition of T-cell proliferation occurred despite the fact that these M phi appeared to be activated by IFN-gamma treatment as measured by increased tumoricidal activity. The mechanism for the inhibition was unrelated to class II (Ia) expression, IL-1 secretion, and prostaglandin secretion. These results demonstrate the complex and sensitive role IFN-gamma has in regulating the immune response.  相似文献   

5.
Effect of L-arginine on the retention of macrophage tumoricidal activity   总被引:8,自引:0,他引:8  
It has been reported that the tumoricidal activity of macrophages (M phi) depends on L-arginine and that L-arginine metabolites such as reactive nitrogen intermediates alter M phi physical capacities. The aim of this report is to investigate the dose-related effect of L-arginine on the expression and retention of M phi tumoricidal activity. Cytotoxicity of M phi activated by IFN-gamma plus LPS was detected in the presence of about 0.1 mM or more of L-arginine. This paralleled the NO2- production in the presence, but not in the absence, of L-arginine. On the other hand, activated M phi were destined to die and lost their tumoricidal activity with time in the presence of 0.3 mM or more L-arginine. They retained, however, considerable activity in the absence or presence of 0.15 mM L-arginine. This retention of M phi cytotoxicity was longer when M phi were preactivated by 100 ng/ml than 10 ng/ml of LPS in combination with IFN-gamma. Addition of indomethacin, an inhibitor of prostaglandin production, did not prevent the decay of M phi cytotoxicity but rather facilitated it even in the absence of L-arginine. Regardless of indomethacin, consecutive stimulation with LPS or LPS plus IFN-gamma during culture was effective in maintaining the tumoricidal activity at a high level. In addition, we found that M phi which had lost tumoricidal activity during culture in L-arginine deficient medium could be reactivated by LPS to attack tumor target cells.  相似文献   

6.
We immortalized the GG2EE macrophage (M phi) cell line by infection of freshly isolated bone marrow cells with the recombinant J2 retrovirus carrying v-raf and v-myc oncogenes. We investigated the expression of J2 virus mRNA in relationship with the proliferative ability and tumoricidal activity of GG2EE cells exposed to biologic response modifiers (BRM). Calcium ionophore (Ca2+I), picolinic acid (PA), or IFN-gamma were employed to activate GG2EE cells. Each BRM was due to inhibit the proliferation of GG2EE cells in a dose-dependent manner, whereas only Ca2+I or the combined treatment with PA plus IFN-gamma induced tumoricidal GG2EE cells. J2 virus mRNA expression was not affected by PA or IFN-gamma, but it was dramatically decreased by Ca2+I or PA plus IFN-gamma. These results indicated that the expression of J2 mRNA can be inhibited in GG2EE cells by appropriate BRM such as Ca2+I or IFN-gamma plus PA. In contrast, the expression of 2'5'-oligoadenylate synthetase mRNA was augmented to similar levels by treatment of the GG2EE cells with IFN-gamma alone or in combination with PA. The down-regulation of J2 mRNA expression was not associated with the antiproliferative activity of the BRM but rather with their ability to induce tumoricidal activity. These results suggest that the process of activation of tumoricidal macrophages also triggers a mechanism(s) of resistance to viral mRNA expression. Moreover, the finding that IFN-gamma or PA inhibit cell proliferation but not J2 mRNA expression indicates that the intracellular targets of these BRM are intact, independent from and unaffected by J2 virus expression.  相似文献   

7.
We reported previously that IL-2 induces tumoricidal activity in IFN-gamma-treated murine macrophages. The present study was performed to investigate the regulation of IL-2-dependent tumoricidal activity in murine macrophage cell lines. The v-raf/v-myc-immortalized murine macrophage cell lines ANA-1, GG2EE, and HEN-CV did not express constitutive levels of cytotoxic activity against P815 mastocytoma cells. Moreover, these macrophage cell lines did not become tumoricidal after exposure to IL-4, IFN-gamma, IL-2 or LPS. However, these macrophages developed cytotoxic capabilities after incubation with either IFN-gamma plus IL-2 or IFN-gamma plus LPS. IL-4 inhibited IFN-gamma plus IL-2- but not IFN-gamma plus LPS-induced tumoricidal activity. This effect of IL-4 was not restricted to v-raf/v-myc-immortalized macrophage cell lines because similar results were obtained by using a macrophage cell line that was established from a spontaneous histiocytic sarcoma. The suppressive activity of IL-4 on the ANA-1 macrophage cell line was dose-dependent (approximately 12-200 U/ml) and was neutralized by the addition of anti-IL-4 mAb. IL-4 decreased the IFN-gamma-induced expression of mRNA for the p55 (alpha) subunit of the IL-2R in ANA-1 macrophages. Therefore, at least one mechanism by which IL-4 may have inhibited IFN-gamma plus IL-2-induced tumoricidal activity was by reducing macrophage IL-2R alpha mRNA expression. We have previously reported that picolinic acid, a tryptophan metabolite, is a costimulator of macrophage tumoricidal activity. We now report that IL-4 also inhibited IFN-gamma plus picolinic acid-induced cytotoxicity in ANA-1 macrophages. We propose that IL-2 and picolinic acid may have a common mechanism of action that is susceptible to IL-4 suppression.  相似文献   

8.
Macrophages (M phi diameter) from three mouse strains with genetically distinct M phi diameter deficits (C3H/HeJ, A/J, and P/J) were unable to develop high cytolytic and cytotoxic activity against tumor cells in vitro when exposed to agents (MAF and IFN-beta) that strongly increased the tumoricidal capacity of M phi diameter from nondefective C3H/HeN mice. Nevertheless, the tumoricidal deficits of M phi diameter from the defective strains did not affect their suppressive capacity on Con A-induced lymphoproliferation, nor their ability to react to IFN-beta by decreasing suppressive activity. In fact, natural suppressive activity and IFN-beta-induced changes in the suppression of M phi diameter from C3H/HeJ, A/J, and P/J mice were highly comparable to those of C3H/HeN M phi diameter, thus stressing the dissociation between the mechanisms governing M phi diameter suppression and M phi diameter tumoricidal activity. Analysis of the modulation by MAF and IFN-beta of M phi diameter ability to release the oxygen metabolites O2- and H2O2, molecules possibly involved in the effector mechanism of both M phi diameter cytotoxicity and suppression, revealed a close correlation with the patterns of suppressive activity in both nondefective and defective strains. In contrast, no correlation between the production of oxygen-reactive species and M phi diameter tumoricidal activity was observed. The ability of MAF- and IFN-beta-treated M phi diameter to produce PGE, a molecule of major importance in M phi diameter-mediated suppression and possibly involved also in the regulation of M phi diameter tumoricidal activity, again paralleled M phi diameter suppressive capacity. Thus, the mechanisms controlling M phi diameter antitumor activity appeared to be clearly distinct from those involved in M phi diameter suppression.  相似文献   

9.
Expression of c-fos mRNA was investigated in fresh, normal peritoneal macrophages (M phi), which are terminally differentiated, nonproliferating cells. The levels of c-fos mRNA were dramatically increased by stimulation with phorbol myristate acetate (PMA), calcium ionophore, or 1-oleoyl-2-acetoyl glycerol (OAG). Induction of c-fos mRNA by all the above agents followed similar kinetics, with a peak of mRNA 30 min after stimulation. These results demonstrate that c-fos mRNA can be augmented in fresh, terminally differentiated cells. Since the stimuli increasing c-fos mRNA are direct or indirect activators of protein kinase C, our data suggest that in M phi c-fos mRNA is controlled by protein kinase C activation. PMA, calcium ionophore, and OAG were biologically active in M phi. PMA and calcium ionophore induced respiratory burst and tumoricidal activity, respectively, whereas OAG and PMA were chemotactic for M phi. Interferons beta and gamma, potent M phi activators eliciting tumoricidal activity, did not alter the levels of c-fos mRNA. These results indicate that c-fos mRNA augmentation is a stimulus-specific rather than a function-specific response connected to activation of protein kinase C.  相似文献   

10.
11.
Macrophage (M phi) activation is deficient in the fetus and neonate, at times when the serum concentration of docosahexaenoic acid (DHA; 22:6n3) is approximately 10-fold higher than in the adult. We tested the effects of highly purified DHA on M phi activation in vitro. M phi were stimulated with rIFN-gamma plus either of two second or "triggering" signals, LPS or heat-killed Listeria monocytogenes. M phi activation was assayed as the lysis of P815 mastocytoma cells, which are resistant to TNF-alpha. DNA inhibited the activation of peritoneal M phi and the M phi line RAW264.7 in a dose-dependent manner at concentrations between 20 and 160 microM. These concentrations are found in fetal and neonatal rodent sera. Another polyunsaturated fatty acid, arachidonic acid (20:4n6), was much less inhibitory. In contrast to its profound effect on tumoricidal activation, DHA did not inhibit phagocytosis and catabolism of 125I-heat-killed Listeria monocytogenes. Increasing the rIFN-gamma or second signals reduced the inhibition of tumoricidal activation by DHA but not M phi incorporation of 14C-DHA. When the rIFN-gamma and second signals were separated in time, DHA was far more inhibitory if delivered with the triggering signal than if delivered with the rIFN-gamma. However, the incorporation of 14C-DHA was the same under these two conditions. In M phi treated with DHA during LPS stimulation, the inhibition was time-dependent, requiring more than 2 h. Although DHA inhibits cyclooxygenase activity, its inhibition of M phi activation was not reversed with the following cyclooxygenase products: PGE2, a stable TXA2 analog (U-46, 619) or a stable PGI2 analog (Iloprost). Although DHA is metabolized by lipoxygenases, the inhibition was not reversed by the lipoxygenase inhibitors 5, 8, 11, 14-eicosatetraynoic acid and nordihydroguaiaretic acid. Altogether, the data indicate that DHA, at concentrations present in fetal and neonatal sera, inhibits M phi activation and may contribute to the previously observed deficits in M phi function in the fetus and neonate.  相似文献   

12.
The G1(G0) arrest induced in NRK cells by picolinic acid was preceded by marked changes in iron metabolism. In contrast, picolinic acid did not significantly prevent zinc uptake and changes in intracellular zinc were small and clearly preceded by changes in iron. A kinetic study revealed that iron uptake by NRK cells was rapidly halted by picolinic acid. Experiments with radioiron-labeled cells indicated that picolinic acid, in a dose dependent manner, effectively removed iron from the cells. The dose of picolinic acid that exactly removed iron from the cells was also the concentration that induced the G1(G0) arrest. Picolinic acid, therefore, may induce the growth inhibition by selectively withholding iron from the cells. These data strongly suggest that iron availability may be a controlling factor in the initiation of DNA synthesis in NRK cells.  相似文献   

13.
The metabolism of bioreactive lipid mediators was studied in two types of activated macrophages (M phi). We compared the capacity of resident and activated M phi to release, upon a zymosan challenge, cyclooxygenase and lipoxygenase products as well as PAF-acether (platelet-activating factor) and its 2-lyso precursor. Activated M phi were obtained from mice injected intraperitoneally either with nonviable C74 streptococci (St-M phi) or with trehalose dimycolate, a defined immunostimulant isolated from Mycobacterium tuberculosis (TDM-M phi). Both activated populations exhibited common features: conversion of endogenous [14C]arachidonic acid into prostaglandin E2 and thromboxane A2 rather than into prostaglandin I2 and low biosynthesis of PAF-acether, probably due to an impairment of the acetylation step. However, contrary to St-M phi, TDM-M phi did not display a marked overall reduction of arachidonate metabolism. In addition, as compared to resident M phi, TDM-M phi presented a ratio of thromboxane B2/6-ketoprostaglandin F1 alpha 30-fold higher, a better conversion of leukotriene C to leukotriene D and a higher capacity to release the PAF-acether they synthesize. These macrophages thus seem to be valuable tools for studying the formation of mediators and for determining specific markers of an activated state.  相似文献   

14.
15.
Corynebacterium parvum-activated macrophages (M phi), purified by adherence, were cytotoxic for B16 melanoma cells maintained in vitro. Pretreatment of the melanoma cells for 18 hr with interferon-alpha/beta or -gamma (IFN-alpha/beta or -gamma) caused a reduced susceptibility of the B16 cells to M phi-mediated cytotoxicity. The IFN-induced protective effect of B16 cells from cytotoxic M phi was found to be dose dependent. In addition, IFN-gamma was more protective than IFN-alpha/beta. The protective effect observed with partially purified IFN was reproduced by using highly purified IFN-alpha/beta or recombinant IFN-gamma. Monoclonal antibodies to IFN-gamma neutralized the protective effect provided by IFN-gamma. These results show that the susceptibility of a tumor cell line to killing by activated M phi can be altered by IFN pretreatment.  相似文献   

16.
These studies were designed to test the hypothesis that changes in intracellular Ca2+ levels and activation of the calcium ion- and phospholipid-dependent protein kinase C were required for the induction of macrophage tumoricidal activity by interferon-gamma (IFN-gamma). Phenothiazines and R24571, known antagonists of calcium-binding proteins and therefore nonspecific inhibitors of protein kinase C, blocked in a dose-dependent manner the induction of macrophage cytocidal activity by either natural or recombinant IFN-gamma. Macrophages depleted of intracellular Ca2+ by chelation with Quin 2, were also unresponsive to IFN-gamma. These treatments effected neither the binding of IFN-gamma to its cell surface receptor nor the normal intracellular processing of IFN-gamma. Activators of protein kinase C (such as phorbol esters) and Ca2+ ionophores when added alone did not effect the activation state of the macrophage population. However, macrophages exposed to both drugs in combination were elevated into the primed activation state such that in the presence of a second signal (lipopolysaccharide or heat killed Listeria monocytogenes), the cells were triggered to express full levels of tumoricidal activity. The capacity of phorbol esters to induce cellular activation correlated with their ability to bind and to activate protein kinase C. No synergistic effect was observed between IFN-gamma and protein kinase C activators and/or Ca2+ ionophores, indicating that the drugs could only prime and could not trigger macrophages for tumor cell killing. These results thus support the concept that protein kinase C activation and mobilization of intracellular Ca2+ are essential steps in the pathway of IFN-gamma-dependent induction of non-specific tumoricidal activity in macrophages.  相似文献   

17.
Indoleamine 2,3-dioxygenesae-1 (IDO-1) catalyses the initial, rate-limiting step in tryptophan metabolism, thereby regulating tryptophan availability and the formation of downstream metabolites, including picolinic and quinolinic acid. We found that Mycobacterium tuberculosis infection induced marked upregulation of IDO-1 expression in both human and murine macrophages in vitro and in the lungs of mice following aerosol challenge with M. tuberculosis. The absence of IDO-1 in dendritic cells enhanced the activation of mycobacteria-specific T cells in vitro. Interestingly, IDO-1-deficiency during M. tuberculosis infection in mice was not associated with altered mycobacteria-specific T cell responses in vivo. The bacterial burden of infected organs, pulmonary inflammatory responses, and survival were also comparable in M. tuberculosis-infected IDO-1 deficient and wild type animals. Tryptophan is metabolised into either picolinic acid or quinolinic acid, but only picolinic acid inhibited the growth of M. tuberculosis in vitro. By contrast macrophages infected with pathogenic mycobacteria, produced quinolinic, rather than picolinic acid, which did not reduce M. tuberculosis growth in vitro. Therefore, although M. tuberculosis induces robust expression of IDO-1 and activation of tryptophan metabolism, IDO-1-deficiency fails to impact on the immune control and the outcome of the infection in the mouse model of tuberculosis.  相似文献   

18.
In this study, we examined the possible role of TNF-alpha and lymphotoxin (TNF-beta) as cofactors of macrophage activation. The results demonstrate that both TNF were capable of enhancing the cytostatic and cytolytic activity of murine peritoneal macrophages against Eb lymphoma cells. The potentiation of tumor cytotoxicity became apparent when macrophages from DBA/2 mice were suboptimally activated by either a T cell clone-derived macrophage-activating factor or by IFN-gamma plus LPS. Neither TNF-alpha nor TNF-beta could induce tumor cytotoxicity in IFN-gamma-primed macrophages, indicating that TNF cannot replace LPS as a triggering signal of activation. In LPS-resistant C3H/HeJ macrophages, which were unresponsive to IFN-gamma plus LPS, a supplementation with TNF fully restored activation to tumor cytotoxicity. Furthermore, TNF-alpha potentiated a variety of other functions in low-level activated macrophages such as a lactate production and release of cytotoxic factors. At the same time, TNF-alpha produced a further down-regulation of pinocytosis, tumor cell binding and RNA synthesis observed in activated macrophages. These data demonstrate new activities for both TNF-alpha and TNF-beta as helper factors that facilitate macrophage activation. In particular, the macrophage product TNF-alpha may serve as an autocrine signal to potentiate those macrophage functions that were insufficiently activated by lymphokines.  相似文献   

19.
IFN-gamma-producing (TH1) and IL-4-producing (TH2) clones were assayed for their ability to directly induce cytostatic activity in macrophages generated from splenic myeloid precursors (M phi-c). In the presence, but not in the absence, of antigen, TH1 clones activated the M phi-c to inhibit the growth of P815 tumor cells in vitro. TH2 clones were not able to activate such effector activity in the M phi-c. The M phi-c did effectively present Ag to the TH2 clones as evidenced by the proliferation of TH2 cells cultured with Ag in the presence, but not in the absence, of M phi-c. Therefore, although both TH1 and TH2 were activated by cognate interaction with antigen presenting M phi-c, only TH1:M phi-c interactions displayed reciprocity resulting in activation of the M phi-c. TH1-derived lymphokines or rIFN-gamma, in the presence of LPS, could activate proteose-peptone elicited M phi, resident peritoneal M phi, and M phi-c whereas neither TH2-derived lymphokines nor rIL4 could induce detectable activity in any of the 3 M phi populations. IFN-gamma, in the absence of LPS, could activate the elicited M phi and to a lesser and more variable degree, the resident M phi Only the M phi-c consistently required both IFN-gamma and LPS for induction of cytostatic activity. Since M phi-c consistently required at least two signals for activation, the ability of TH1-derived lymphokines to synergize with TH2 cells in M phi activation was examined. TH2 could activate the Ag-presenting M phi-c in the presence of IFN-gamma. The ability of added IFN-gamma to synergize with TH2 indicates that the cognate interaction between TH2 and antigen presenting M phi-c does result in delivery of at least one of the signal required for M phi activation.  相似文献   

20.
M phi obtained directly from disaggregated murine Moloney sarcomas produced PGE2 and a hydroxy fatty acid derivative as the major products of arachidonic acid metabolism. M phi-immunoreactive PGE synthetic rates decreased substantially and cytotoxic activity was lost when freshly explanted tumor M phi were held in culture 24 hr. Such cultured M phi remained in a partially activated "primed" state, however, wherein the addition of minute (ng) amounts of bacterial lipopolysaccharide (LPS) returned cytolytic activity and PGE synthesis to original levels. Indomethacin-induced blockade of the M phi cyclooxygenase pathway inhibited PG synthesis by LPS-stimulated, primed M phi without affecting the return of cytolytic activity. We conclude, therefore, that the production of PG had no direct role in the mediation of tumor cell killing by activated M phi isolated from these neoplasms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号